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Abstract
Group A Streptococcus (GAS) is an historically important agent of puerperal infections and
sepsis. The inception of hand-washing and improved hospital hygiene drastically reduced the
incidence of puerperal sepsis, but recently the incidence and severity of postpartum GAS
infections has been rising for uncertain reasons. Several epidemiological, host, and microbial
factors contribute to the risk for GAS infection and mortality in postpartum women. These include
the mode of delivery (vaginal vs. caesarean section), the location where labor and delivery
occurred, exposure to GAS carriers, the altered immune status associated with pregnancy, the
genetic background of the host, the virulence of the infecting GAS strain, and highly specialized
immune responses associated with female reproductive tract tissues and organs. This review will
discuss the complicated factors that contribute to the increased susceptibility to GAS after delivery
and potential reasons for the recent increase observed in morbidity and mortality.
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INTRODUCTION
Group A Streptococcus (GAS) is an historically important cause of puerperal infections and
sepsis. Despite preventive measures, including antibiotic use and hospital sanitation efforts,
GAS infections are re-emerging worldwide and remain the most common cause of severe
puerperal infections [1-5]. The ability of GAS to establish infection in postpartum patients is
influenced by numerous factors, including disrupted mucosal barriers, altered immune status
of the mother, antibiotic administration during labor and delivery, delayed diagnosis,
environmental exposures of the mother, and specific virulence factors utilized by GAS. The
complex interactions of these potential risk determinants complicate our understanding of
how and why postpartum GAS sepsis occurs. This review will discuss the complicated
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factors that contribute to the increased susceptibility to postpartum GAS and highlight topics
in need of further study.

Methods
Manuscripts cited in this review were identified by searching the available English-language
literature using PubMed (U.S. National Library of Medicine, National Institutes of Health,
Bethesda MD) for all years available for the following terms or combination of terms:
“Group A Streptococcus”, “GAS”, “Streptococcus”, “S. pyogenes”, “GAS virulence
factors”, “STSS”, “Bacterial susceptibility”, “Maternal immunology”, “Maternal innate
immunology”, “Vagina/Vaginal immunology”, “Uterine/Uterus immunology” “Female
reproductive tract immunology”, “Pregnant/Pregnancy immunology”, “Prostaglandin E2”,
“PGE2”, “Antimicrobial peptides”, “Neutrophils”, “Macrophages”, “Dendritic cells”,
“Postpartum sepsis”, and “Puerperal sepsis”. Additional references were identified within
bibliographies provided by PubMed-cited studies.The literature was reviewed through
August 31, 2011.

Postpartum Sepsis
An Overview—Globally, puerperal infections cause morbidity in 5-10% of all pregnant
women with over 75,000 deaths each year [6, 7]. Despite efforts to meet the United Nations
Millennium Development Goal 5 (improve maternal health), the maternal mortality ratio has
not improved and infections are an important reason [8]. Several bacterial pathogens can
cause postpartum sepsis. While not the scope of this review, Group B Streptococcus is more
prevalent than GAS, but typically causes less severe maternal disease [9]. Other causal
organisms include staphylococci, Mycoplasma, Chlamydia, Clostridium sordellii, coliform
bacteria, and bacteria associated with polymicrobial vaginosis [10]. However, GAS
postpartum infections remain the most common cause of severe maternal postpartum
infections and death worldwide [11, 12].

Following efforts by Semmelweis and others to popularize hand hygiene and raise the
standards of hospital cleanliness, maternal postpartum infections decreased drastically
(reviewed in [13]). Despite the dramatic and sustained decreases in postpartum GAS
infections and sepsis experienced in the 20th century, the past two decades have witnessed
an unexplained increase in severe postpartum GAS infections, resulting in greater numbers
of maternal deaths worldwide [3, 8, 14]. This reemergence has placed a new urgency to
better understand the host-microbial determinants of disease that might be targeted for
improving preventive and therapeutic measures.

GAS is a ubiquitous human pathogen that causes a wide array of disease including cellulitis,
pharyngitis, necrotizing soft tissue infections, scarlet fever and invasive puerperal infections.
Puerperal infections present rapidly, within 2 to 48 hours postpartum and can be non-
specific, delaying treatment. Primary symptoms include myalgias, fever, confusion,
euphoria, dizziness, and abdominal pain [15]. Once GAS is diagnosed, the infection is often
advanced. Notably, there does not appear to be an increase in GAS antibiotic resistance [16],
so other factors must underlie the re-emergence of GAS postpartum infections.

Routes of maternal infection—GAS can be found in the normal biota of the female
reproductive tract, but its colonization is considered to be relatively rare (0.03%) and its
presence alone is not sufficient to cause disease [17]. However, GAS is asymptomatically
carried on the skin or in the throat by 5-30% of the population and is easily spread by
person-to-person contact or aerosolization [18]. The host and microbial factors that
influence colonization progressing to infection remain unresolved, but it is apparent that
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postpartum and pregnant women are predisposed to bacterial infections in general (reviewed
in [19]).

Women can be a source of contamination of their own reproductive tract. Some mothers
with a recent history of sore throat succumb to GAS postpartum sepsis [9], suggesting that
some women infect themselves after delivery, presumably through contamination of the
perineum or through bacterial travel in the bloodstream from distal organ sites. Another
frequent source of GAS exposure in the maternal environment is through interaction with
children in the house or at work. In a recent report, all investigated patients who died from
GAS postpartum sepsis had recent contact with children (frequent GAS carriers) in their
home or work environment [9]. Lamagni et al. demonstrated that invasive GAS infections as
a whole are on the rise in the general population [20], perhaps contributing to the increase in
maternal exposure in the community.

Due to the presence of asymptomatic carriers, nosocomial infections are a significant
potential route of maternal infection. The high incidence of healthcare-associated GAS
infections in the time of Semmelweis was due to asymptomatic healthcare-worker carriers,
resulting in sporadic postpartum GAS outbreaks in hospitals [6, 21]. Cesarean section has
been called “the single most important risk factor” for postpartum maternal infection in a
hospital and this may be due to several factors, but one obvious factor is the invasive nature
of the surgery [21, 22]. Antibiotic administration during or after surgery significantly
reduces the risk for postpartum infection [22] but is not 100% effective at preventing
infections from progressing and rapidly causing maternal death [9]. It is easy to regard
uncomplicated pregnancies with vaginal deliveries as low-risk for sepsis in a hospital
setting, but there has been an increase in postpartum sepsis following these seemingly
unremarkable deliveries [9]. The non-specific symptoms at the onset of GAS sepsis result in
healthy women becoming critically ill and dying within a few hours or days [9, 23].
Regardless of delivery type, postpartum patients have a 20-fold increased incidence of GAS-
induced disease compared to non-pregnant women [24]. Interestingly, this increased
incidence is higher than that observed in adults over the age of 65 years, the typical age
group associated with increased incidence of GAS infections [25]. The high incidence of
asymptomatic carriage and multiple routes of inoculation (Figure 1) result in a significant
risk for GAS postpartum infections.

Microbiology and immunology of GAS sepsis
GAS virulence factors and Streptococcal toxic shock syndrome (STSS)—GAS
is a versatile human pathogen that utilizes numerous virulence factors to evade immune
recognition or clearance. Several recent reviews describe in detail the microbial factors that
contribute to GAS pathogenesis [26-30] and will not be discussed in detail. GAS virulence
factors aid in evading phagocytosis and facilitate in adherence to host cells, leading to
colonization and invasion of the host [26, 31-35]. In addition, GAS has a family of bacterial
antigens that are associated with streptococcal toxic shock syndrome (STSS) [36, 37]. This
family includes SpeA (Streptococcal pyogenic exotoxin A), SpeC, and others that bind to
the MHC class II molecules and T cell receptors, resulting in an excessive release of
immunomodulators that activate complement, coagulation, and fibrinolytic cascades,
resulting in toxic shock and death. STSS has been reported with invasive GAS soft-tissue
infections with a mortality rate of approximately 30% [3]. A recent study of 11 European
countries showed a 13% incidence level for STSS from GAS infections with a mortality rate
of up to 50% [38]. SpeA is the superantigen most commonly associated with GAS infections
that result in STSS in the US [27, 39] and genome sequence comparisons of GAS patient
isolates reveal new variants of speA, which may be contributing to the increased severity of
these clinical strains in postpartum infections [40, 41].
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Immune recognition of GAS—Despite diverse evasion strategies, GAS is recognized by
the innate immune response. GAS is recognized by an unidentified MyD88-dependent
receptor, which is independent of TLR2, TLR4 and TLR9 activation [42] and in vitro
studies demonstrate GAS activation of p38 MAPK, NF-κB, TNFα, IL-6, and type 1 IFN
production [42], indicating host immune activation. GAS was long considered an
extracellular pathogen, but recent research has demonstrated GAS survival within multiple
host cell types, including epithelial cells, neutrophils and macrophages [43-48]. Biopsies
from patients with severe GAS tissue infections contained viable GAS within macrophages,
confirming their intracellular survival ability [44]. GAS survival in epithelial cells may
contribute to severe GAS postpartum infections by providing a location for systemic
invasion or the initiation of STSS. The next few sections detail potential roles for the diverse
cellular components of innate immunity in defense against reproductive tract GAS infection.

Epithelial cells and antimicrobial peptides: Epithelial cells (EC) play a pivotal role in
maintaining maternal health by forming tight junctions that provide a physical barrier
against potentially pathogenic microbes, through antimicrobial molecule release, and TLRs
1-9 expression [49, 50]. Studies of chemokine and cytokine production by EC during
pregnancy indicate an overall immune hypo-responsiveness with reduced levels of IL-1β,
IL-8 and IL-6 in cervical fluid [51]. The altered antimicrobial peptide production of
epithelial cells in the FRT may play a role in the ability of clinical strains of GAS to cause
more severe postpartum infections. Numerous endogenous antimicrobials actively protect
the pregnant uterus including α- and β- defensins, found in healthy pregnant females
(reviewed in [52, 53]). SLPI and elafin are two other antimicrobials present in the pregnant
uterus [54] that have anti-protease and anti-inflammatory activities and are thought to
regulate inflammation during pregnancy and labor [52]. However, certain pathogens,
including GAS can degrade these antimicrobials [55, 56]. GAS might inhibit the innate
immune response through molecules like SpeB that can cleave host molecules like LL-37,
an antimicrobial peptide [20, 27]. LL-37 is found throughout the FRT and plays an
important role in preventing infections, but LL-37 can be inhibited by PGE2, which is up-
regulated at the end of pregnancy, which may contribute to susceptibility to GAS infections
in the FRT [52, 57].

Macrophages: Macrophages are an important first line of defense against invading
pathogens through phagocytosis, antigen presentation, and cytokine production [58-61].
Previous mouse studies demostrate that when macrophage populations are depleted during a
sublethal systemic GAS infection, mice are significantly more susceptible [62].
Macrophages can also promote chemotaxis responses to GAS infections through the
activation of transcription factors involved in cytokine signaling and chemokine expression
[63, 64]. However, macrophages in the FRT have altered activity compared to macrophages
found in other organ/tissue sites (reviewed in [65]).

Macrophages account for approximately 10% of the total leukocytes in the female
reproductive tract [66] and display phenotypic changes and up-regulated intracellular
reactive oxygen species during pregnancy [67-70]. Estrogen and progesterone levels alter
the migration of macrophages in the FRT and there is cyclic variation of macrophage
movement due to the hormonal regulation of cytokine and chemokine expression [71, 72].
The mechanism behind these cellular alterations remains unknown and controversial in the
field and further work must be done to elucidate the role of hormone alterations,
prostaglandins, stage of pregnancy, the indigenous microbiota of the reproductive tract, and
other factors that may alter macrophage response to GAS infections in pregnant and
postpartum women.
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Dendritic cells: Dendritic cells (DC) are present throughout the FRT and within the
epithelial layer [73, 74] and are the most potent antigen presenting cells [75]. DC play a vital
role in maintaining Th1/Th2 balance [76-78] and secrete soluble immune modulators that
alter DC cytokine production [79]. The ability of estradiol and progesterone to alter DC
differentiation remains controversial, but GAS can inhibit DC maturation [80] and may be a
potential mechanism of GAS colonization and disease in the FRT.

Neutrophils: Neutrophils are an essential part of the innate immune response to invading
bacterial pathogens. Neutrophils efficiently phagocytose bacteria, activate the production of
reactive oxygen species and neutrophil degranulation, and result in bacterial killing
(reviewed in [81]). GAS utilizes several virulence factors to evade ingestion and cellular
recruitment by neutrophils in soft tissue infections [26, 82, 83]. Upon neutrophil
phagocytosis, GAS up-regulates genes involved in tempering oxidative stress, in cell
envelope components and virulence factors [81, 84, 85], suggesting that GAS can effectively
respond to different host environments to promote persistence. The rapid response to
bacterial infections in soft tissue makes it likely that neutrophils will play a role in
susceptibility to GAS postpartum sepsis.

GAS and host genetic susceptibility—Emerging data suggest that host genetics play a
significant role in the outcome of GAS infections [86, 87]. Hypervirulent strains of GAS
emerged globally in the 1980s and have persisted since, but despite the increase in virulence,
there is a wide spectrum of clinical manifestations associated with these strains of GAS [88,
89], suggesting that host genetics are a factor [90-93]. The severity of the response to GAS
varies by patient [93-95] and the level of host cytokine production is correlated with the
severity of disease [93, 96-100]. Of patients with previous postpartum infections, there were
significant changes in allele frequencies compared to control patients for TLR9, hsp70 and
IL-1β, suggesting that innate immune response gene polymorphisms are associated with
susceptibility to severe GAS puerperal sepsis [101]. These studies have helped to clarify
some of the host immune factors that influence infection risk, but further research is needed
to clarify genetic predispositions of pregnant and postpartum women to GAS infection (or
its complications).

Postpartum physiology and immunology—The gravid female reproductive tract
(FRT) environment is unique in its immunology (reviewed in [19]). The maternal immune
system must be tolerant to the indigenous bacteria in the reproductive tract, to paternal
antigens in sperm and to the immunologically-distinct fetus. Despite this immunological
tolerance, the FRT must be able to detect and respond to potentially pathogenic organisms.
Pregnancy takes place in a physiologically and immunologically distinct organ with its own
mucosal barrier (uterus and decidua) and accommodates an allogeneic fetus [102]. In
addition, hormonal products in the FRT alter the immune response, and the fetus
progressively challenges the maternal immune system as its size and complexity increases.
Prostaglandin (PG)E2, IL-4 and IL-10 are induced by pregnancy and suppress the maternal
Th1 immune response (reviewed in [103]) and the systemic down-regulation of the Th1
response results in immune alterations that promote maternal susceptibility to infection [70].
Pregnancy has often been referred to as a Th2-type immune state, but pregnancy is a
modulated immune state that is not simply anti-inflammatory, but is continually changing
during fetal development [104-106]. Although much is known about immunomodulatory
aspects of gestation, these findings have not been studied in the context of invasive GAS
infections.

Prostaglandin E2—The lipid mediator PGE2 deserves special mention because it has
emerged as an important modulator of host immunity, especially during pregnancy and the
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postpartum period [107-112]. PGE2 is an arachidonic acid-derived mediator that modulates
cell behavior via the ligation of four distinct G protein coupled receptors called E prostanoid
(EP) receptors, which are numbered EP1-4 (reviewed in [113]). Throughout gestation, PGE2
dampens maternal immune responses against fetal tissues [107-110, 114] and regulates
cervical softening and uterine contractions during labor, where it is found at increased levels
[111, 112, 115]. It is also a critical negative regulator of the host immune response, with the
ability to down-regulate lymphocyte and neutrophil activity [116], to inhibit production of
Th1 cytokines (IL-12 and IFNγ) and to enhance production of Th2 cytokines (IL-5 and
IL-10) [117-119]. Elevation in PGE2 levels has previously been shown to play a role in host
susceptibility to infections in many patient populations including pregnant women [114,
120-129].

The capacity for PGE2 to regulate host-microbial interactions is increasingly evident in the
context of streptococcal infections [130-136]. In 1982, Short et al. demonstrated increased
survival in animals when PGE2 synthesis was inhibited during Group B Streptococcus sepsis
[137]. Prostaglandin endoperoxide synthase 2 (COX-2) is the enzyme that converts
arachidonic acid into prostaglandin endoperoxide H2 (PGH2) before PGH2 is converted into
other prostaglandins. In 2010 Goldman et al. demonstrated that COX-2 is up-regulated in
human and mouse tissues infected by GAS [130, 138]. Using a mouse model of GAS
bacteremia and in vitro studies of bone marrow-derived macrophages, they established that
PGE2 signaling via EP2 receptors and cAMP elevation suppressed host defenses against
GAS [130]. An unbiased systems genetics approach later identified two PGE2 synthase
enzymes (mPGES-1 and -2) as key participants mediating susceptibility to GAS [86].
However, little is known about PGE2 and GAS in the FRT [139-141].

FRT mucus, pH, and the indigenous microbiota—Vaginal colonization by GAS
appears to be an important preceding event in some cases of puerperal sepsis (following
vaginal delivery), yet host-microbial interactions that determine the capacity for GAS to
colonize and invade the mucosal surfaces of the FRT need further study. In addition, the
innate immune mechanisms that prevent GAS from ascending through the cervical canal
into the postpartum uterus remain incompletely understood. Mucus within the FRT protects
epithelial cells from bacterial infections through several mechanisms. Mucus can physically
trap potential pathogens and inhibit pathogen survival due to the low pH, immunoglobulins,
and antimicrobial peptides [142, 143]. The changes in mucus in the postpartum FRT and its
effect on GAS colonization and dissemination remain unknown.

The indigenous bacteria in the reproductive tract also provide pathogen resistance through
several means, including competitive exclusion of pathogenic microbes and contributing to
the acidic vaginal environment through lactic acid production. Lactobacillus spp. are the
most common bacteria present across all ethnic groups and produce lactic acid in the FRT
[142, 144]. Few studies have been done to investigate individual variation between women
over time, but these preliminary studies suggest that the bacterial diversity is dynamic even
amongst individuals and the vagina is implicated as a significant source of infectious
organisms resulting in preterm labor [142, 145-149]. Membranes collected from healthy
women following at term cesarean sections demonstrate bacterial DNA in up to 70% of
samples indicating a dynamic host control of individual bacterial diversity in healthy
pregnancies [150]. The role of the indigenous microbiota in the reproductive tract and its
interactions with the host immune response during GAS postpartum infections remain
unknown, and whether probiotic approaches would be successful at preventing puerperal
GAS infections depends upon more research into how the microbiota creates a colonization
and infection resistance against this pathogen.
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Conclusions
Pregnancy is a highly immunomodulated state that permits implantation and development of
the immunologically distinct fetus. This may result in an immunologically vulnerable FRT
that is more easily infected after delivery. The immune changes that progress during
pregnancy are complex and remain largely uncharacterized, but recent research suggests
GAS infections are re-emerging and postpartum patients are particularly prone to severe
GAS infections that result in death [1-4]. The mechanisms behind GAS bacterial virulence,
postpartum susceptibility and the immune response to FRT infections remain poorly
understood and future work must be done to address the increase in maternal mortality from
postpartum GAS infections.
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Figure 1. Potential routes of GAS infection during pregnancy and postpartum
GAS can enter the incision made during cesarean section, leading to a quickly disseminating
infection. GAS infections can also result from distal infections (i.e. pharyngitis) where the
bacterium travels through the bloodstream, infecting the reproductive tract and developing
fetus. The vagina is another source of GAS infections when maternal colonization is present
or when the perineum is contaminated after environmental exposures to GAS.
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