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Abstract The most frequently used methods for handling

random error are largely misunderstood or misused by

researchers. We propose a simple approach to quantify the

amount of random error which does not require solid

background in statistics for its proper interpretation. This

method may help researchers refrain from oversimplistic

interpretations relying on statistical significance.
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Presenting and interpreting random error has been a subject

of heated debate ever since the introduction of the P value

and the concept of statistical significance [1]. Several

authors have demonstrated that the concept of statistical

significance in many situations is directly misleading and

sometimes even harmful [1–6]. Nevertheless, these con-

tinuous warnings seem to be largely neglected. The

essentially fallacious approach of dichotomizing study

results based on whether the P value exceeds a prespecified

value of 0.05 or not, is still dominating several disciplines,

including epidemiology, clinical medicine, psychology and

the social sciences. In the majority of scientific journals in

these disciplines it is nearly impossible to publish reports

that avoid reference to statistical significance.

A key factor behind the dominance of statistical sig-

nificance is clearly the lack of knowledge. It has been

suggested that the P value is probably the most misun-

derstood statistical concept in research [1, 7]. One of the

myths surrounding this issue is that the P value is a direct

measure of random error or statistical variability. In fact, an

essential problem with the P value is that it inherently

mixes the strength of the association and its precision, thus

giving explicit information on neither of them [3, 4, 8]. The

strength of the association and its precision are distinct

aspects of the data and both have their own essential sci-

entific values. Thus, the use of confidence intervals (CIs) is

preferred over the P value as it allows the separate

assessment of these two distinct phenomena [8]. The point

estimate provides information on the observed strength of

the association, and the width of the confidence intervals

represents random error.

However, it is unfortunate that CIs are also poorly

understood and frequently misused [2, 3, 5, 9, 10].

Researchers using confidence intervals are supposed to

mentally visualize the underlying P value function [4].

However, only a small fraction of researchers is able to do

so, and even fewer are likely to practice this mental visu-

alization routinely. Most importantly, far too many

researchers do not utilize the rich information provided by

CIs, but typically only check whether the 95% CIs contain

the null value, i.e., to see whether the results are statisti-

cally significant or not [2, 3]. These researchers lose the

advantages that CIs can offer and are back to the simple,

but flawed approach of dichotomizing study results.

Part of the problem could be that CIs may not be an

ideal way to present random error. The absolute width of

the confidence intervals for relative measures, such as the

odds ratio or the hazard ratio, can be misleading. Theo-

retically, a study with a confidence interval for an odds
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ratio from 0 to 1 has exactly the same imprecision as a

study with a confidence interval from 1 to infinity.

Alternative solutions to handle random error have also

been suggested, like using Bayesian methodology, likeli-

hood intervals, or presenting the likelihood function[2, 4] but

these concepts are at least as complex as that of the confi-

dence intervals and have hardly, if at all penetrated to the

research community and become part of common practice.

There could be other, less complex ways to quantify the

amount of random error, not requiring a solid background

in statistics for their proper interpretation. We propose to

present the random error in units analogous to the ‘‘meter’’,

i.e., the universally accepted unit of length, which origi-

nally referred to the one ten-millionth of the distance from

the Earth’s equator to the North Pole. Our proposal is to use

the amount of the random error present in a hypothetical

study as the unit of random error. The proposed hypo-

thetical study is free of any systematic errors and includes

one million individuals with an odds ratio of 1 for the

association of a dichotomous exposure and the—likewise

dichotomous—outcome. To maximize precision half of the

study population would be exposed and half would have

the outcome of interest. If the amount of random error

present in this large, hypothetical ‘‘gold standard’’ study

could be looked upon as the unit of random error, then the

number of random error units could be calculated in any

study using odds ratios for dichotomous exposures or

dummy exposure categories by the following simple

formula:

Number of random error units ¼ SE=0:004ð Þ2

The SE is the standard error of the log odds ratio or

logistic regression coefficient in the actual study in which

we want to assess precision, and provided by all standard

statistical outputs. The value 0.004 is the standard error for

the log odds ratio in the hypothetical gold standard study,

and can be calculated from the well known asymptotic

formula:

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1/a + 1/b + 1/c + 1/c)
p

where a, b, c, and d respectively, refer to those with both

the outcome and the exposure, those without the outcome

who were exposed, those with the outcome who were not

exposed and those without the outcome or exposure, each

being equal to 250,000 participants in the proposed gold

standard study.

This approach of presenting random error is based on

the variance of the log odds ratios or the regression coef-

ficients. The variance of a regression coefficient is a

number that is difficult to handle and interpret, and it is

seldom reported or used to quantify random error in bio-

medical studies. Another proposed way to express random

error is the confidence limit ratio, i.e., the ratio of the upper

to the lower limit of the CI [10]. This is equivalent to the

quantity of e3.92*SE and it allows an order of precision

across different confidence intervals to be established.

However—and this can be a reason for the relatively

infrequent use of this method—it does not offer an explicit

quantification of the random error with an easy intuitive

interpretation. In contrast, the number of random error

units has a simple interpretation. It shows how many times

more individuals an actual study would need, providing

that the proportion of exposed and those with the outcome

will not change, to achieve the precision of the hypothetical

gold standard study. For example, consider a study of 100

individuals, half of them exposed to a dichotomous expo-

sure which has no effect on the—likewise dichotomous—

outcome, which is also present in half of the individuals.

The standard error of the log odds ratio in this study is 0.4

and consequently, the number of random error units is

10,000. If we multiply this study with 10,000 (keeping the

proportion of exposed and those with an outcome constant)

we arrive at exactly the proposed ‘‘gold standard’’ study.

More generally, decreasing the standard error of a study by

a factor of n requires n2 times as many observations

(providing that the distribution of the exposure and out-

come is constant). This can be shown by the following:

SE=n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=aþ 1=bþ 1=cþ 1=cÞ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=ðn2aÞ þ 1=ðn2bÞ þ 1=ðn2cÞ þ 1=ðn2cÞÞ
p

Our choice of hypothetical standard study was arbitrary.

On the one hand, any hypothetical study could serve its

purpose as long as the same one is used as standard

reference when comparing random error across real-life

studies. On the other hand, a study with as little statistical

variability as one including 1 million individuals with

50–50% distribution of exposure and outcome might offer

some benefits. If we were to choose a small study as a

standard, the number of random error units might go below

1 when comparing real life studies to the smaller

hypothetical standard. In this case the interpretation of

the random error might be awkward as it could imply that a

non-integer number of individuals would be needed to

achieve the same precision as the standard hypothetical

study. Therefore, we would prefer a large study as standard

with considerably smaller amount of random error than the

great majority of real epidemiological studies. Even

epidemiologists involved in register based or multicenter

studies can only dream about as precise study as our

proposal for the gold standard. This would ensure that 1

REU (random error unit) provides the ‘‘atom’’—i.e., a

‘‘non-dividable’’ unit—of random error as the number of

random error units is not likely to go below 1 and decimal

values will not be needed.
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In Table 1, we present the number of random error units

in several hypothetical studies with different total number

of individuals, and different proportions and distributions

of the exposure and outcome.

Presenting the number of random error units provides

direct and comparable information on the amount of ran-

dom error in each study. Let us consider three reported

odds ratios on the association of fish consumption with

gastric cancer risk: 1.4 (95% CI, 0.95–2.0)[11], 0.37

(0.19–0.70)[12] and 2.2 (1.2–3.8)[13]. Just by looking at

the confidence intervals from these estimates the amount of

random error is not obvious, not even the order of precision

between studies is clear for untrained eyes.

The amount of random error in these studies is estimated

as 2,446, 7,227 and 5,977 random error units, respectively.

Many biomedical researchers and journal editors would

probably classify the results with a confidence interval of

0.95–2.0 as ‘‘inconclusive’’. A myth surrounding this issue

is that one shall place more trust in a statistically significant

estimate than in a non-significant one. As Charles Poole

observed: ‘‘confidence intervals are occasionally described

as ’wide,’ but ’wide’ and ’imprecise’ often seem nothing

more than code words for ’includes the null value’ and

hence for ’not statistically significant’ ’’[10]. By presenting

the number of random error units it should become clear to

everyone that the precision is considerably higher in the

first than in the other two studies. Thus, the random error

can be low (and therefore the estimates more ‘‘trustable’’)

even if a study lacks statistical significance. We believe

that the quantification of random error by presenting the

random error units may distract attention from whether the

intervals contain the null value or not, and we hope this

approach could help researchers refrain from using over-

simplistic dichotomy in their research.

Moreover, reporting random error units, and explicitly

showing the imprecision of a study, could also help to

prevent the frequent but pointless discussions about post-

hoc power [14]. For example, in a fourth study the odds

ratio of the association of fish consumption with gastric

cancer risk was 1.0 (0.8–1.3) [15, 16]. The observed, post-

hoc power is obviously very low in the study, close to null.

In contrast, the precision is rather high as the estimated

number of random error units is only 810.

The principles of using units of random error based on

gold standard studies can be extended to other measures of

association. For example, in the case of using hazard ratios,

one can also consider the use of 0.004 in the denominator

of the formula. This corresponds to a hypothetical pro-

spective study of one million individuals without censor-

ing, where half of the individuals are exposed to a

dichotomous exposure which has no effect on the—like-

wise dichotomous—outcome, which occurs in half the

individuals at the same time during follow up.

Of course, the number of random error units is correct

only if the underlying statistical model is correct. Fur-

thermore, it provides no information on systematic errors,

Table 1 Number of random error units in hypothetical studies with dichotomous exposures and outcomes using odds ratios

N of exposed N of outcome Total N Exposure Outcome OR (95% CI) REU

Yes No

500,000 500,000 1 million Yes 250,000 250,000 1 (0.99–1.01) 1

No 250,000 250,000

50 50 100 Yes 25 25 1 (0.46–2.19) 10 000

No 25 25

500,000 1,000 1 million Yes 500 499,500 1 (0.88–1.13) 250

No 500 499,500

1,000 500,000 1 million Yes 500 500 1 (0.88–1.13) 250

No 499,500 499,500

1,000 1,000 1 million Yes 1 999 1 (0.14–7.11) 62 625

No 999 998,001

1,000 1,000 10,000 Yes 100 900 1 (0.80–1.24) 772

No 900 8,100

1,000 1,000 10,000 Yes 8,169 831 2 (1.67–2.39) 528

No 831 169

9,000 1,000 10,000 Yes 831 169 0.5 (0.42–0.60) 528

No 8,169 831

1,000 1,000 10,000 Yes 55 945 0.5 (0.38–0.66) 1,276

No 945 8,055

REU number of random error units

A novel approach to quantify random error 901

123



like biases or confounding—that may often be more

important to consider than the random error. As multivar-

iable adjustments influence the precision of the estimates of

effect, adjustments will also influence the number of cal-

culated random error units, however, the method of cal-

culating random error units remains the same.

The calculation of the number of random error units is

easy and straightforward, it has a simple and intuitive

interpretation, and it appears to have some potential

advantages. Although it cannot replace CIs, we believe the

number of random error units would be a more useful

companion to CIs than a P value.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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