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Abstract
Aldosterone is the major mineralocorticoid synthesized by the adrenal. Secretion of aldosterone is
regulated tightly by the adrenocortical glomerulosa cells due to the selective expression of
CYP11B2 in the outermost zone, the zona glomerulosa. Aldosterone is largely responsible for
regulation of systemic blood pressure through the absorption of electrolytes and water under the
regulation of certain specific agonists. Angiotensin II (Ang II), potassium (K+) and
adrenocorticotropin (ACTH) are the main physiological agonists which regulate aldosterone
secretion. The mechanisms involved in this process may be regulated minutes after a stimulus
(acutely) through increased expression and phosphorylation of the steroidogenic acute regulatory
(StAR) protein, over hours to days (chronically) by increased expression of the enzymes involved
in the synthesis of aldosterone, particularly aldosterone synthase (CYP11B2). Imbalance in any of
these processes may lead to several aldosterone excess disorders. In this review we attempt to
summarize the key molecular events involved in and specifically attributed to the acute and
chronic phases of aldosterone secretion.

Introduction
Aldosterone is the major mineralocorticoid involved in maintaining fluid and electrolyte
balance in all mammals. In humans, excessive secretion of this hormone results in
hypertension, contributes to cardiac fibrosis, congestive heart failure, and exacerbates the
morbidity and mortality associated with these disorders (Gekle and Grossmann, 2009;
Marney and Brown, 2007). Although the signal transduction processes regulating
aldosterone production under physiological and pathophysiological conditions are as yet
incompletely understood, ongoing research has identified several important pathways
mediating steroidogenesis. Aldosterone production (equivalent to secretion in the case of
this steroid hormone) is primarily regulated by angiotensin II (AngII), serum potassium, as
well as adrenocorticotropic hormone (ACTH).

Steroidogenesis (Aldosterone Production)
In mammals, aldosterone biosynthesis occurs almost solely in the adrenal zona glomerulosa.
Aldosterone is derived through a series of enzymatic steps that involve three cytochrome
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P450 enzymes and one hydroxysteroid dehydrogenase (Figure 1). The enzymes cholesterol
side-chain cleavage (CYP11A1), 21-hydroxylase (CYP21) and aldosterone synthase
(CYP11B2) belong to the cytochrome P450 family of enzymes. CYP11A1 and CYP11B2
are localized to the inner mitochondrial membrane, while CYP21 is found in the
endoplasmic reticulum. Cytochrome P450 enzymes are heme-containing proteins that accept
electrons from NADPH via accessory proteins and utilize molecular oxygen to perform
hydroxylations (CYP21 and CYP11B2) or other oxidative conversions (CYP11A1). The
fourth enzyme, type 2 3β-hydroxysteroid dehydrogenase (HSD3B2), is a member of the
short-chain dehydrogenase family and is localized in the endoplasmic reticulum.
Aldosterone and cortisol share the first few enzymatic reactions in their biosynthetic
pathways (cholesterol to progesterone); however, adrenal zone-specific expression of
CYP11B2 (aldosterone synthase) in the glomerulosa and that of CYP11B1 (11β-
hydoxylase) in the fasciculata leads to the functional zonation observed in the adrenal cortex
(Rainey, 1999).

Like all steroid hormones, the glomerulosa cell uses cholesterol as the primary precursor for
steroidogenesis. The cholesterol needed for adrenal steroidogenesis can come from several
sources, which include de novo synthesis from acetate or cholesteryl esters stored in lipid
droplets or up take from lipoproteins by the low-density lipoprotein (LDL) receptor (for
LDL) or scavenger receptor-BI (for high-density lipoprotein or HDL). Movement of
cholesterol from the outer mitochondrial membrane, across the aqueous intra-membranous
space, to the inner mitochondrial membrane must occur for CYP11A1 to access the
molecule for cleavage to pregnenolone. Because steroid hormones are secreted upon
synthesis, the initial reaction involving mitochondrial conversion of cholesterol to
pregnenolone is tightly controlled and represents the rate-limiting step in aldosterone
synthesis. This step is regulated by the expression and phosphorylation of steroidogenic
acute regulatory protein (StAR) (Arakane et al., 1997; Fleury et al., 2004; Manna et al.,
2009). Pregnenolone passively diffuses into the endoplasmic reticulum and is converted to
progesterone by HSD3B2. Progesterone is hydroxylated to deoxycorticosterone by CYP21.
Finally, aldosterone biosynthesis is completed in the mitochondria, where
deoxycorticosterone undergoes 11β- and 18-hydroxylation, followed by 18-oxidation, which
in humans can be mediated by a single enzyme, CYP11B2. Although the last step of cortisol
production also involves the 11-hydroxylation of cortisol to 11-deoxycortisol by 11β-
hydoxylase, this enzyme only poorly catalyzes the 18-hydroxylation reaction and does not
catalyze the 18-oxidation.

There are several factors regulating aldosterone production in the adrenal zona glomerulosa.
First, the selective expression of CYP11B2 in the glomerulosa creates a tightly controlled
zone-specific ability to make aldosterone and limits production of the steroid outside of this
relatively small adrenal zone (Domalik et al., 1991; Ogishima et al., 1992; Pascoe et al.,
1995). In rats and mice CYP11B2 is expressed in a tight zonal pattern that circles the
adrenal (Domalik et al., 1991; Ogishima et al., 1992). A recent study revealed a variation in
human adrenal glomerulosa zonation characterized by the presence of relatively few
subcapsular cell clusters expressing CYP11B2 (Nishimoto et al., 2010). This phenotype may
relate to the relatively high sodium diet and resultant suppression of the renin-angiotensin
system in most human populations. It is hypothesized that these CYP11B2-expressing
cortical cell clusters may be the precursors to aldosterone-producing adenomas (APA)
(Nishimoto et al., 2010). The absence of CYP17 in glomerulosa cells is a second mechanism
resulting in diversion of the steroidogenic pathway toward aldosterone (Narasaka et al.,
2001). Finally, the centripetal blood flow in the adrenal cortex, itself, prevents the precursors
of aldosterone in the fasciculata cells from accessing CYP11B2 in the zona glomerulosa,
thereby helping to maintain the functional specificity of the adrenocortical zones.
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The regulation of glomerulosa aldosterone biosynthesis is divided into two key events in the
steroidogenic pathway (Clark et al., 1992; Muller, 1998). Acutely (minutes after a stimulus),
aldosterone production is controlled by rapid signaling pathways that increase the movement
of cholesterol into the mitochondria where it is converted to pregnenolone. This has been
called the “early regulatory step” and is mediated by increased expression and
phosphorylation of StAR protein (Figure 2) (Arakane et al., 1997; Cherradi et al., 1998;
Fleury et al., 2004; Manna et al., 2009). Chronically (hours to days), aldosterone production
is regulated at the level of expression of the enzymes involved in the synthesis of
aldosterone (Figure 3) (Bassett et al., 2004b). This has been called the “late regulatory step”
and is particularly dependent on increased expression of CYP11B2. The goal of this review
article is to summarize our current understanding of the signaling pathways that regulate the
early and late regulatory steps of aldosterone biosynthesis.

Acute Effects of AngII
As mentioned above, the initial enzymatic step in aldosterone biosynthesis is the hydrolysis
of cholesterol to pregnenolone by the cholesterol side-chain cleavage complex found in the
inner mitochondrial membrane. Thus, initiation of aldosterone production in response to
agonists such as AngII, elevated extracellular potassium concentrations or ACTH requires
two major steps: first, cholesterol mobilization from lipid droplets to the mitochondria is
thought to require cytoskeletal rearrangements (Crivello and Jefcoate, 1979; Crivello and
Jefcoate, 1980; Feuilloley and Vaudy, 1996) and activation of cholesteryl ester hydrolase by,
e.g., extracellular signal-regulated kinase-1 and -2 (ERK-1/2) (Cherradi et al., 2003).
Mobilization is followed by movement of the cholesterol from the outer to the inner
mitochondrial membrane, a process requiring active StAR protein (Clark et al., 1994;
Krueger and Orme-Johnson, 1983; Krueger and Orme-Johnson, 1988; Pon and Orme-
Johnson, 1985; Pon and Orme-Johnson, 1986). As discussed below, StAR appears to be
regulated both at the level of transcription (Jo et al., 2005; Manna et al., 2009) and post-
translationally, in that phosphorylation appears necessary for its full activity (Arakane et al.,
1997; Fleury et al., 2004; Manna et al., 2009; Stocco et al., 2005).

Both of these processes are triggered, in the case of AngII, by the binding of the hormone to
the type 1 AngII (AT1) receptor and the activation of several signaling pathways (Figure 2).
One such pathway is a phosphoinositide-specific phospholipase C, which hydrolyzes
phosphatidylinositol 4,5-bisphosphate (PIP2) to generate the two second messengers,
inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) (Barrett et al., 1989; Bird et al.,
1993; Bollag et al., 1991; Farese et al., 1981; Ganguly and Davis, 1994; Hunyady et al.,
1990; Kojima et al., 1984a). IP3 is thought to initiate aldosterone secretion by eliciting a
transient increase in the cytosolic calcium concentration and activating calcium/calmodulin-
dependent protein kinases (CaMK). CaMK activity is clearly important in mediating
aldosterone secretion, as inhibition of this enzyme decreases AngII-induced aldosterone
secretion (Ganguly et al., 1992; Pezzi et al., 1996; Spät and Hunyady, 2004). On the other
hand, DAG functions to stimulate protein kinase C (PKC), the activity of which has been
suggested by some groups to underlie sustained aldosterone secretion from bovine
glomerulosa cells (Bollag et al., 1990; Bollag et al., 1992; Bollag et al., 1991; Kapas et al.,
1995; Kojima et al., 1984a). This idea is supported by the ability of phorbol esters
(Betancourt-Calle et al., 1999; Kojima et al., 1985d), a DAG-generating enzyme (Bollag et
al., 1990) and synthetic DAGs (Kojima et al., 1985d) to elicit aldosterone secretion and of a
selective PKC inhibitor to decrease AngII-induced aldosterone secretion (Kapas et al.,
1995). However, other groups have suggested an inhibitory role of PKC in the aldosterone
secretory response as discussed below (Aptel et al., 1996; Hajnoczky et al., 1992; Rossier et
al., 1995).
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There are two additional pathways activated by AngII binding to the AT1 receptor, through
mechanisms that are as yet incompletely defined. The first is an increase in calcium influx,
in part through CaM kinase II (Barrett et al., 2000; Fern et al., 1995; Lu et al., 1994; Yao et
al., 2006) and GTP-binding proteins (Lu et al., 1996), with this enhancement acting
synergistically with PKC-activating agents to stimulate secretion. Indeed, this calcium influx
is essential for a continued aldosterone secretory response (Barrett et al., 1989; Ganguly and
Davis, 1994), as well as for regulating PKC activity (Kojima et al., 1994), since inhibition of
calcium influx with calcium channel antagonists decreases AngII-induced aldosterone
secretion (Kojima et al., 1985c; Rossier et al., 1996; Rossier et al., 1998; Spät and Hunyady,
2004). Calcium influx occurs through voltage-dependent T- and L-type calcium channels, as
well as store-operated calcium channels or capacitative calcium influx (Aptel et al., 1999;
Burnay et al., 1994; Burnay et al., 1998; Spät and Hunyady, 2004). The activity of these
voltage-dependent channels is maintained by appropriate membrane polarization,
maintained by proper functioning of potassium channels, such as TWIK-related acid-
sensitive K (TASK) channels (Davies et al., 2008; Nogueira et al., 2010b). Emptying of the
endoplasmic reticulum store by IP3 also results in capacitative calcium influx, as discussed
above. The importance of this calcium signal to acute aldosterone secretion, functioning
largely through activation of CaMK, is well appreciated and has been reviewed thoroughly
(Spät and Hunyady, 2004).

On the other hand, the role of DAG effector enzymes such as protein kinase C (PKC), in
modulating aldosterone synthesis remains somewhat controversial, with some reports
showing that activation of the PKC pathway enhances aldosterone secretion, and others that
this pathway inhibits aldosterone production (Hajnoczky et al., 1992; Kojima et al., 1984a;
Kojima et al., 1983; LeHoux et al., 2001; LeHoux and Lefebvre, 2006; Lehoux and
Lefebvre, 2007). Thus, some investigators have shown that mimicking the PKC and calcium
influx signals with pharmacologic agents essentially reproduces AngII responses including
aldosterone secretion (Bollag et al., 1990; Kojima et al., 1984a; Kojima et al., 1985c) and
the protein phosphorylation pattern (Barrett et al., 1986). These results suggest that the
aldosterone secretory response to AngII requires both a PKC activation event and a calcium
influx stimulus. In contrast, there is evidence to indicate that the DAG signal and its
effectors oppose aldosterone secretion acutely in rat glomerulosa cells, with inhibition of
PKC by pretreatment with the non-selective inhibitor staurosporine enhancing subsequent
AngII-induced aldosterone secretion (Hajnoczky et al., 1992). This result has been
confirmed in experiments with the selective PKC inhibitors bisindolymaleimide I and
Gödecke 6976 (LeHoux et al., 2001). Other experiments have observed essentially no effect
of DAG-mimicking phorbol esters on more chronic aldosterone secretion from the human
adrenocortical carcinoma cell line, H295R (Bird et al., 1995b). One possible explanation
arises from the lack of selectivity/specificity of phorbol esters as mimics of the DAG
pathway and/or PKC inhibitors as blockers of the pathway (see below). Clearly, additional
studies are required to define the role of DAG-mediated signaling in AngII-induced
aldosterone synthesis.

Another signaling system activated by AngII is phospholipase D (PLD), which can also
increase DAG (indirectly) and presumably activate PKC (Bollag et al., 1990; Bollag et al.,
2002; Zheng and Bollag, 2003). PLD, of which there are two well-characterized mammalian
isoforms PLD1 and PLD2, hydrolyzes phospholipids, primarily phosphatidylcholine, to
yield phosphatidic acid (phosphorylated DAG), which can then be converted to DAG by the
action of lipid phosphate phosphatases (Bollag et al., 2007; Qin et al., 2010). Phosphatidic
acid is a second messenger itself and is proposed to function as a slow-release reservoir of
diacylglycerol for sustained cellular responses (Bollag et al., 1990; Bollag et al., 2007;
Bollag and Xie, 2008a). Phosphatidic acid can also be deacylated by phospholipase A2 to
produce lysophosphatidic acid (LPA), a lipid message that activates G protein-coupled LPA
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receptors. The released fatty acid can also be metabolized to additional lipid signals, such as
eicosanoids and 12-hydroxyeicosatetraenoic acid (12-HETE), which has been reported to
stimulate aldosterone secretion (Natarajan et al., 1990; Natarajan et al., 1988). Treatment of
glomerulosa cells with exogenous PLD alone or in combination with the calcium channel
agonist, BAY K8644, induces a sustained increase in aldosterone secretion without an
increase in phosphoinositide hydrolysis (Bollag et al., 1990), suggesting that PLD activity
may be sufficient to stimulate aldosterone secretion. PLD activity also appears to be
necessary for AngII-induced aldosterone secretion, as demonstrated using the primary
alcohol 1-butanol, which diverts production away from phosphatidic acid and DAG (Su et
al., 2009) and instead forms phosphatidylbutanol (versus the control tert-butanol, which
does not affect PLD-generated lipid signals). 1-Butanol was found to inhibit the AngII-
induced increase in DAG and phosphatidic acid levels (Bollag et al., 2002), as well as
AngII-elicited aldosterone secretion, in bovine adrenal glomerulosa cells (Bollag et al.,
2002) and in H295R cells (Zheng and Bollag, 2003), whereas tert-butanol did not (Zheng
and Bollag, 2003). More direct evidence arises from studies in which PLD was
overexpressed using adenovirus-mediated transduction. Overexpression of wild-type PLD1
or PLD2, but not the lipase-inactive isoforms, increased PLD activity (Qin et al., 2010).
However, only wild-type PLD2 enhanced AngII-stimulated aldosterone secretion (Qin et al.,
2010), suggesting that PLD2 is the isoform mediating aldosterone secretion in response to
AngII, although the lipid signal(s) mediating this effect is unclear.

Thus, as discussed above, DAG can be produced by both AngII-activated phospholipase C
and PLD and, in turn, can activate DAG effector enzymes, which include PKC isoenzymes
and protein kinase D (PKD), as well as Ras guanine nucleotide exchange factors (Ras-GRP1
through 3), which are upstream of the mitogen-activated protein kinase pathway involving
Ras, Raf, MEK and ERK-1/2, and chimaerins (GTPase-activating proteins for Rac) (Brose
and Rosenmund, 2002). PKC isoenzymes constitute a multigene family that belongs to the
cAMP-dependent protein kinase A/protein kinase G/protein kinase C (AGC) family (Mellor
and Parker, 1998). Members of the family play an important role in mediating numerous
intracellular signaling events, including those involved in cell growth and differentiation,
membrane trafficking, secretion, and gene expression (Mellor and Parker, 1998; Spät and
Hunyady, 2004). The PKC family is divided into three groups based on their second
messenger requirements: the conventional (also known as classical), novel, and atypical,
with all members requiring acidic phospholipids such as phosphatidylserine for activation.
Conventional and novel PKCs also require DAG and in addition conventional PKCs require
calcium. Alpha, betaI, betaII and gamma comprise the conventional PKC subfamily,
whereas novel PKCs include the delta, epsilon, eta, and theta isoforms. The novel isoforms
have been shown to activate protein kinase D (PKD) via phosphorylating serines in the
catalytic domain (Waldron and Rozengurt, 2003) (see below).

PKCs are also involved in regulating adrenal steroidogenesis through the phosphorylation of
hydroxyl groups of serine and threonine amino acid residues on substrate proteins
(Betancourt-Calle et al., 1999; Kapas et al., 1995; Lang and Valloton, 1987; Nakano et al.,
1990; Natarajan et al., 1994). There is evidence to suggest that DAG activation of PKC
coincides with the expression of the rate-limiting StAR protein (Manna et al., 2009) as well
as StAR phosphorylation (Betancourt-Calle et al., 2001a). In turn, phosphorylation of StAR
has been proposed to be required for its full activity (Arakane et al., 1997; Fleury et al.,
2004; Manna et al., 2009). For example, using a mouse Leydig cell line, Stocco and
colleagues (Manna et al., 2009) showed that activation of the PKC pathway can increase
StAR expression but has a minimal effect on steroidogenesis, unless small concentrations of
dibutyryl-cAMP are also included. Thus, these low doses of cAMP act synergistically with a
PKC-activating phorbol ester to stimulate StAR phosphorylation and maximal steroid
hormone production. Bollag and colleagues have also demonstrated that treatment of H295R
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cells with the DAG-mimicking phorbol ester, phorbol 12-myristate 13-acetate (PMA)
increases mitochondrial cholesterol levels and aldosterone secretion (Bollag et al., 2008),
providing evidence for a possible role of PKC (and/or other DAG effector enzymes) in
cholesterol transport and aldosterone production.

The 18kDa mitochondrial protein peripheral type benzodiazepine receptor (PBR), also
known as translocator protein (TSPO), has also been implicated in steroidogenesis (Jefcoate,
2002; Papadopoulos et al., 2007). PBR has been proposed to functionally interact with
StAR, among other proteins, to mediate mitochondrial cholesterol uptake into the
mitochondria (Hauet et al., 2002). PBR is located on the outer mitochondrial membrane and
is elevated in steroidogenic cells upon hormone stimulation (Hauet et al., 2002).
Introduction of a null mutation of the PBR gene into R2C rat Leydig tumor cells inhibited
pregnenolone production in response to 22R-hydroxycholesterol, a precursor that bypasses
the need for StAR (Papadopoulos et al., 2007) supporting an important role for this protein
in steroidogenesis. Recently, the DAG-sensitive PKC isozyme, PKC-epsilon was shown to
mediate PBR gene expression (Batarseh et al., 2008) in MA-10 Leydig cells using PKC
inhibitors and small interfering (si)RNA targeting PKC-epsilon, indicating a role for PKC-
epsilon in regulating PBR expression (Batarseh et al., 2008). These results may provide
insight into the possible role of the PKC pathway in mediating aldosterone secretion,
although additional studies are certainly required to fully define the role(s) of this large
family of serine/threonine protein kinases.

The PKD family of enzymes, composed of PKD1 (also known as PKC-μ), PKD2 and PKD3
(also known as PKC-n), represent DAG-activated serine/threonine kinases downstream of
novel PKCs and a Src family tyrosine kinase pathway. An involvement of PKD family
members has been proposed for a number of important cellular functions, including Golgi
trafficking, hypertrophy, immune response, proliferation, migration, invasion and survival.
(Guha et al., 2010; Lavalle et al., 2010), Importantly, PKD is activated in response to AngII
in primary bovine adrenal glomerulosa cells (Shapiro and Bollag, 2004). Moreover,
adenovirus-mediated overexpression of a constitutively active PKD1 mutant enhances, and a
dominant-negative PKD1 mutant inhibits acute AngII-induced aldosterone secretion in these
cells (Shapiro and Bollag, 2004). PKD performs a similar role to enhance chronic AngII-
induced aldosterone secretion and aldosterone synthase expression in the H295R cell model
(Romero et al., 2006), a result which was corroborated by a study showing that knocking
down PKD levels with RNA interference decreased AngII-stimulated aldosterone secretion
from these cells (Chang et al., 2007). Thus, PKD appears to mediate AngII-elicited
aldosterone secretion acutely as well as to regulate aldosterone biosynthetic capacity of the
adrenal. Also in the H295R cells, PKD activation in response to AngII resulted from PKC-
epsilon-mediated transphosphorylation (Romero et al., 2006). While the mechanism by
which PKD enhances aldosterone secretion is unclear, it is known that StAR gene
transcription is influenced by several transcription factors that are targets for PKD, including
cAMP response-element (CRE)-binding protein (CREB)/CRE modulator (CREM)/
activating transcription factor (ATF) family members and activator protein-1 (AP-1, Fos/
Jun) (Bassett et al., 2004a; Gonzalez and Montminy, 1989; Manna et al., 2003; Stocco et al.,
2005). Indeed, Stocco and colleagues recently showed that PKD regulates StAR levels via
CREB and AP-1 in MA-10 Leydig cells (Manna et al., 2011).

Acute Effects of Potassium
Similar to AngII, small increases in extracellular potassium levels also stimulate calcium
influx, via depolarization of the glomerulosa cell plasma membrane and activation of the
voltage-dependent calcium channels, transient T-type and long-lasting L-type. Also as with
AngII, this influx is required for the response to potassium, since inhibition of calcium
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influx abolishes potassium-stimulated aldosterone secretion (Capponi et al., 1984; Kojima et
al., 1985a; Kojima et al., 1984b; Rossier et al., 1998; Spät and Hunyady, 2004). Related to
calcium influx, an interesting finding is the fact that decreasing potassium levels to 2mM
inhibits AngII-stimulated aldosterone production, presumably by inhibiting AngII-induced
calcium influx (Kojima et al., 1985d). It can be speculated that this mechanism serves under
conditions of low serum potassium levels to prevent AngII-stimulated aldosterone secretion,
which could otherwise cause excessive excretion of potassium and subsequent severe, and
possibly fatal, hypokalemia.

Other signaling pathways have also been proposed to be involved in potassium-induced
aldosterone production, although controversy remains concerning these other events. For
instance, some investigators have observed an ability of potassium to increase cAMP levels
and others have not (Fujita et al., 1979; Ganguly et al., 1990; Kojima et al., 1985b; Tait and
Tait, 1999). Potassium has also been reported to stimulate PLD activity through voltage-
dependent calcium channels in bovine glomerulosa cells (Betancourt-Calle et al., 2001b),
although whether and how this PLD activation contributes to potassium-elicited aldosterone
production is unclear. Thus, there are still several areas related to the acute effects of
potassium on aldosterone secretion in adrenal glomerulosa cells that still need to be studied
and better understood.

Acute Effects of ACTH
ACTH is able to stimulate aldosterone production acutely, both in vivo and in vitro. It does
so by binding to the ACTH receptor (MC2R) which activates adenylate cyclase via the
heterotrimeric G protein, Gs. Adenylate cyclase produces the second messenger cAMP,
thereby stimulating the activity of cAMP-dependent protein kinase or protein kinase A
(PKA). PKA can then phosphorylate and activate StAR (Betancourt-Calle et al., 2001a), to
increase cholesterol delivery to the inner mitochondrial membrane. In addition, PKA can
regulate the transcriptional activity of CREB family transcription factors (Jo et al., 2005;
Johannessen and Moens, 2007a; Manna et al., 2011). Since binding sequences for CREB/
ATF transcription factors are found in the promoter of StAR (Bassett et al., 2000; Clem et
al., 2005; Manna et al., 2002; Manna et al., 2003; Sher et al., 2007), PKA can also rapidly
increase expression of StAR protein levels and further enhance acute steroid production. In
addition to stimulating cAMP-induced PKA activation, ACTH is capable of promoting
calcium influx, likely through PKA-mediated phosphorylation of L-type calcium channels
(Sculptoreanu et al., 1993), thereby increasing cytosolic calcium concentration and further
enhancing adenylate cyclase production of cAMP and aldosterone secretion (Gallo-Payet et
al., 1996).

Finally, there may be some PKA-independent effects of cAMP on aldosterone secretion, in
that, a recent report has suggested the involvement of the guanine nucleotide exchange
factor, exchange protein directly activated by cAMP (Epac), in cAMP-mediated aldosterone
production, via effects on CaMK activation (Gambaryan et al., 2006).

Chronic Effects of AngII
As noted earlier, the capacity for aldosterone production is also regulated through the
chronic action of the same factors that acutely stimulate its biosynthesis. The chronic actions
involve changes in the size of the zona glomerulosa as well as glomerulosa cell capacity to
produce aldosterone. This review focuses on the second issue (glomerulosa cell
differentiation) because of recent advances in our understanding of the mechanisms
regulating steroidogenic enzymes.
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AngII increases the expression of enzymes required for aldosterone synthesis, particularly
CYP11B2. In vivo models have been crucial in describing such AngII effects. Sodium
restriction experiments in rats indicate that activation of the renin-AngII system (most often
by low sodium diets) induces the expression of CYP11B2 in glomerulosa cells without
affecting that of CYP11B1 (Adler et al., 1993; Holland and Carr, 1993; Tremblay et al.,
1992). This result confirms the capacity of AngII to specifically increase the production of
aldosterone but not that of glucocorticoids (Holland and Carr, 1993; Tremblay et al., 1992).
One explanation for the zone-specific effects of AngII is the greater expression of AT1
receptors in glomerulosa versus fasciculata cells (Breault et al., 1996), and the inhibition of
CYP11B2 expression by angiotensin inhibitors or AT1 receptor blockers has been
demonstrated (Kakiki et al., 1997). AngII can also increase CYP11B2 expression by
increasing glomerulosa cell sensitivity to AngII through upregulation of its own receptor.
This effect has been demonstrated in vivo in rats on a low-sodium diet (Du et al., 1996;
Wang and Du, 1995); further studies have shown that pharmacological blockers of the AT1
receptors, such as losartan (Du et al., 1996; Wang and Du, 1995) and angiotensin-converting
enzyme (ACE) inhibitors (Lehoux et al., 1994; Wakamiya et al., 1994), reduce the effect of
the RAS on the adrenal.

In vitro cell models have been particularly useful in defining the intracellular signaling
mechanisms that lead to the chronic effects of AngII. As with acute secretion, the best
characterized pathway regulating AngII-induced chronic production of aldosterone is the
PLC-mediated generation of DAG and IP3, which increases intracellular calcium and acts
via CaMK. Calcium signaling appears to be the primary regulator of CYP11B2
transcription. However, since inhibitors of calmodulin and CaMK cannot completely block
AngII's stimulation of CYP11B2 (Pezzi et al., 1997), other signaling mechanisms are also
likely involved. DAG-activated PKC, on the other hand, does not appear to increase
CYP11B2 transcript levels, but does play a role in producing an aldosterone-secreting
glomerulosa cell phenotype by inhibiting the expression of CYP17 (Bird et al., 1996;
McEwan et al., 1999). This effect has been recently attributed to Fos-mediated repression of
the CYP17 transcriptional activator, steroidogenic factor 1 (SF1) (Sirianni et al., 2010). On
the other hand, there is evidence suggesting that certain PKC isoforms, such as PKC-epsilon
may actually inhibit CYP11B2 expression via activation of ERK-1/2 (LeHoux and Lefebvre,
2006; Lehoux and Lefebvre, 2007). However, PKC-epsilon has been shown to activate
PKD, a kinase that can increase CYP11B2 expression (Romero et al., 2006) (see below),
indicating that the role of the PKC family in regulating chronic aldosterone production is as
yet unclear.

AngII appears to increase CYP11B2 expression through the activation of its transcription. A
number of studies involving promoter deletion and mutation analyses have revealed that cis-
elements in the CYP11B2 promoter are essential for basal as well as AngII-mediated
CYP11B2 promoter activity. These include three key regulatory cis-elements: one cAMP
response element (CRE)/Ad1 and two distal cis-elements (Ad5 and NBRE) that are able to
bind members of the nerve growth factor-induced clone B family of transcription factors
(NGFI-B or NR4A family) (Bassett et al., 2004a; Bassett et al., 2004b; Bassett et al., 2000;
Clyne et al., 1997; Nogueira and Rainey, 2010a; Romero et al., 2010; Szekeres et al., 2009).
The over-expression of one of these transcription factors, NURR1 (NR4A2), has in fact been
implicated in the development of aldosterone-producing tumors (Lu et al., 2004). Using
multiple glomerulosa cell models, microarray studies have defined additional transcription
factors that are regulated by AngII (Nogueira et al., 2009; Romero et al., 2007; Szekeres et
al., 2010). The role of these newly defined factors requires further study. Conversely, other
transcriptional regulators such as SF1 (also called AD4BP and NR5A1) have been shown to
repress basal and AngII-stimulated CYP11B2 expression (Bassett et al., 2002; Ye et al.,
2009). However, it appears that the relative level of SF1 may decide its ability to repress
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CYP11B2 expression, since complete knock down of SF1 impairs the entire steroidogenic
synthetic pathway (Ye et al., 2009). The underlying mechanism, however, is yet to be
elucidated. As mentioned previously, yet another AngII-mediated mechanism regulating
chronic aldosterone secretion seems to be via PKD (Romero et al., 2006). The pathway
involved is undetermined in adrenal cells; although PKD activation of the transcription
factor CREB has been demonstrated in kidney HEK 293 cells (Johannessen et al., 2007b)
and in MA-10 Leydig cells (Manna et al., 2011). In the Leydig cell model PKD was shown
to increase StAR levels via effects on CREB and AP-1 transcription factors (Manna et al.,
2011). At the level of cholesterol uptake in glomerulosa cells, AngII has been shown to up-
regulate the expression of LDL and HDL receptors (Pilon et al., 2003) and of enzymes
involved in cholesterol synthesis (Liang et al., 2007).

Finally, AngII also increases aldosterone production by expansion of the zona glomerulosa
via hypertrophy and hyperplasia. This effect has been demonstrated in vivo, in rats on low-
sodium diets, which display glomerulosa cell hypertrophy and proliferation in AT1R-
dependent and -independent processes (McEwan et al., 1999). In vitro, primary cultures of
bovine glomerulosa cells also showed similar responses to AngII (Tian et al., 1995; Tian et
al., 1998). These effects may be attributed to the ability of AngII to induce the expression of
cyclin D1 (Watanabe et al., 1996). Mitogenic and hypertrophic effects of AngII have also
been demonstrated in epithelial cells, vascular smooth muscle cells (Berk et al., 1989;
Geisterfer et al., 1988), fibroblasts, cardiac myocytes (Sadoshima and Izumo, 1993) and rat
intestinal cells (Smith et al., 1994). It can thus be speculated that the predisposition to
cardiovascular damage resulting from activation of the renin-angiotensin-aldosterone system
can be attributed to AngII stimulation of not only aldosterone production pathways but also
glomerulosa cell hyperplasia and pathological growth of cardiovascular cells. Worth noting
is the fact that in mice with targeted deletion of the renin/AngII system, potassium can
substitute for the effects of AngII to increase adrenal expression of CYP11B2 and synthesis
of aldosterone (Chen et al., 1997; Okubo et al., 1997). This result suggests that the
mechanisms of potassium and AngII stimulation of CYP11B2 expression likely overlap.

Chronic Effects of Potassium
Besides inducing early events to increase aldosterone production, potassium also regulates
later/chronic events. It has been well documented that high potassium diets in rats increase
the expression of aldosterone synthase (CYP11B2) and aldosterone production (Tremblay
and LeHoux, 1993; Tremblay et al., 1991). A recent study in mice also reported a slight
increase in the thickness of the zona glomerulosa and suggested the role of several genes in
this process. These genes, including Mtus 1, Smoc 1 and Grp 48, were observed to be
upregulated with 28 days of a high potassium diet, although the in vitro experiments did not
completely parallel these microarray results (Dierks et al., 2010). However, attributing these
observed changes solely to the chronic effects of potassium on aldosterone production is
particularly challenging, since physiological potassium levels are tightly regulated by the
renin-angiotensin system. Indeed, serum potassium levels following high potassium diets
were not reported to be abnormally high. Other in vitro studies using primary cultures of rat
glomerulosa cells and the human adrenocortical H295R cell line have demonstrated
increased CYP11B2 mRNA levels, promoter activation and aldosterone biosynthesis in
response to elevated potassium levels in the growth media (Bird et al., 1995b; Denner et al.,
1996; Yagci and Muller, 1996b; Yagci et al., 1996a). These results may help to explain the
finding that in transgenic mice with targeted deletion in the renin-angiotensin system,
potassium can induce CYP11B2 expression in the adrenal as well as the synthesis of
aldosterone (Chen et al., 1997; Okubo et al., 1997).
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As mentioned earlier, the mechanism of potassium signaling in glomerulosa cells involves
depolarization of the cells to allow extracellular calcium influx through the T- and L-type
calcium channels. This increase in calcium influx upregulates CYP11B2 expression.
Consistent with these findings, increasing calcium influx with the pharmacological calcium
channel agonist BAYK8644 increases CYP11B2 mRNA expression in the H295R cell
model (Clyne et al., 1997; Pezzi et al., 1997). Further, this potassium-induced calcium influx
elevation is abrogated by the calcium channel blocker nifidipine (Denner et al., 1996; Yagci
and Muller, 1996b), which also inhibits AngII-induced CYP11B2 upregulation. As in the
case of AngII, potassium-induced calcium signaling occurs through the binding of calcium
to the protein calmodulin. The calcium-calmodulin (CaM) complex activates several
enzymes and kinases, many of which are expressed in a tissue-specific manner. Amongst the
different CaM kinases (CaMK), types I and IV are more likely to be involved in chronic
stimulation of aldosterone secretion by AngII and potassium (Condon et al., 2002).
Immunohistochemistry was used to demonstrate that CaMKI expression is elevated in the
glomerulosa of the human adrenal gland (Condon et al., 2002). The CaMK antagonist KN93
and the calmodulin inhibitor calmidazolium effectively inhibit potassium-induced CYP11B2
mRNA upregulation (Bassett et al., 2004b; Pezzi et al., 1997) and promoter activation
(Bassett et al., 2004b; Condon et al., 2002).

Another similarity that potassium shares with AngII is the ability to activate several
transcription factors, such as of NURR1, ATF1, ATF2 and CREB, which bind the proximal
promoter of CYP11B2 at key cis-elements to enhance transcription. Activation of these
transcription factors appears to be mediated through phosphorylation by potassium-activated
CaMK (Bassett et al., 2004a; Bassett et al., 2004b; Bassett et al., 2000; Nogueira and
Rainey, 2010a). Supporting these data is a recent study in which knock down of these
transcription factors by siRNA technology reduced potassium-induced CYP11B2 promoter
activity and mRNA levels (Nogueira and Rainey, 2010a). This idea is also supported by the
observation that within the adrenal cortex, the transcription factor NURR1 has higher
expression in the zona glomerulosa and in aldosterone-producing tumors compared to the
adjacent zona fasciculata (Lu et al., 2004).

As mentioned earlier, a small but interesting effect of a high-potassium diet in mice is the
observed slight increase in the thickness of the zona glomerulosa (Gao et al., 2009). A more
significant increase in the thickness of the zona glomerulosa was found in rats on a high
potassium diet for 2 to 7 weeks (Hartroft and Sowa, 1964). Also observed in the 2009 study
by Gao et al. was elevated expression of Gpr48, a G protein-coupled receptor that has been
implicated in increasing tumor invasiveness and metastasis in the HeLa cervical carcinoma
cell line (Gao et al., 2006; Gao et al., 2009). Moreover, Gpr48 is also associated with down-
regulation of cyclin-dependent kinase inhibitor p27 (Kip1) (Gao et al., 2006). It is hence
tempting to ascribe the observed increased glomerulosa thickness to the effects of Gpr48.
Chronic high potassium can thus regulate long-term aldosterone production, sodium
retention and ultimately blood pressure via chronic mechanisms involving increased
glomerulosa cell size and/or number as well as the cells' aldosterone synthetic capacity.
However, a better understanding of chronic effects of potassium is required on the molecular
pathways underlying secretion of aldosterone by adrenal glomerulosa cells.

Chronic Effects of ACTH
While thought of primarily as the regulator of adrenal cortisol production, ACTH is
considered a secondary regulator of zona glomerulosa aldosterone production. It is clear that
adrenal glomerulosa cells (both in vivo and in vitro) can acutely increase aldosterone
production in response to ACTH. However, over time ACTH causes cultured glomerulosa
cells to switch their phenotype to that of a cortisol-producing fasciculata cell (Crivello and
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Gill, 1983; Hornsby et al., 1974). In vivo studies by Allen et al. demonstrated that ablation of
the pituitary pre-proopiomelanocortin-secreting cells that produce ACTH, and the resultant
low ACTH level, was accompanied by a steep decrease in the transcript levels of CYP11B1,
but not of CYP11B2 (Allen et al., 1995). In agreement with this observation, treatment with
ACTH causes an initial increase in mRNA levels of CYP11B2 in the first 3 hours; however,
chronically, CYP11B2 expression decreases in response to ACTH in vitro in isolated rat
adrenal cells (Holland and Carr, 1993). Similarly, chronic low-dose infusion of ACTH in
human subjects results in an initial increase in plasma renin activity and plasma aldosterone
levels during the first 12-36 h, but a slow decline in these values over the next several days
(Fuchs-Hammoser et al., 1980). While the H295R adrenocortical cell lines express low
levels of ACTH receptors, treatment of these cells with cAMP analogs preferentially
increases the expression of CYP11B1 over that of CYP11B2 (Denner et al., 1996). The
mechanism for chronic ACTH-mediated repression of aldosterone production and CYP11B2
expression remains unknown. An interesting observation has been that cAMP signaling
reduces the sensitivity of adrenocortical cells to AngII by down-regulating the expression of
AngII receptors (Bird et al., 1995a; Yoshida et al., 1991). Another possible mechanism for
the reduction in aldosterone production with chronic ACTH stimulation could be via the
hormone's direct induction of CYP11B1 and CYP17, the activities of which direct the
precursors of the steroidogenic pathway away from the production of aldosterone, and
towards that of cortisol (Bird et al., 1996).

Since CYP11B2 has a cAMP-regulatory element (CRE) in its 5′ promoter region (Rainey,
1999), the mechanism preventing glomerulosa cells from responding to ACTH with
increased CYP11B2 and excessive aldosterone production is not clear, but two possible
mechanisms have been suggested thus far. First, at least in bovine glomerulosa cells, there is
high expression of the inhibitory guanine nucleotide-binding protein Gi. AngII signaling
through the AT1 receptor couples through Gi to inhibit ACTH-stimulated cAMP formation
(Begeot et al., 1988; Hausdorff et al., 1987). Second, adrenal glomerulosa cells appear to
express adenylyl cyclases 5 and 6, isoforms which are inhibited by a rise in intracellular
calcium, a signaling mechanism common to AngII and potassium stimulation of aldosterone
secretion (Shen et al., 2001) The above provide evidence for a supportive, but not an
obligatory, role of ACTH in aldosterone production.

Lessons from Primary Aldosteronism
Primary aldosteronism (PA) is the major endocrine cause of hypertension and is
characterized by normal or elevated aldosterone levels in the presence of low circulating
plasma renin levels (Young, 2007). The most common cause of PA is idiopathic
hyperaldosteronism (IHA), which occurs in approximately 60% of PA patients. The second
most abundant cause of PA is unilateral adrenocortical adenoma, which is a curable form of
PA that can be resolved by adrenalectomy. There are also rare forms of PA that include
glucocorticoid-remediable aldosteronism (GRA), or familial hyperaldosteronism 1 (FH1),
which is caused by unequal crossover between the CYP11B1 and CYP11B2 genes resulting
in a hybrid gene with the CYP11B1 promoter driving CYP11B2. In these cases CYP11B2
expression and aldosterone secretion are regulated by ACTH in the adrenal zona fasciculata.
Recently, several mouse models have been developed in an attempt to study PA.

Two recent studies using different mouse models, both with a deletion of genes encoding
TWIK-related acid-sensitive K (TASK) channels, have provided interestingly different and
complex primary aldosteronism phenotypes (Davies et al., 2008; Heitzmann et al., 2008). As
mentioned earlier, TASK channels maintain the membrane potential of the glomerulosa cell
at a polarized −70mV by being constitutively open and acting as a K+ leak channel.
Inhibition of these channels by the AT1R or by increased serum K+ levels depolarizes
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glomerulosa cells and increases calcium influx to drive aldosterone secretion. In the study
by Heitzmann et al., deletion of the TASK-1 channel resulted in a phenotype similar to the
pathology of GRA, with characteristics such as salt-insensitive hyperaldosteronism,
hypokalemia and dexamethasone-suppressible aldosterone secretion. The deletion of
TASK-1 also seemed to change adrenal zonation and expression of CYP11B2, which was
absent in the outermost zona glomerulosa but was expressed to a large extent in the zona
fasciculata. Furthermore, this expression pattern seemed to be restricted only to females and
to males prior to puberty. On the other hand, Davies and colleagues fournd that deletion of
both TASK-1 and TASK-3 created a model with a phenotype resembling the pathology of
IHA. Male mice showed increased aldosterone secretion that was not suppressible with a
high-salt diet or the AT1R blocker candesartan (Davies et al., 2008). Further studies will be
required to understand the mechanism by which the different types of TASK channels
interact and regulate adrenal function.

Besides TASK channels, Choi et al. have also identified both germ-line and somatic
mutations that occur near the selectivity filter of the inward rectifying potassium channel
KCNJ5 (Kir3.4) to result in PA (Choi et al., 2011). The amino acid substitutions resulting
from these mutations modified channel ion selectivity, such that the channel became
permeable to both sodium and potassium, which led to increased depolarization of
adrenocortical cells. This depolarization is believed to cause elevated intracellular calcium
and thereby the production of aldosterone and cell proliferation (Choi et al., 2011). These
findings are particularly relevant in that almost 40% of aldosterone-producing adenomas
appeared to have such a mutation in KCNJ5. Additional studies will be needed to determine
the exact mechanisms through which these mutations cause expansion of aldosterone-
producing cells and formation of adenomas.

Summary
Aldosterone is an essential hormone with key roles in the regulation of electrolyte balance
and blood pressure. Its normal physiological regulators include Ang II, K+ and ACTH which
can increase aldosterone secretion both acutely, by increasing StAR expression and
phosphorylation, as well as chronically, by action on the steroidogenic pathway, mostly
through increasing gene expression of CYP11B2. Dysregulation in aldosterone secretion, as
is seen in primary aldosteronism, leads to pathologies such as hypertension and
cardiovascular disease. Several animal and cell culture models are being developed to better
understand aldosterone secretion under normal and pathological conditions. The recent
development of unique mouse models of primary aldosteronism and the discovery of the
KCNJ5 mutations as a cause of human PA have been particularly helpful in providing new
clues to the mechanisms controlling aldosterone production and the adrenal glomerulosa cell
phenotype. However, additional studies will be needed to define completely the detailed
pathways that activate and repress aldosterone biosynthesis.
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Research Highlights

• Aldosterone is the major mineralocorticoid produced by the adrenal zona
glomerulosa

• Glomerulosa cells are primarily regulated by angiotensin II, serum potassium
and ACTH

• Aldosterone synthesis involves two key phases, acute and chronic

• Cholesterol delivery into mitochondria is the rate-limiting step in the acute
phase

• Aldosterone synthase (CYP11B2) is the rate-limiting step in the chronic phase
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Figure 1. Adrenocortical steroidogenic pathways for the production of mineralocorticoids and
glucocorticoids
The adrenal cortex produces zone-specific steroids as a result of differential expression of
steroidogenic enzymes. In the initial step of steroidogenesis, steroidogenic acute regulatory
(StAR) protein is needed for the rate-limiting step of movement of cholesterol to the inner
mitochondrial membrane, where cholesterol is cleaved by cholesterol side-chain cleavage
(CYP11A1) to pregnenolone. Further steps of the steroidogenic pathway include the
enzymes 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), 17α-hydroxylase, 17,20-lyase
(CYP17), 21-hydrolylase (CYP21), 11β-hydroxylase (CYP11B1) and aldosterone synthase
(CYP11B2).
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Figure 2. Acute actions of AngII, K+ and ACTH on adrenal glomerulosa cell aldosterone
production
AngII binds the AT1 receptor to activate phosphoinositide-specific phospholipase C (PLC)-
mediated cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol (DAG)
and inositol 1,4,5-trisphosphate (IP3). IP3 binds the IP3R on the endoplasmic reticulum
(ER), releasing calcium and raising cytosolic calcium concentrations. AngII also activates,
in part through protein kinase C (PKC), phospholipase D (PLD), which hydrolyzes
phosphatidylcholine (PC) to phosphatidic acid (PA) which can be metabolized to DAG by
lipid phosphate phosphatases. Small increases in extracellular K+ depolarize the glomerulosa
cell, activating the voltage-operated L- and T-type calcium channels, increasing calcium
influx. Increased intracellular calcium concentration activates calcium/calmodulin-
dependent protein kinases I/II (CaMK), as well as PKC isoforms. Both of these pathways
can modulate not only StAR phosphorylation, but also expression, likely in part through the
StAR promoter binding of cAMP response element binding protein (CREB). The DAG/PKC
pathway also activates protein kinase D (PKD) which can likewise phosphorylate (and
activate) CREB. DAG can be hydrolyzed by DAG lipase to release arachidonic acid, which
can be further metabolized by 12-lipoxygenase to 12-hydroxyeicosatetraenoic acid (12-
HETE), which also induces the phosphorylation (and activation) of CREB. ACTH can also
mediate aldosterone synthesis through binding to the melanocortin type 2 receptor (MC2R),
thus activating through a heterotrimeric Gs protein, adenylate cyclase (AC). AC converts
adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). cAMP activates
protein kinase A (PKA) inducing a slow but sustained calcium influx through the L-type
calcium channels. PKA also phosphorylates CREB, thereby increasing StAR expression.
Cholesterol for aldosterone production arises from cholesteryl ester hydrolase (CEH)-
mediated hydrolysis of cholesteryl esters synthesized de novo or obtained from lipoproteins
and stored in lipid droplets. Free cholesterol is shuttled to the inner mitochondrial membrane
by StAR likely in complex with other cholesterol transport proteins.
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Figure 3. The chronic production of aldosterone is regulated by AngII and potassium (K+)
AngII binds type 1 AngII receptors (AT1-R) and activates phospholipase C (PLC) which
causes hydrolysis of phosphatidylinositol-4,5-bisphosphate to diacylglycerol (DAG) and
inositol 1,4,5-trisphosphate (IP3). DAG activates protein kinase C (PKC) which inhibits
transcription of 17α-hydrolyase (CYP17) through transcription factors such as cFOS. DAG
may also increase the activity of protein kinase D (PKD), which has been shown to increase
CYP11B2 transcription. IP3 causes the release of intracellular calcium and the activation of
calcium-calmodulin kinases (CaMKs). Small increases in extracellular K+ also depolarize
the glomerulosa cell, increasing calcium influx and activating CaMKs. CaMKs increase
expression and/or phosphorylation and activation of transcription factors that increase
CYP11B2 transcription. Further, binding of Ang II to the AT1-R also increases the
expression of LDL and HDL receptors, which increases cholesterol availability for
steroidogenesis.
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