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Abstract
This article empirically demonstrates the use of fine resolution satellite-based aerosol optical depth
(AOD) to develop time and space resolved estimates of ambient particulate matter (PM) ≤2.5 µm
and ≤10 µm in aerodynamic diameters (PM2.5 and PM10, respectively). AOD was computed at
three different spatial resolutions, i.e., 2 km (means 2 km × 2 km area at nadir), 5 km, and 10 km,
by using the data from MODerate Resolution Imaging Spectroradiometer (MODIS), aboard the
Terra and Aqua satellites. Multiresolution AOD from MODIS (AODMODIS) was compared with
the in situ measurements of AOD by NASA’s AErosol RObotic NETwork (AERONET)
sunphotometer (AODAERONET) at Bondville, IL, to demonstrate the advantages of the fine
resolution AODMODIS over the 10-km AODMODIS, especially for air quality prediction. An
instrumental regression that corrects AODMODIS for meteorological conditions was used for
developing a PM predictive model.

The 2-km AODMODIS aggregated within 0.025° and 15-min intervals shows the best association
with the in situ measurements of AODAERONET. The 2-km AODMODIS seems more promising to
estimate time and space resolved estimates of ambient PM than the 10-km AODMODIS, because of
better location precision and a significantly greater number of data points across geographic space
and time. Utilizing the collocated AODMODIS and PM data in Cleveland, OH, a regression model
was developed for predicting PM for all AODMODIS data points. Our analysis suggests that the
slope of the 2-km AODMODIS (instrumented on meteorological conditions) is close to unity with
the PM monitored on the ground. These results should be interpreted with caution, because the
slope of AODMODIS ranges from 0.52 to 1.72 in the site-specific models. In the cross validation of
the overall model, the root mean square error (RMSE) of PM10 was smaller (2.04 µg/m3 in overall
model) than that of PM2.5 (2.5 µg/m3). The predicted PM in the AODMODIS data (∼2.34 million
data points) was utilized to develop a systematic grid of daily PM at 5-km spatial resolution with
the aid of spatiotemporal Kriging.
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1. INTRODUCTION
During the last decade, satellite remote sensing has advanced substantially, especially after
the launch of the Earth Observing System (EOS) satellite in December 1999. Several
sensors, aboard many sun-synchronous and geostationary satellites, have been orbiting the
earth and recording data in many different spectral bands and at many spatial resolution and
temporal intervals. In recent years, researchers are increasingly using these data to estimate
aerosol optical depth (AOD) for climate change studies. Because AOD can help assess
time–space dynamics of radiative forcing that plays an important role in climate change
studies. The recent literature also suggests that AOD has a great potential to develop time
and space resolved estimates of air quality (Chu et al. 2003; Gupta et al. 2006; Kumar
2010b; van Donkelaar et al. 2010). Because spatiotemporal coverage of in situ air pollution
monitoring worldwide is very limited, these estimates are critically important for air quality
surveillance and management and epidemiological studies. For example, there are only two
operational stations in the City of Chicago that record ambient particulates ≤10 µm in
aerodynamic diameter (PM10). These two stations alone are unlikely to gather data that can
adequately represent population exposure to ambient PM10.

In this article, we demonstrate the use of high-resolution AOD to develop time and space
resolved estimates of airborne particulates ≤2.5 µm, ≤10 µm, and >2.5 µm and ≤10 µm in
aerodynamic diameters (PM2.5, PM10, and PM10–2.5) in the Cleveland Metropolitan
Statistical Area (MSA) from 2000 to 2009. A dozen recent studies have investigated the use
of satellite-based AOD to predict ambient particulate matter (PM) of different sizes (Wang
and Christopher 2003; Gupta et al. 2006; Kumar et al. 2007, 2008; Martin 2008; Gupta and
Christopher 2009a; Hoff and Christopher 2009; Liu et al. 2009; van Donkelaar et al. 2010).
Despite this, our understanding of how to predict time and space resolved estimates of
ambient PM is far from complete, because the AOD–PM association is not straightforward
for several reasons. First, AOD retrieval using satellite data is not a direct measurement and
has inherent uncertainties due to the assumptions of the radiative forcing model. In addition,
several factors can influence the robustness of AOD, such as cloud contamination, surface
glint, types of aerosols, and spatial resolution at which AOD is computed and aggregated (Li
et al. 2005; Zhang and Reid 2006; Kumar 2010b). Therefore, the quality of the predicted PM
is dictated by the robustness of AOD. Second, the concentration of ambient PM varies
significantly within a short distance (Kumar et al. 2007). Thus, the coarse spatial resolution
of AOD, such as the 10-km AOD extensively used by researchers (Gupta and Christopher
2009a; Liu et al. 2009), is unlikely to capture microenvironment variability of ambient PM.
Third, there are subtle differences in the spatial, temporal, and vertical scales at which AOD
and PM data are collected, aggregated, and made available to researchers. Thus, the
spatiotemporal scales used to collocate and aggregate these data can influence the degree of
generalization and hence the AOD–PM association. The satellite-based AOD is a columnar
estimate that represents a fraction of a minute’s time over an area on a given day. PM data,
however, are point measurements recorded at sparsely distributed locations on the ground at
different time intervals—every hour, 8 h, or 24 h. Unlike AOD, which consists of airborne
solid and liquid aerosols, PM is just the dry mass. AOD represents three distinct types of
aerosols: aerosols generated by human activities (AODh), aerosols generated by natural
processes (AODn), and aerosols generated through the interaction of AODh with AODn.
Among these, AODh that consists of airborne dry mass is likely to show a stronger
association with PM except for arid and semiarid areas and areas with frequent dust storm,
because fine dust can also account for dry PM mass. But if the AODn component dominates,
it is likely to result in a weak association between AOD and PM. Therefore, failing to
account for AODn and AODn ∩ AODh can result in a weak AOD–PM association. Fourth,
nature and sources of aerosols and meteorological and climatic conditions vary regionally
and play important roles in AOD retrieval and its association with PM. This means that the
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AOD–PM association observed in one region may not be extrapolated to other regions.
Therefore, it is important to examine how regional factors can influence the AOD–PM
association.

This article demonstrates how the high resolution (2-km AODMODIS) can improve the
robustness of AOD and help address indirectly most of the above concerns that hinder our
ability to develop the ambient concentration of PM by using AODMODIS and ancillary data.
In particular, this article has two objectives. First, it examines how the robustness of
satellite-derived AOD changes with respect to the spatial resolution of AOD retrieval and
spatiotemporal scales used for aggregating AOD. Second, utilizing the 2-km AODMODIS
and PM data (from Environmental Protection Agency [EPA]), it develops an empirical
model to estimate ambient PM. To demonstrate the application of this model, daily PM2.5,
PM10, and PM10–2.5 concentrations were computed in Cleveland and surrounding areas from
2000 to 2009. The remainder of this article describes the data and methods used for the
analysis, presents the results of the analysis, and provides a detailed discussion on the
finding of this article with the relevant literature.

2. METHODOLOGY
2.1. Data

Data for this research come from four different sources, namely, MODIS Level 1 and Level
2 data from NASA (2010), AERONET data from NASA (2007), meteorological data from
the National Climatic Data Center (NCDC 2007), and PM data from EPA (2008). All these
datasets were available with the GMT time stamp and location coordinates, which made the
temporal comparison and integration possible. These data are described in the following
sections.

2.1.1. MODIS Data—Terra and Aqua satellites (that have MODIS aboard) were launched
on December 18, 1999, and May 4, 2002, respectively, and MODIS data have been available
since February 24, 2000, and June 24, 2002, respectively. MODIS records spectral radiances
in 36 bands, which can be grouped by three different spatial resolutions: 0.25, 0.5, and 1.0
km. To extract AODMODIS, we acquired the following MODIS datasets through December
2009 from both satellites: Level 1b calibrated radiances—1.0 km, Level 1b calibrated
radiances—0.5 km, Level 1b calibrated radiances—0.25 km, geolocation—1.0 km, Level 2
join atmospheric products of profiles, total column ozone, water vapor, and stability indices,
and Level 2 cloud mask and spectral test results.

2.1.2. AERONET Data—In situ hourly AODAERONET data were downloaded from
NASA’s Web site for Bondville, IL (NASA 2007). AODAERONET was computed at 0.550
µm to match the spectral resolution of AODMODIS. These data were used to compare the
robustness of multiresolution AODMODIS. The level 2.0 AERONET data used in this
research were screened for cloud contamination by using the methodology of Smirnov et al.
(2000).

2.1.3. NCDC Data—Global surface hourly data on meteorological conditions, including
relative humidity, surface temperature, wind direction, wind speed, dew point, and
atmospheric pressure, were acquired from NCDC. These data were critically important for
developing the AOD-PM empirical model, because meteorological conditions can influence
AODMODIS greatly. For example, the value of AODMODIS increases with the increase in
relative humidity, because not only does it increase the concentration of water vapors, but it
also inflates particle size (Ramachandran 2007). Other factors, such as wind speed and
atmospheric pressure, can influence aerosols mixing within the boundary layer height
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(Tripathi et al. 2007; Gupta and Christopher 2009b). This, in turn, also influences
uncertainty in AODMODIS retrieval.

2.1.4. EPA Data—PM10 and PM2.5 data from 2000 to 2009 were acquired from EPA from
all monitoring stations in the Cleveland MSA and surrounding areas (EPA 2008; Figure 1).
These data were needed to develop and validate an empirical PM-AODMODIS model.
Although there were many monitoring stations, data from five PM2.5 and three PM10
monitoring stations were used, because the data from only these stations had adequate
number of data points within the optimal 0.025° distance and 60-min time intervals of
AODMODIS data.

2.2. Methods
2.2.1. Data Integration—The data for this research were acquired from multiple sources
and these data were available at different spatiotemporal scales. The multiresolution
AODMODIS (2, 5, and 10 km) was collocated with the AODAERONET data (at Bondville, IL)
within 3 h time and 0.6° distance intervals, and were averaged within different time and
distance intervals to demonstrate how uncertainty in AODMODIS changes with respect to the
change in time and distance intervals used for aggregating these data.

AODMODIS was collocated with the hourly PM data monitored on the ground at sparsely
distributed monitoring stations in the study area (Figure 1). Let yith denotes PM observed at
sites i = 1, ..., I; for hours h = 1, ..., H; and days t = 1, ..., T. Since AODMODIS locations are
distributed sporadically and do not correspond with the PM monitoring sites (Figure 2),
AODMODIS locations are distinguished from yith sites. Let τatp denotes AODMODIS at
locations a = 1, ..., A; days t = 1, ..., T; and satellite overpass time (or hour of AODMODIS) p
= 1, ...P. On a given day, τatp can be observed at multiple locations (a) around the ith site.
Likewise, the overpass (or recording) time (p) of AODMODIS does not correspond with the
duration and time (h) of yith on the same day. Consequently, there can be many AODMODIS
values around the ith site on a given day, but one value within an hour interval between the
time of PM observation and AODMODIS data. The τatp data were aggregated to match the
spatiotemporal resolutions of PM data. AODMODIS, comparable with the PM data (τith ),
within a given distance interval around the ith site with distance (dia) and time difference
(mhp) between AODMODIS and yith was computed as

[1]

where ω is 1 if the distance between ath location (i.e., centroid of an AOD pixel) and ith site
≤ dia and the difference between pth time of AODMODIS and hth recording time of PM at ≤
mhp (for mhp = 15, 30, ..., 180 min), or 0 otherwise.

A similar procedure was adopted to collocate AODMODIS with the AODAERONET data; the
collocated data were restricted with 3-h time and 0.6° distance intervals.

2.2.2. Statistical Methods—Descriptive statistics and correlation were used for the
exploratory analysis, and instrumental regression was employed to develop a PM predictive
model. Further, we employed a cross-validation method to evaluate the performance of the
regression models. An empirical relationship between AODMODIS and PM (observed at the
existing EPA sites) was developed, and then this relationship was applied for all data points
in the 2-km AODMODIS dataset to predict PM. Since both AODMODIS and PM observed a
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highly skewed distribution, both were transformed to log scales for the analysis. As
described earlier, AODMODIS is a columnar measurement and can be greatly influenced by
meteorological conditions. Instrumenting AODMODIS on meteorological conditions can help
overcome this problem, as

[2]

where φ is the regression coefficient and M′t is a design matrix of meteorological variables,
including temperature, wind direction, wind velocity, and atmospheric pressure. As we are
using surface measurement and there are limited numbers of monitoring stations, we assume
meteorological conditions to be the same within the study area at the crossing time of Terra
and Aqua satellites (i.e., time stamp on the AODMODIS). For example, wind direction is
likely to be the same at tth time (on a given day) within the Cleveland MSA. To control for
intratime and intracity structure, time (νt) and site (si) specific fixed effects can be
introduced in Equation (2), as

[3]

Since both AODMODIS and PM data showed a strong temporal and seasonal structure,
Equation (3) was extended to control for temporal and seasonal structure as

[4]

where Ct is the month number since January 2000 (January 2000 = 1 and December 2009 =
120) and controls for cyclic trend; Sit is a seasonal dummy (1 = summer, 0 otherwise).
Solving Equation (4) can allow us to estimate ŷit for each data point τatp in the AODMODIS
dataset. This, however, does not ensure an estimate of ŷit for any point location and time
within the study domain, because of missing values in the AODMODIS dataset due to cloud
cover and mismatches in the location and time of AODMODIS and other datasets. We
suggest the use of spatiotemporal Kriging to impute PM for any given location and time by
using the predicted values (ŷit) in the AODMODIS dataset as it minimizes prediction error
(De Iaco et al. 2002). We have developed a software application in C++ to implement
spatiotemporal Kriging: this application takes the predicted values (ŷit) and imputes it (y͂jT)
for any location (j) and time (T). In this research, daily PM2.5, PM10, and PM10–2.5 were
developed for a 5-km grid overlaid onto the Cleveland MSA from 2000 to 2009; the results
of the analysis and imputation are discussed in the next section.

2.2.3. Procedure for Extracting Multiresolution AOD—We retrieved the 10-km
AODMODIS at 0.550 µm over land by using the algorithm employed for AODMODIS in the
Collection 5.0 (Levy et al. 2007). The MODIS spectral channels used in retrieving AOD
over land and ocean included two 0.25 km (0.660 and 0.860 µm) channels and five 0.5 km
(0.470, 0.550, 1.240, 1.640, and 2.130 µm) channels. The 0.25-km resolution (0.660 and
0.860 µm) channels were used to detect water bodies, such as lakes and rivers. The detailed
procedures of screening clouds and surface snow/ice and computing AODMODIS using
MODIS data are discussed elsewhere (Remer et al. 2006). At the final step, pixels that
passed screening tests were further analyzed for computing AODMODIS. For the 10-km
AODMODIS, for example, pixels were selected within a range of 20th–50th percentile of
reflectances in ascending order that removes the upper 50% and the lower 20% of the pixels
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to avoid the possible subpixel contamination by clouds, surface snow/ice, and water bodies.
The algorithm (used for the Collection 5.0) requires at least 12 pixels in order to compute an
AODMODIS value for a pixel. Otherwise, a missing (–9999) is attached to the pixel.

We employed the same algorithm to retrieve the 2- and 5-km AODMODIS as used by NASA
for retrieving the 10-km AODMODIS in the Collection 5.0 (Levy et al. 2007). The only
differences are in the final stage of the algorithm for selecting the minimum number of
pixels required for a valid AODMODIS retrieval. For the 10-km AODMODIS, the minimum
number of valid pixels required is 12 out of a total of 400 available pixels. Since the number
of pixels available within 5×5 km area and 2 × 2 km area was reduced to 1/4 and 1/25, the
degree of freedom to select the best pixels was also reduced significantly. If we reduce the
number of pixels in proportion to reduction in the area, we will be left with only 3 and 0.5
pixels for the 5- and 2-km AODMODIS, respectively. Since this number is very small and can
result in greater uncertainty, we doubled this number and set 5 pixels as the minimum
threshold for computing the 5-km AODMODIS and 2 pixels for the 2-km AODMODIS .

In the 10-km AODMODIS algorithm, we arrange reflectance values in ascending order and
eliminate the top 50% brighter pixels due to cirrus or subpixel cloud contamination and 20%
darker pixels due to snow/ice and water bodies. We maintain the same quality for selecting
the best 30% pixels within the range of 20th–50th percentiles of reflectance values for the 2-
and 5-km AODMODIS. Of the screened pixels (between 20 and 50 percentiles of reflectance
values), the minimum number of valid pixels required was reduced to 5 and 2 for the 5- and
2-km AODMODIS, respectively. In terms of percentage, these values were 17% and 40% for
the 5- and 2-km AODMODIS, respectively. This is a more restrictive criterion for the
selection of the minimum number of pixels required to compute AODMODIS as compared
with that used for the 10-km AODMODIS, i.e., 10%. Therefore, the 2- and 5-km AODMODIS
are likely to be more robust than the 10-km AODMODIS.

3. RESULTS
3.1. A Comparison of Multiresolution AODMODIS and Its Aggregation Across
Spatiotemporal

The 8-year average of AODAERONET at Bondville, IL, was 0.1601 ± 0.0006 (Table 1). Both
multiresolution 2-, 5-, and 10-km AODMODIS and AODAERONET recorded a positively
skewed distribution (Figures 3a and b). This suggests that the events of high-aerosol loading
occurred for only a limited number of days during these 8 years. The differences between
AODAERONET and AODMODIS (at 2-, 5-, and 10-km spatial resolutions) were not large.
However, these differences were statistically significant. Since AODAERONET and
AODMODIS record the same thing (i.e., AOD), the fundamental question is why the averages
of AODAERONET and AODMODIS are significantly different? The differences in the values
of AODAERONET and AODMODIS can arise due to two important reasons: differences in the
methodology for computing AOD and differences in the spatial and temporal scales of these
datasets.

AODARONET is a direct measurement recorded by a sun-photometer (NASA 2007).
However, AODMODIS is an area measurement (such as 2, 5, and 10 km) computed using the
same aerosol retrieval algorithm with radiative-transfer-model-generated lookup tables
(Remer et al. 2005, 2006; Levy et al. 2007). AODMODIS represents the AOD concentration
for a fraction of a minute when a satellite is over an area, and the AODAERONET data are
aggregated hourly at the point location of the sunphotometer. Since AODMODIS computation
using radiative transfer models is based on many assumptions about aerosol and surface
properties (Chu et al. 2003), AODMODIS often suffers from uncertainties in association with
the assumed aerosol properties and surface characteristics. Over the eastern US, the
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assumption of dark surface is generally valid (Chu et al. 2003) except in the urban areas.
Furthermore, the degree of uncertainty increases as the spatial resolution of AODMODIS
retrieval increases as demonstrated by Kumar et al. (2008).

The robustness of AODMODIS is evaluated by comparing it with the in situ measurements of
AODAERONET by the sunphotometer (Chu et al. 2002; Ichoku et al. 2002; Li et al. 2005) for
two important reasons. First, the sunphotometer measures AOD directly (without assuming a
particular aerosol model), and data on the variables that can bias the AOD value are
recorded at the AERONET stations such as angstrom exponent. Therefore, the estimation
and calibration of AODAERONET are more reliable (Dubovik et al. 2000). For AODMODIS,
however, the spectral reflectance (especially bright surfaces) can bias AODMODIS upward or
downward. Second, despite the mismatch in the spatial scale and spatiotemporal intervals of
aggregation, both AODMODIS and AODAERONET show a very strong spatiotemporal
autocorrelation, due to the longer (about a week) lifetime of aerosols and their significant
movement across geographic spatiotemporal.

Despite these two reasons, these two datasets are not fully comparable, because the
computation method and spatial resolution of AODMODIS and AODAERONET are subtly
different and the differences between AODMODIS and AODAERONET should not be
surprising. When the spatiotemporal resolution of these two datasets is the same, the
coefficient of correlation between them must ∼1 and the deviation of this correlation from
unity is most likely attributed to uncertainty in AODMODIS retrieval.

The 2-, 5-, and 10-km AODMODIS, aggregated at different spatiotemporal intervals, were
correlated with the AODAERONET. Table 2 and Figure 4 show how the correlation between
AODAERONET and the 2- and 5-km AODMODIS drops gradually with the increasing
spatiotemporal intervals used for aggregating these data. For the 10-km AODMODIS,
however, correlations were in the range of 0.73–0.77 within 0.05° distance (because of very
few data points), but it improved to 0.88 when the distance interval increased to 0.075
distance and 15-min time intervals. This pair of distance and time intervals only depicts the
correlation that is a maximum in our time and space domains. It could vary across different
increments of space and time. Therefore, it should be more important to note that the
correlation between AODAERONET and AODMODIS was ≥0.83 for distance ≥0.05 regardless
of the time interval. It is worth noting that the correlation value was ∼0.92 for the 2-km
AODMODIS when these data were aggregated within 0.025° and 15-min time intervals.

From this analysis, two important findings emerge. First, the 2-km AODMODIS, aggregated
within the finest spatiotemporal intervals, recorded the best association (∼0.92) with the
AODAERONET, despite the fact that the overall correlation value does not drop below 0.73
for any spatiotemporal intervals, and for any spatial resolution of AODMODIS. This finding
suggests that a major fraction of AODMODIS (that consists of aerosols generated through
natural processes, such as water vapors and dust) exhibits a strong spatiotemporal
autocorrelation. Therefore, the correlation between AODAERONET and AODMODIS is strong
and positive even within 0.6° (∼52 km at Bondville) and 120-min time intervals. Second, we
begin to lose details about a small fraction of AODMODIS that consists of aerosols generated
through anthropogenic sources (such as emission from point and mobile sources) as the
spatiotemporal intervals used for aggregation and the spatial resolution of AODMODIS
retrieval become coarser. As evident from Figure 5, there is a one-to-one correspondence
between AODMODIS and AODAERONET data at the 2-km spatial resolution at the fitted line,
and the extent of scattering (around the line of best fit) increases significantly for the 5- and
10-km AODMODIS. Therefore, we suggest the use of 2-km AODMODIS for developing air
quality estimates. Not only do these data ensure better locational precision, but also have a
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significantly large number of data points, which is critically important for imputing
systematic spatiotemporal grids of air pollution exposure with the minimal uncertainty.

3.2. Spatial Distribution of PM and AODMODIS
PM data are monitored at sparsely located sites (Figure 1), and the locations of daily
AODMODIS (irrespective of the spatial resolution of their retrieval) vary significantly
(Figure 2), and the same location repeats every 16th day. Although there were many sites
where PM data were monitored, the hourly PM2.5 and PM10 data that corresponded with the
time intervals of Terra and Aqua satellites (i.e., 9 a.m. to 3 p.m. local time) were available
for five and four sites, respectively. Both PM10 and PM2.5 recorded a significant spatial
variation in the annual averages (Tables 3 and 4): PM10 concentration ranged from 18.0 to
41.4 µg/m3, and PM2.5 concentration ranged from as low as 10.5 µg/m3 at a suburban site to
as high as 16.0 µg/m3 at the downtown site. Since there were subtle differences in the
spatiotemporal scales of PM and AODMODIS data, these data were aggregated using optimal
spatial (0.025° distance interval at nadir, i.e., spatial interval at which AODMODIS recorded
the best association with AODAERONET) and 1-h time intervals (because that was the finest
temporal scale at which PM data were available).

3.3. AODMODIS-PM Predictive Model
Although a fraction of AOD represents ambient PM mass, quantifying PM by using AOD
could be challenging because this fraction of AOD that represents PM mass can vary greatly
across geographic space, time, and vertical layers as the sources, composition, and types of
aerosols change. In addition, AOD is a columnar estimate and PM is monitored on the
ground at point locations, and their spatiotemporal scales are different. The AODMODIS
correlation with PM monitored on the ground can also vary from region to region due to
regional variations in the types and sources of aerosols uncertainty in the retrieval of
AODMODIS. Therefore, it is important to evaluate local and regional empirical associations
between PM and AODMODIS, and control for potential confounding factors that can
otherwise bias the PM–AODMODIS association.

To estimate PM mass by using AODMODIS, it is important to control for meteorological
conditions that can influence AOD in a number of ways. For example, relative humidity and
dew points have a direct impact on particle size; wind speed and atmospheric pressure can
affect how effectively aerosols are mixed; and visibility can indicate the concentration of
aerosols. Since most meteorological conditions are highly collinear, factor analysis was used
to reduce a set of seven meteorological conditions into three factors that accounted for
almost 100% of the total variability in the dataset (Table 5). The first factor represented
high-positive loadings for temperature, dew point, relative humidity, and slightly moderate-
negative loading for atmospheric pressure. The second factor showed very high-negative
loading for relative humidity and its negative association with the temperature. The third
factor exhibited a significant positive loading for mean sea-level pressure, and a significant
negative loading for wind speed. The AODMODIS was instrumented on these three factors in
the regression model.

Utilizing the aggregated PM and AODMODIS centered on the selected PM sites, PM2.5 and
PM10 were regressed on the instrumented AODMODIS with the control for temporal
structure and seasonality. The regression analysis was implemented in STATA using
ivregress with the cluster option for site- and day-specific random effects (StataCorp 2010).
The model was run separately for each PM site (or sample site where PM data are recorded
on the ground) and for all sites together. The results of the analysis are presented in Tables 6
and 7.
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As evident from Tables 6 and 7, there is a one-to-one correspondence between PM and
instrumented AODMODIS, other variables being constant; for example, a 1% change in the
instrumented ln(AODMODIS) was associated with 0.97% and 098% change in ln(PM10) and
ln(PM2.5), respectively (last columns in Tables 6 and 7). Among all sites, the model is
relatively close to unity for the suburban site (17) and for the downtown site, the slope of
ln(AODMODIS) is significantly greater than unity: 1.72 for PM2.5 and 1.18 for PM10. Figure
6 shows the distribution of predicted values (for both control and sample sets) of PM2.5 and
PM10 with respect to observed values. Although the predicted and observed values of most
PM2.5 data points are close to the line of best fit, the regression model overpredicts the
values when the PM2.5 concentration is very low (<2 µg/m3), and for PM10, it underpredicts
the values for extremely large values, such as ≥120 µg/m3.

The differences between the observed and predicted PM vary significantly by sites (Table
8). It is important to note that the difference between the averages of predicted and observed
PM2.5 in the downtown Cleveland area (site no. 60) was significantly greater than that in the
suburban areas (e.g., site no. 17). These differences, especially in the downtown (or densely
populated urban) areas, should be interpreted with caution. These differences can arise for
two important reasons. First, the presence of high-rising buildings in the downtown areas
can hinder the dispersion of PM from its sources (referred to as the canyon effect; Boddy et
al. 2005), and PM monitored at a site may capture the localized concentration of PM and
may represent PM concentration for the 2-km pixel. Consequently, PM monitored at a point
location may not correlate well with the area measurement of the 2-km AODMODIS around
the PM site. Second, the presence of bright surfaces, high-rising buildings, and built-up
areas can add bias to surface reflectance, and hence can result in uncertainty in AODMODIS
retrieval (Chu 2006; Levy et al. 2007; Kumar 2010b).

3.4. Validation of the Model
Two methods were used to validate the predicted PM. In the first method, we utilized leave
one out for cross-validation (LOOCV). In this method, one data point was skipped
iteratively and its value was predicted using the rest of data points. In the second method, we
partitioned data points into two sets—a sample set (used for developing the model) and a
control set. The sample set was used to run the model and predict values for the control set.
The results are presented in Table 8 and Figure 6. The overall root mean square error
(RMSE) was 2.74 and 2.67 µg/m3 for PM2.5 by using LOOCV and a validation set. Further,
the validation analysis suggests that the average values of PM2.5 and PM10 predicted using
all data points and that predicted for the validation set are not significantly different (Table
8). The site-specific model outperforms the global model; for example, the average observed
concentration of PM2.5 at site number 60 was 12.792 µg/m3, but the value predicted using
the global model in LOOCV was 21.162 µg/m3. However, the value predicted using the site-
specific model (for the validation set LOOCV) was 12.92 µg/m3, very close to the observed
value.

3.5. Time and Space Resolved Estimates of PM
Utilizing the PM predictive model [as in Equation (4)], PM2.5, PM10, and PM10–2.5 were
predicted for all valid AODMODIS data points from 2000 to 2009. This resulted in a total of
2.34 million valid data points (Table 9). On average, more than 120,000 PM values were
available for each year for each satellite within the geographic extent of the Cleveland MSA
(82.4°W to −81°W and 40.8°N to 41.9°N); since 2003, the number of data points doubled
within the same geographic extent after the launch of the Aqua satellite in May 2002, and
the hourly extent of these data became 9 a.m. to 3 p.m. local time. As evident from Table 9,
the average concentrations of PM from Terra were significantly higher than that from Aqua.
These differences in PM estimates from Terra and Aqua can be attributed to the change in
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the concentration of traffic during peak and off-peak hours; the local overpass time of Terra
corresponds with the peak traffic hours, and Aqua overpass time corresponds with the off-
peak hours. Thus, PM estimates from Terra (peak hours) and Aqua (off-peak hours)
combined can provide the robust estimates of daily PM concentration on a given day.

The predicted PM values can be used to impute daily (at any other coarser temporal scale)
estimates of PM2.5, PM10, and PM10–2.5 at any spatial resolution within the extent of the
study area. As an example, PM2.5 and PM10 surfaces were generated for four different days
(December 1, 4, 6, and 12, 2009) in the first 2 weeks of December 2009. Although valid PM
data were also available on other days, more than 2200 data points were available on the
selected 4 days (Figures 7a and b) within the geographic extent of the study area. As evident
from these figures, there were subtle differences in the spatial and temporal (daily)
variations in the distribution of PM2.5 and PM10, but the relative trends of PM10 and PM2.5
remained the same across these 4 days. Since emission sources remain static, it is likely to
dictate the spatial trend of PM concentration with respect to these sources. However,
atmospheric processes that transport aerosols (along with the PM mass) can influence the
overall concentration of PM. Therefore, it is important to account for the spatial and
temporal variability in predicting PM.

4. DISCUSSION
Several important findings emerge from this research. First, the 2-km AODMODIS,
aggregated within short spatiotemporal intervals, correlates better with the in situ
measurements of AODAERONET, because the degree of uncertainty in AODMODIS tends to
increase as the spatial resolution of AODMODIS retrieval becomes coarser and the
spatiotemporal intervals used for aggregating these data increase. A strong and positive
correlation (>0.8) of AODMODIS (at all three spatial resolutions) with the AODAERONET
also indicates the presence of a very strong spatiotemporal autocorrelation in AODMODIS.
An improvement in the correlation coefficient from 0.85 to 0.92 for the 2-km AODMODIS
within 0.025° and 15-min intervals suggests that the 2-km AODMODIS is likely to capture
local spatial variability in AODMODIS, contributed by local emission sources. Second, PM
concentration records a significant spatial variability within the study area. These data,
monitored at sparsely distributed EPA sites, are not adequate to develop a systematic grid of
time and space resolved estimates of ambient PM. But these data can be utilized to develop
an empirical model for predicting PM wherever AODMODIS and other subsidiary data are
available. Third, the PM prediction using AODMODIS can be influenced by meteorological
conditions, because of a strong influence of meteorological conditions on the spatiotemporal
dynamics of AODMODIS. Our analysis suggests that instrumenting AODMODIS on
meteorological conditions can pave the way to develop an effective PM predictive model.
Fourth, the difference between the observed and predicted values of PM was significantly
greater in the downtown urban areas as compared with that in the suburban areas; likewise,
the performance of the regression model was significantly better in the suburban areas than
in the downtown areas.

At the 2-km spatial resolution, 2.3 million AODMODIS and their corresponding predicted
PM values were available within the geographic extent of the study area between 2000 and
2009. This suggests that the fine resolution AODMODIS, computed using the data from
MODIS (onboard Terra and Aqua satellites with peak and off-peak hours of overpass times,
respectively), holds a great potential to characterize and quantify short- and long-term
spatiotemoporal variability in PM and to develop daily estimates of PM at any spatial
resolution.
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Although this article empirically documents the application of the 2-km AODMODIS
(coupled with meteorological conditions and seasonal and temporal structure) for
developing time and space resolved estimates of PM, a number of limitations remain. First,
the performance of the PM predictive model varies across geographic space; the model
worked better for suburban than for downtown areas. For example, the difference between
the predicted and observed values was significantly smaller in the suburban areas as
compared with that in the downtown areas. These differences can arise due to either
uncertainty in AODMODIS retrieval over bright surfaces and complex urban structures, or
significantly greater spatial heterogeneity (due to poor dispersion and mixing of PM caused
by the presence of high-rising buildings) in the PM distribution in the downtown areas. This
also means that PM monitored at point locations in the downtown areas may not truly
represent PM concentration in its surrounding areas.

Second, the proposed model overpredicts the low PM2.5 concentrations (<2 µg/m3) and
underpredicts the high concentrations of PM10 (> 120 µg/m3). The performance of site-
specific models was significantly better than that of the global model. Despite this, it is
important to develop region-specific models, because many regions do not have sufficient
monitoring stations to develop site-specific models. Nonetheless, further research
investigation is needed to understand the sources of these over-predictions and
underpredictions in the PM predictive model.

Third, AODMODIS retrievals can be biased in the presence of snow on the ground, bright
surfaces, and cloud contamination despite the fact that the algorithm used for retrieving
AODMODIS filters for snow cover and cloud contamination. NASA is also developing a
newer version (called deep blue) to overcome uncertainty in the AODMODIS retrieval caused
by bright surfaces. The integration of AODMODIS with the chemical transport model (CTM)
may also help overcome many of these known problems of AODMODIS. CTM can be used
to compute the missing AODMODIS values due to cloud cover, snow cover, surface
brightness, and poor quality flag. The future research should be geared toward assimilation
of the best strengths of these two methodologies and develop an association between AOD
from CTM (AODCTM) and AODMODIS (Kumar 2010a). A conceptual framework for such
an approach is presented in Figure 8. The AODCTM can be estimated at any temporal scale/
resolution (but at a coarser spatial resolution), and its quality is largely guided by the quality
of emission inventory data. An empirical relationship can be developed between AODMODIS
and AODCTM, and based on this relationship, AODMODIS can be predicted for the missing
AODMODIS data.

The PM predictive model, described earlier, predicts PM at the spatiotemporal scales of
AODMODIS data. However, for epidemiological studies, it is important that these data are
available at the spatiotemporal scales of health data. In this research, we employed
spatiotemporal Kriging to develop a systematic grid of daily PM at the 5-km spatial
resolution. The spatiotemporal Kriging minimizes interpolation error (De Cesare et al. 2001;
Dryden et al. 2005) and can be utilized to interpolate PM at any spatiotemporal scales.

Despite the limitations identified here, the 2-km AODMODIS is critically important for air
quality studies, because local variation in AOD that results from local emission sources can
be captured by the 2-km AODMODIS. However, this variability is generalized and does not
show up in the 10-km AODMODIS. In addition, the number of data points in the 2-km
AODMODIS dataset is 20–25 times higher than that in the 10-km AODMODIS dataset.
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FIG. 1.
Study area—Cleveland metropolitan statistical area and PM2.5 and PM10 monitoring
stations. (Figure available in color online.)
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FIG. 2.
Location of AOD and imputed PM10, PM2.5, and PMC values in the first 2 weeks of
December 2009. (Figure available in color online.)
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FIG. 3.
(a) Statistical distribution of AODANet at Bondville, IL, 2000–2007. (b) Statistical
distribution of the 2-km AODMODIS, aggregated within 0.15° and 1-h intervals of AODANet
data at Bondville, IL, 2000–2007.
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FIG. 4.
Association between multiresolution (2, 5, and 10 km) AODMODIS and AODANet at
different spatiotemporal intervals in Bondville, IL, 2000–2007. (Figure available in color
online.)
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FIG. 5.
(a) Association between the 2-km AODMODIS and AODANet in Bondville, IL, 2000–2007.
(b) Association between the 5-km AODMODIS and AODANet in Bondville, IL, 2000–2007.
(c) Association between the 10-km AODMODIS and AODANet in Bondville, IL, 2000–2007.
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FIG. 6.
PM10 and PM2.5 predictive model and validation. (Figure available in color online.)
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FIG. 7.
(a) Daily predicted PM2.5 surface on several days in December 2009 in the Cleveland MSA.
(b) Daily predicted PM10 surface on several days in December 2009 in the Cleveland MSA.
(Figure available in color online.)
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FIG. 8.
A conceptual framework for the assimilation of satellite-based AOD and AOD from CTM
(AODC) to develop time-space resolved estimates of PM
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TABLE 5

Factor analysis of meteorological conditions

Meteorological conditions Factor 1 Factor 2 Factor 3

Temperature (°C)   0.8571   0.5012   0.0841

Dew point (°C)   0.992   0.0034   0.0642

Wind speed (m/s) −0.1595   0.0931 −0.4695

Wind direction (0–360)   0.0471   0.0893 −0.1947

Relative humidity (%)   0.3937 −0.9019 −0.04

Visibility (m) −0.3579   0.2395 −0.0119

Ceiling height (m)   0.0597   0.0721   0.0894

Mean sea level atmospheric pressure −0.3647 −0.039 0.5355

Eigenvalue   2.16603   1.14549   0.56602

% Eigenvalue   0.5637   0.2981   0.1473

Cumulative   0.5637   0.8618   1.0091
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TABLE 7

Site-specific instrumental regression estimates for PM10

Covariates 14 17 60 All sites

Ln(AODMODIS) = f
(Factors 1, 2, and 3)

0.908*** (0.630–1.186) 1.051*** (0.802–1.300) 1.188*** (0.896–1.480) 0.972*** (0.798–1.146)

Sin(month since
January 2000/2006)

–0.209*** (–0.338–−0.080) –0.272*** (–0.427– −0.117) 0.0939 (–0.042–0.230) –0.127*** (–0.213–−0.041)

Cos(month since
January 2000/2006)

0.350** (0.062–0.638) 0.229* (–0.020–0.478) 0.643*** (0.386–0.900) 0.368*** (0.201–0.535)

Season dummy (1 for
June, July, and
August, 0 for the
rest)

0.122 (–0.211–0.455) –0.271 (–0.592–0.050) –0.061 (–0.294–0.172) –0.0963 (–0.281–0.088)

Constant 4.354*** (3.903–.805) 4.857*** (4.406–5.308) 4.925*** (4.511–5.339) 4.591*** (4.313–4.869)

Observations 244 276 378 898

***
p < 0.01.

**
p < 0.05.

*
p < 0.1.

Note: Factor 1 = positively correlated surface temperature, dew point, relative humidity, and negative visibility; Factor 2 = relative humidity
inversely associated with surface temperature; and Factor 3 = atmospheric pressure inversely associated with wind speed (see Table 5 for details).
95% confidence limits (CIs) in parentheses.
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