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Abstract

Missing covariate data is common in observational studies of time to an event, especially when
covariates are repeatedly measured over time. Failure to account for the missing data can lead to bias
or loss of efficiency, especially when the data are non-ignorably missing. Previous work has focused
on the case of fixed covariates rather than those that are repeatedly measured over the follow-up
period, so here we present a selection model that allows for proportional hazards regression with
time-varying covariates when some covariates may be non-ignorably missing. We develop a fully
Bayesian model and obtain posterior estimates of the parameters via the Gibbs sampler in WinBUGS.
We illustrate our model with an analysis of post-diagnosis weight change and survival after breast
cancer diagnosis in the Long Island Breast Cancer Study Project (LIBCSP) follow-up study. Our
results indicate that post-diagnosis weight gain is associated with lower all-cause and breast cancer
specific survival among women diagnosed with new primary breast cancer. Our sensitivity analysis
showed only slight differences between models with different assumptions on the missing data
mechanism yet the complete case analysis yielded markedly different results.
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1. INTRODUCTION

Studies of survivorship are often plagued by missing covariate data, especially when
assessments are made longitudinally and deal with lifestyle or behavioral characteristics that
may be sensitive in nature. A formal treatment of missing data requires consideration of the
process that leads to the incomplete observations, such as the taxonomy suggested by Little
and Rubin [1]. Data is considered missing completely at random (MCAR) if the probability
that data is missing is independent of both observed and unobserved data. Under this scenario
the observed data essentially constitutes a random sample of values from all subjects and thus
a complete-case analysis, which uses data only on those subjects with no missing observations,
will yield unbiased parameter estimates. If the probability that data is missing depends only
upon fully observed variables then the data is referred to as missing at random (MAR). In the
Bayesian framework, if the parameters that index the probability that data is missing are
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independent of the parameters that index the distribution of the missing variables, then in the
MAR case the missing data mechanism is called ignorable [1]. The most problematic situation
arises when the probability that data is missing depends upon unobserved values of the missing
variable, which is what we suspect for our data. When the probability that a variable is missing
depends upon its unobserved value then the data is referred to as not missing at random
(NMAR) and the missing data mechanism is referred to as non-ignorable. Valid estimation
under non-ignorable missingness requires simultaneously accounting for the probability that
data is missing, the distribution of the values of the missing variable and the relationship
between the potentially incomplete variable to the outcome of interest.

The majority of the literature on missing covariates in proportional hazards regression has
focused on frequentist methods for baseline MAR covariates [2,3,4,5,6,7,8,9,10]. The Bayesian
approach to survival analysis with covariate data that is MAR is described in detail by Ibrahim,
Chen and Sinha [11]. Frequentist methods for non-ignorably missing covariates in survival
analysis have been presented by Leong, Lipsitz and Ibrahim [12] and Herring, Ibrahim and
Lipsitz [13], however both of these methods apply only to baseline (fixed) covariates, and the
method by Leong and colleagues requires them to also be dichotomous. The selection model
outlined by Herring et al. [13] specifies the joint distribution of the survival times, missing
covariates and missingness indicator through a series of one dimensional conditional
distributions and uses a Monte Carlo Expectation Maximization (MCEM) algorithm for
parameter estimation. Here, we propose a model that extends this approach by allowing the
covariate values to vary over time, and we present a computationally easier alternative to the
MCEM algorithm for parameter estimation.

The motivation for developing this model lies in our interest in identifying modifiable lifestyle
factors that may be associated with survival among women with breast cancer. Factors related
to energy balance, such as post-diagnosis weight gain, are of particular interest, yet the effect
remains unclear. Excess adipose tissue is associated with a hormonal environment conducive
to tumor promotion [14,15] and therefore may be associated with poorer survival. This is
especially concerning since weight gain after breast cancer diagnosis is common [16], and has
been associated with chemotherapy treatment, menopausal status, age at diagnosis and pre-
diagnosis body size. Our objective is to evaluate how post-diagnosis changes in weight over
time affect survival through an analysis of data from the follow-up to the Long Island Breast
Cancer Study Project (LIBCSP) [17]. An issue for this analysis is that a significant portion of
the study subjects are missing data for one or more follow-up assessments of bodyweight
making bias or loss of efficiency of serious concern if we limit our investigation to only those
subjects with complete data. Specifically, given the stigma associated with being overweight,
we suspect that those subjects with missing data on body size may tend to be heavier than those
who responded, making this subset of subjects a less than representative sample of the study
population. In this case, standard proportional hazards models would be inappropriate. With
repeated measurements of body size at and after diagnosis, our primary covariate of interest is
time-varying, requiring us to develop the model we present here. To our knowledge there has
been no previous work addressing inference for selection models with non-ignorably missing
time-varying covariates.

The following section of the paper will outline our notation and describe the selection model
in general. We then describe specific models for each of the conditional distributions: the
missingness indicator given time-to-event and covariates, the time-to-event model given
covariates and the distribution of the missing covariates. We then describe our estimation
approach and then illustrate our model with an example of an analysis of changes in bodyweight
over time and survival after breast cancer diagnosis, using data from the follow-up to the
LIBCSP [17]. We conclude with a discussion of the results and the methodology.
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2. THE SELECTION MODEL

Here we outline a selection model for proportional hazards regression with time varying
covariates, which is defined by the joint distribution of the event times, missing covariates and
the mechanism that describes the probability of missingness. This joint distribution is specified
through a series of conditional distributions: (1) the probability the covariate data is missing
conditional on event time and (possibly unobserved) covariates, (2) the distribution of event
time conditional on covariates and (3) the marginal distribution of the missing covariates
dependent only on fully-observed variables. We begin by outlining the notation for the model.

Assume we have data on a sample of n independent subjects and for subject i denote the event
time by T;j and censoring time by C;. For each of the n subjects we observe the variable y; =
min(T;,C;) and indicator of failure ; which takes on the value 1 if y; corresponds to an
occurrence of an event (i.e. Tj < C;), and 0 if it represents a censored observation (i.e. T; >
C;). We further assume independence between T; and C;. Each subject provides a series of
longitudinal measurements for (p + ) variables where for the k! measurement we denote the
vector of p completely observed variables by Xik = (X, --- Xikp) @nd g variables with potentially
missing values by zjk = (zjk1,- .- Zikq) Measured at times vj for k = 1,...,K;, where K > 1.
Elements of the zj, vector are missing for only some subjects at some of the measurement
points so associated with each variable in zjy is an indicator of missingness for that variable
contained in the vector rig = (Fiky,..-,likq) Where rig = 1 if i is missing and riy = 0 otherwise,
forl=1,...,gand k = 1,...,K;. The notation X;, zj, and r; will refer to matrices of size Kj x
p.Kj % g, and Kj x g respectively, representing the set of all K; measurements for each vector
of variables for each subject i.

In general, estimation of a proportional hazards regression of y on [x z] using complete
covariate data (only where rj = 0) will yield biased estimates of the regression parameters as
it does not account for the distribution of the missing variables and more importantly the
possibility that the reason they are missing may be related to their unobserved values. The
selection model allows us to specify the joint distribution of (rj, y;, zj|X;) allowing us to account
for these relationships with the goal of obtaining unbiased estimates of the regression
parameters. In general, the complete data joint distribution of (rj, i, zj|X;) may be expressed
as a series of conditionals:

(X, i, 2ilXi, A, B, @, §)=pr(¥ilyi, Zi, Xi, D) py(yilzi, Xi, A, B) pz(ZilXi, @). (1)

The parameters ¢ and o index the distribution of the missing data mechanism and the missing
covariates and are nuisance parameters which are not of inferential interest in the proportional
hazards model, the primary objective of undertaking the analysis. The remainder of this section
describes the specification of these conditional densities and the form of the complete data
likelihood in detail.

2.1. Models for the missing data mechanism

The assumption of nonignorability of the missing data process requires specification of the
distribution of the probability of missingness, which is assumed to be dependent upon the
unobserved value the corresponding variable would have taken if it were observed. We follow
Ibrahim, Lipsitz and Chen [18] and Stubbendick and Ibrahim [19] by modeling the missing
data mechanism r; as a series of one dimensional conditional distributions, which is effective
at reducing the number of nuisance parameters while maintaining correlation between the
longitudinal observations and allowing for non-monotone patterns of missingness [19,20]. For
the joint distribution of r;, we specify a distribution for each rjy sequentially conditioning over
the other missingness indicators at measurement k, previous missingness indicators for all
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variables at all measurements prior to k, the corresponding vector of completely observed and
possibly missing covariates, X and zjy respectively, event time y; and vector of parameters
¢k, with the set of all of these denoted by ¢:

pr(ri|yia X, Z;, ¢)=[’(r,-1(ﬂ,|’”u<,.1s = mmiy riK,-tq—l)’ri(l(,-—ll’ te ril’xiki’ziki’yi’¢Kill)
X - X p(riKillri(K,-—]r’""ril’XiKi’ziKi’yi’¢Kil)
Kiesei X, p(rnK,-—nqlrnK,-—n """ Tiki-1g-1 Tiki=2)2 - -+ Tils Xy, 1y> Zig—1y» Vis ¢u<,-—|u,)
X X p(ri(K;—lillrilKi—l)""’r”’xitl(;—li’Zi(K[—Z)’y"’¢lK,'flil)
X oo X p(ringlritts s« -5 Filg=1)» Xil» Zi1» Vi, P1q)
X oo X p(rin[Xit, zi, yi, $11)- @)

Sequentially conditioning on previous measurements approximates a correlation structure
similar to what would be obtained using random effects models without the need to specify
the random effect [19,21]. A series of logistic regressions may be used to model these
conditional distributions as each rjy is dichotomous. The contribution to the complete-data
likelihood for subject i corresponding to the missing data mechanism is thus given by equation

).

Although the specification above appears quite complicated, in practice the number of
measurements K are likely to be small and it may be realistic to assume that only some subset
of the variables in z are non-ignorably missing, and therefore the number of variables requiring
specification of missingness models is fewer than q. Although it may be tempting to include
a large number of variables and cross-products into the missing data models the analyst should
strive for the most parsimonious specification possible as these models can easily become
unidentifiable [13,20,22]. Herring et al. [13] and Ibrahim, Zhu and Tang [23] suggest a strategy
for model selection for the missing data mechanism of these models to help avoid issues of
identifiability.

2.2. Model for the time-to-event

We consider here a Cox piecewise exponential hazard model to describe the relationship
between event time and the covariates. To define the piecewise exponential model, we divide
the time axis into J discrete intervals (sj-q, ] for j = 1,...,J with sg = 0 and s; greater than the
maximum of the {y;}. The measurement times for the covariate vector are assumed to fall at
the boundaries of the intervals although it is possible for a measurement to span multiple
intervals (e.g. if measurements on [x z] are taken every 2 years but the intervals (sj-q, sj]
correspond to 1 year each). Thus, since the number of covariate measurements K; < J then we
define a notation so the indexes on each of the covariates match the index for the intervals of
the piecewise exponential model. Then for subject i within interval j, we define

X;=(X57, Xjjs -+ Xp3,) " and Z=(2;;;» Zyos - - - Zi) Where Xz and 2;; may represent the previous
observation of the variable carried forward into the current interval, or, for continuous
variables, an interpolated value between two observations. Thus X,"} denotes the p x 1 vector of

fully observed covariate values and ZZ} denotes the q x 1 vector of possibly missing covariate
values corresponding to the jN interval for j = 1,...,J. We then define the piecewise exponential
hazards model with the hazard function:

AYilX;. 25, B, 1))=1; exp (X}, B1+2;; 2) for y € (sj-1, ;]

Stat Med. Author manuscript; available in PMC 2012 January 9.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bradshaw et al.

Page 5

with B = [B1, B2]’, where B4 is the p x 1 vector of coefficients on the vector of covariates X,J and

B, is the q x 1 vector of coefficients on the vector of covariates ZZ} The density for the observed
failure time y; within interval j is then:

% % e ¥ \\Oi < B1+2" Ba
POl 25 Br. B2, A))=(A; exp(x;; 1+ B)) " (exp(—Ai(y;)))P™i 1% P2

foryj € (sj-1, sj] with cumulative hazard function:

-1
ANjy)=| i — sj-1)4; eXP(X3ﬁ1+ZZ}B2)+Z(Sg — Sg-1)Ag eXp(X; B1+Z; ) |-
g=1

We further let & = (Ay,...,A;)" denote the J x 1 vector of baseline hazards A; and let Ajj be an
indicator of if subject i died or was censored in interval j (i.e. yj € (sj-1, sj]). The ith contribution
to the complete data likelihood for the piecewise exponential model is then:

J
s/ o A"I'(Si s’ 5!
P_\«(Vi|xi,zi,/31,ﬁ29/l)=| |(/ljeXp(xijﬁn+Z,»sz)) - exp {(—AG[Aj(v)] exp(x;; B1+Z;; B2)}
5

J (3)

where X=X and Z; =2 with k and j such that vji < sj_1 < vjy+1. If we define tj; = min(y;,
sj+1) — 8j if yj = sjand 0 if y; <s; to be the length of the overlap from the beginning of interval
j to the end of the interval or until failure time y;, then it can be shown that the likelihood
function given by equation (3) is equivalent to one where A;;6; follows a Poisson distribution

with mean ;A(ilx;;, z;;, B1. 2, A,).

2.3. Models for the missing covariates

For the joint distribution of the missing covariates z; we again follow the strategy suggested
by Lipsitz and Ibrahim [24], Ibrahim et al. [18], and Stubbendick and Ibrahim [19] by
specifying a sequence of one dimensional conditional distributions. We specify a model for
each zj sequentially conditioning over the other z-variables at measurement k, all z variables
at previous times, the corresponding vector of completely observed covariates, Xy, event time
Vi, and o = (01q1,..- ,aKiq)’ where each ay is a vector of parameters indexing the distribution for
each covariate | for measurement k. The joint distribution of the z variables for subject i is then:

pz(Z,‘|X,', a)zlj(zil(iq |Zik,-| s Ligygeny Zig_1ys -+ -5 Zils Xil(,-’ ak,-(,)
X +-e X p(ZiK,-l |zfm',-—1w -5 Zil, Xm’,-’ @,
Koo X P(Zi(K,—nqlzinK,-—m 2+ Zigkim1yg-1) Qiki-2)2 + -+ 0 Kl Xy a(l\',-—l)q)
X ... X p(zill(i—lil lzuk,»fzw oo Zils Xk, a)s a/lK,'fI)l)
X oo+ X p(Zitglzitts - - - Zilg-1)» Xil», X1q)
X -0 X p(rin Xit, i1, a11)- (4)

Expression of the distribution of covariates this way allows considerable flexibility in choice
of distribution for each z;;, accommodating continuous and categorical variables, as well as
offering a convenient way to account for intra-subject correlation without specification of a
random effect. Once again, one should strive for a parsimonious specification of this joint
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distribution to avoid specification issues. Equation (4) then represents the it contribution to
the marginal likelihood for z.

2.4. Estimation
Substitution of equations (2), (3) and (4) into (1) yields the complete data likelihood:

n
t(B1,B2, A, @, p) =1—[i=]17(1‘i,y1', zi[X;, B1, B2, A, §, @)
n
= | peeilvi 2 xi, $)py iz, Xi,B1, B, D@, @)

with densities pr(-), py(-) and p,(-) defined above. Previous work with similar models has made
use of the EM algorithm to obtain the parameter estimates [13]. However here we illustrate a
Fully Bayesian (FB) approach using vague priors on the parameters B4, B2, A, a, and ¢ which
will produce estimates equivalent to the frequentist analysis using EM and also yield variance
estimates that are much easier to obtain than with the EM framework. The FB framework is
also less computationally demanding than the EM framework for this model.

The joint posterior distribution of the parameters is proportional to the product of the
conditional distribution of the observed data given the parameters and the joint prior
distribution of the model parameters p(B1, B2, A, o, ¢):

n
P(B1,B2, A, @, @y, 1, X,Z) o l—lfzip(ylwl‘i,Xi,Zilﬁl,ﬁz,/La,sb)dZi X p(Br, B2, A, @, ).
i=1 %)

If non-informative priors are specified for (81, B2, A, o, ) then the posterior means and standard
deviations of the parameters will be similar to maximum likelihood. We use the Gibbs Sampler
[25] to sample from the posterior distribution given by (5). Although somewhat
computationally intensive (but less intensive than EM), the FB approach here provides a very
straightforward way to estimate parameters from a complex model, especially variance and
covariance parameters.

3. EXAMPLE

We apply this model to an analysis of data from the follow-up study to the LIBCSP, to evaluate
whether time-varying post-diagnosis changes in body size are related to survival among women
with newly diagnosed breast cancer.

3.1. Description of the Long Island Breast Cancer Follow-up Study

The details of the LIBCSP are discussed elsewhere [17] but briefly, the parent study is a
population based case-control study of breast cancer among women in Nassau and Suffolk
counties on Long Island, New York conducted between August 1996 and July 1997. Cases
consisted of 1,508 women with newly diagnosed in situ or invasive breast cancer; of these,
1,414 women agreed to be contacted at a later date for follow-up interviews. For those who
agreed to participate in the follow-up, the case subjects or their proxy were contacted by mail
approximately 5 years after initial diagnosis of breast cancer and informed consent was
obtained via telephone follow-up calls. Of the 1,414 women who initially agreed to participate,
316 subsequently refused or were unable to be contacted. Of the remaining 1,098 subjects who
agreed to the follow-up interview, only 1,033 case subjects or proxies (68.5% of the original
1,508 women) actually completed the interviewer-administered questionnaire [26]. The
follow-up interview ascertained information similar to that gathered in the baseline
questionnaire but relevant to the time period since diagnosis including treatment, reproductive
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history, smoking and alcohol use, and as well as body size and physical activity. Date and cause
of death were ascertained for all 1,508 women using the National Death Index [27] with median
follow-up time of 8.8 years (range: 0.2-9.4 years).

Relevant to this analysis, the follow-up questionnaire ascertained body size (weight in pounds
and height in inches) at diagnosis, one year post-diagnosis and at time of response to
questionnaire for those subjects still living, or one year prior to death for interviews completed
by proxy for subjects who were deceased at the follow-up but living longer than one year
(specific timing for final follow-up measurement varied between 2 and 7 years post diagnosis
with an average of 4.95 years (table 1); variation in timing of follow-up was due to logistical
issues unrelated to health status or weight change). Overall refusal to participate in the follow-
up interview and non-response to specific questions among people still alive at each timepoint
resulted in percentages of missing data on body size of 47.6%, 49.4% and 33.9% at baseline,
1-year post diagnosis and final follow-up. Our concern is that heavier women may not have
responded to the questionnaire in general, or to the body size questions specifically, due to
self-conscious feelings or other reasons related to the amount of their weight, creating a non-
ignorable mechanism for missing body size data. With the body size variables we calculate
percent change in body weight between the year prior to diagnosis and ki measurement (100*
(weight at measurement k - weight one year before diagnosis)/weight one year before
diagnosis) for k = 1 (at baseline), 2 (at one year) and 3 (at time of interview or one year prior
to death).

Other fixed covariates we include in our analysis (measured only once, at diagnosis) are
indicators of chemotherapy regimen (yes/no), tumor size greater than 2 cm (yes/no), estrogen
receptor positive tumor (ER status, yes/no) and progesterone receptor positive tumor (PR
status, yes/no). Each of these covariates also exhibited a significant amount of missing data
with 32.2%, 31.6%, 34.0% and 34.3% missing, respectively. The overlap between these
variables with missing values was small, and since a complete case analysis requires all
variables to be observed, the resulting completely observed dataset which excluded those with
missing post-diagnosis change in bodyweight or a missing value for any covariate, contained
499 subjects. Note, however, that the percentage missing for any one of these variables was
moderate. Other important covariates included menopausal status, education, adult weight
change and body mass index (BMI) one year prior to diagnosis, which were each missing for
less than 2% of subjects. We also include data on age at diagnosis, which is fully observed for
all women. For the small amount of missing data on menopausal status, education, adult weight
change and prediagnosis BMI we will exclude these subjects from the analysis, however for
the remaining 1,436 subjects we will specify a selection model to account for the significant
amount of missing data on follow-up body size, treatment and tumor characteristics. Out of
the 1,436 women included in this analysis, 292 died during the follow-up period with 156 of
those deaths attributed to breast cancer.

3.2. Selection Model

We model the time since diagnosis for subject i (denoted dur;) as a piecewise exponential model
with J=10 one-year intervals, along with the indicator of death (1) or censoring (0). Percent
change in bodyweight for subject i in interval j corresponding to measurement k, denoted as

pewt;; was calculated by linear interpolation of the variable pcwtj for intervals between
measurement points and was categorized into four groups using indicator functions I n)(x)
where I(ap)(X) = 1if X € (a, b) and 0 otherwise. The four categories represent those who lost

more than 5% of their prediagnosis body weight (pewt;;< — 5), those who maintained within
5% of their pre-diagnosis bodyweight (pewt;; > —5 and pewt;; < 5), those who gained between
5% and 10% of their pre-diagnosis weight (pcwt;>5 and pewt;<10) and those who gained 10%

Stat Med. Author manuscript; available in PMC 2012 January 9.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bradshaw et al.

Page 8

or more of their prediagnosis bodyweight (pcwtfj > 10), omitting the category corresponding
to those maintaining weight as the referent group. We also include fixed covariates age at
diagnosis (continuous, dxage;j), indicators for chemotherapy treatment (chemo;), ER status
(erstat;), PR status (prstat;) and tumor size > 2 cm (tumor;), yielding the hazard function for
our time to event model:

A(duri[xy;, 2, B1, B2, A)=4; exp(Bridxage;+B21I-co,-5(PCWL;)+B2215, 10(PeWE;)+B23 110,00 (PCWL;;)+B24chemo;+f>s

erstat;+¢prstat;+£,7tumor;).
(6)

for dur; € (sj-1, sj]. For our analysis we assume that only percent change in weight (pcwti) is
potentially non-ignorably missing, while chemotherapy treatment (chemo;) and the tumor
characteristics tumor size > 2 cm (tumor;), ER status (erstat;) and PR status (prstat;) are
ignorably missing as we believe that their missingness is unlikely to be related to either
unknown or known variables. Therefore only one missing data mechanism need be specified:
rik = 1 if subject i was missing body size responses at measurement k for k = 1,...,K; where
Ki =1, 2 or 3 and rj, = 0 if the value was present. Then, from equation (2) for K; = 3 we have:

Pr(rilyi, Xi, 2i, §)=p(ri3|ri, i1, dXage;, pcwt;3, fu.years;, #3) X p(ria|ri1, dXage;, pcwty,, ti2, 2) X p(ri1|dxage;, pcwt;;, ¢1)
(7)

where dxage; is age at diagnosis, fully observed. The variable fu.years contains the length of
time from diagnosis to when the follow-up interview was completed, corresponding to the final
weight change measurement. For subjects who did not complete the follow-up interview, this
was assumed to be 5 years, or the year prior to death, whichever was smaller, which is the
timing for the interviews actually completed by subject or proxy, respectively. The
modification of (7) for Ki=1 or 2 is straightforward. We specify each of the conditional
distributions on the right hand side of equation (7) with a logistic regression model.

Using equation (4) we express the joint distribution of the missing time-varying covariates
percent change in weight (pcwt;y) for k = 1,...,3, and fixed (baseline) covariates chemotherapy
treatment (chemo;), tumor size > 2 cm (tumor;), ER status (erstat;), PR status (prstat;), as
functions of menopausal status at diagnosis (menpstat;), BMI in the year prior to diagnosis
(bmiref;), income reported at diagnosis (income;), years of education completed (education;)
and age at diagnosis (dxage;) as:

Stat Med. Author manuscript; available in PMC 2012 January 9.
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Pz(Zilyi, Xi, @, T)=p(pcWt|pcwt,,, pcwt;;, dxage;, chemo;, menpstat;, bmiref;, a7, 73)

X p(pcwt,|pewt;;, dxage;, chemo;, menpstat;, bmiref;, as, 72)

il
X p(pcwt; |[dxage;, chemo;, menpstat;, bmiref;, as, 71)
X p(chemo;|dxage;, income;, education;, @4)

X p(erstat;|dxage;, @3) X p(prstat;|dxage;, a2)

X p(tumor;|dxage;, income;, education;, ap). (8)

We model the conditional distributions of percent change in weight as linear regression models
while the dichotomous treatment and tumor characteristic variables are modeled using logistic
regression models. Note that we also explicitly include the precision parameters t = (tq, 1o,
13) (the reciprocal of the variances) for the continuous variables. The choice of covariates for
the models for percent change in bodyweight were determined based on consensus of previous
studies on postdiagnosis weight change among breast cancer patients [16,28]. The models for
treatment variables were selected in the interest of parsimony and to represent those variables
we believe to be associated with access to care. An alternative option for the models for percent
change in weight would be to generate a single four-level ordinal categorical variable for
pcwtjy with the corresponding indicator variables in the piecewise exponential model, and
ordinal logistic regression models for the categorical variable in the joint distribution given by
equation (8). However, given the inherently continuous nature of the underlying variable the
method presented here yields an equivalent and more intuitive specification.

We selected noninformative priors for the unknown parameters in the model. For the slope
parameters for the regression models (B1, Bo, a1, ap, 03, 04, 05, 0g, 07, d1, $2, $3) We specified
independent normal distributions with zero mean and precision of 1075 and for the baseline
hazards (A) and precision parameters for the linear regression models (1, 12, t3) We specified
gamma distributions with shape and inverse scale parameters of 0.01. Estimation was
performed using the Gibbs sampler in WinBUGS 1.4 [29] run for 100,000 iterations with an
additional 100,000 burn-in. Convergence was established through use of Geweke’s Z-statistic
[30] calculated with the CODA package in R [31] as well as through visual inspection of trace
plots (see online supplementary material). To evaluate the robustness of our model to
assumptions on the missing data mechanism we also estimated this model assuming that the
longitudinal body size variable was MAR, therefore omitting the specification for the missing
data mechanism, equation (7). For comparison, we also performed a complete-case analysis
by eliminating those subjects who were missing observations for one or more covariates, as
well as the models for the missing data mechanism (7) and the covariate distributions (8), which
is analogous to the usual approach in most commercial software packages. Each set of models
was estimated for both all-cause and breast-cancer specific mortality. In order to assess the
sensitivity of the model to changes in the parameterization of the prior distributions, we
additionally estimated models for all-cause mortality with precision on the prior for the B
parameters of 1073 and 1071,

In table 2 we report the parameters from the piecewise exponential model under the various
missing data assumptions for all-cause mortality. Post-diagnosis weight loss appears to be
associated with poor survival across all missing data assumptions as this is likely indicative of
women with more advanced disease or otherwise less than robust health. Greater post diagnosis
weight gain is also positively associated with all-cause mortality for all model assumptions.
However, the findings in the complete case analysis are notably attenuated compared to those
that account for missing data. The magnitudes of the associations with post-diagnosis weight
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change are similar between the MAR and NMAR models, although the estimates of effect for
either category of weight gain appear attenuated in the NMAR model compared to the MAR
model. Also, the credible interval for larger weight gain (> 10%) excludes the null effect in
both missing data models, yet includes it in the complete case analysis. In both missing data
models, compared to women who maintain their pre-diagnosis weight, moderate weight gain
is associated with a modest increase in risk of death (MAR posterior log-hazard ratio (InHR):
0.12, 95% credible interval: —0.64, 0.80; NMAR posterior InHR: 0.07, 95% credible interval:
—0.67, 0.77) while larger gain is associated with a much greater risk of death in both models
(MAR posterior InHR: 1.22, 95% credible interval: 0.60, 1.81; NMAR posterior InHR: 1.00,
95% credible interval: 0.34, 1.63). Estimates of effect for the covariates appear nearly identical
between the two models that account for the missing data, and the same direction and similar
magnitude as the estimates from the complete case analysis. VVarying the precision on the prior
distribution for the B coefficients to 1073 and 101 had essentially no effect on the posterior
estimates or credible intervals (models NMAR 2 and NMAR 3, respectively, table 2).

Posterior estimates of the parameters from the models explaining the probability of missing
weight change at each assessment (equation 7) and the distribution of the missing covariates
(equation 8) from NMAR model 1 are presented in tables 3 and 4, respectively. The probability
of missing weight change at any of the three assessment points was only modestly associated
with the value of percent weight change, with the credible intervals for assessments at 1-year
post-diagnosis and time of follow-up interview including the null effect (table 3). Only age at
diagnosis and weight change at diagnosis were consistently associated with post-diagnosis
change in bodyweight over time (table 4). Similarly, no clear relationships emerged in the
models for treatment or tumor characteristics other than age at diagnosis.

Table 5 shows the results for breast cancer related deaths for the proportional hazard
regressions. As observed in the models for all-cause mortality, post-diagnosis weight loss is
associated with poorer survival across all missing data assumptions, while the effect of larger
weight gain is intensified in the models that account for missing data. The effect for moderate
weight gain appears modestly protective in both the MAR and NMAR models, however the
corresponding credible intervals contain the null effect.

4. DISCUSSION

We have presented a model for the analysis of time-to-event data with time-varying covariates
when data on some covariates may be missing and have proposed an easy to implement solution
strategy. We employed this model in an analysis of the association of longitudinal changes in
bodyweight and survival after diagnosis with breast cancer in a large, population-based case-
control study where we were concerned that data on post-diagnosis changes in body size may
be non-ignorably missing. Our findings from the analysis suggest that weight gain after
diagnosis is associated with greater mortality, both from any cause and specifically for death
due to breast cancer with greater weight gain associated with a larger effect. Through sensitivity
analysis we found that the point estimates for the association with post-diagnosis weight change
from the complete case analysis were somewhat attenuated compared to the models that
account for the missing data. Additionally, the credible intervals were more narrow for the
missing data models, resulting from the greater statistical efficiency afforded by accounting
for the missing data. Models assuming an ignorable and non-ignorable missing data mechanism
yielded equivalent conclusions although some differences in parameter estimates were
observed.

In the model that accounted for the missing data mechanism, we failed to observe significant
associations in the models for the probability that weight change was missing, as well as the
models for the missing covariates. We would like to emphasize, however, that the inferential
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value of these ancillary models is limited, since the objective of including them was to explain
the distributions that influence the relationships in the proportional hazards model in the most
parsimonious manner. A more detailed analysis to evaluate reasons that data is missing should
be undertaken in a framework that does not include the proportional hazards model (e.g. only
considering the joint distribution of r and z), which would allow for a richer specification of
the r model with a lower risk of overparameterization.

This analysis is the first to our knowledge to examine the association between post-diagnosis
weight change and survival utilizing multiple assessments on a population-based cohort of
breast cancer survivors from date of diagnosis. The method we proposed here allowed us to
fully utilize the available data and examine the effects of various assumptions regarding the
missingness mechanism. Although our study has these unique strengths, there are some
potential limitations. The study subjects in the LIBCSP are predominately older Caucasian
women with higher socioeconomic status, so these findings may not be generalizable to the
population of all breast cancer survivors. The use of proxy interviews for deceased subjects
may be problematic, however these comprised less than 8% of our sample, and previous work
suggests that data from proxy and self-report interviews are highly similar [32].

Models for missing data can be useful analytic tools yet there are no substitutes for complete
data. The assumptions on the missing data mechanism are untestable and in some cases
selection models similar to the one we illustrate have shown to be quite sensitive to
misspecification [13]. When employing selection models careful consideration must be given
to the form of the model for the missing data mechanism—the desire for a thorough and
accurate specification must be balanced with parsimony as convergence can become
problematic for models with many parameters. Our model likely benefited from the inclusion
of variables BMI before diagnosis and menopausal status at diagnosis in the model for missing
weight change (z). Those variables, through the distribution of z implicitly informed the portion
of the model accounting for the NMAR nature of the data (p(r|z)), and likely improved model
fit and convergence. Although computationally intensive, the Bayesian approach to parameter
estimation that we employed is easy to implement and accessible to analysts with a wide variety
of computational ability. The ideal situation would be to completely observe data on all
subjects, however this is unlikely to ever happen in reality, especially in longitudinal
population-based studies. For cases where there is concern about the potential for covariate
data to be not missing at random, techniques such as the one we propose here offer a practical
means of analyzing such incomplete datasets.

Supplementary Material

Appendix

Refer to Web version on PubMed Central for supplementary material.

Sample WinBUGS code for the NMAR selection model. The parameters alpha, phi, beta, tau
and lambda correspond to the model specification in the text, o, ¢, B, T, and A, respectively.
Input variables, also described in the text are death, dur, pcwt.fu, chemo, erstat, prstat, tsize_cat,
dxage, income, educ, bmiref and menpstat. The variable fu.years is a vector containing the
times of each weight change in years since diagnosis for the corresponding vector of percent
weight change variables, pcwt.fu. Additional scalar inputs include the sample size N, number
of intervals for the piecewise exponential model J, and eps, a scalar equal to 10~/ which is used
with the step function to perform logical evaluations of strict inequalities.

model select;
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for (k in 1:J3+1) { a[k] <- 10*(k-1)/J; } # Partition time axis, ten evenly
spaced intervals

for (i 1
for

up measures.

n 1:N) {

(k in 1:3) {

# Indicator if event-time in interval k

d[i,k]<- death[i]*step(dur[i]-a[k]+eps)*step(a[k+1] - dur[i]);

# length of overlap of dur[i] with interval k

delta[i,k] <- (min(dur[i]l, a[k+1]) - a[kl)*step(dur[i]l-a[kl);

# Assign exposure to correct interval:

# Linear interpolation for percent weight change between follow-

# Assumes that the subjects reach a constant weight after their

final assessment

pewt[i,k] <- step(fu.years[i,2]-a[k])*(pcwt.ful[i,1] +
(a[k]-fu.years[i,1])*(pcwt.fu[i,2] -
pewt.ful[i,1])/(fu.years[i,2]-fu.years[i,1])) +
(step(a[k]-fu.years[i,2]-eps)*step(fu.years[i,3]-a[k]))*
(pewt.fuli,2] + (a[k]l-fu.years[i,2])*(pcwt.ful[i,3] -
pewt.ful[i,2])/(fu.years[i,3]-fu.years[i,2])) +
step(a[k] - fu.years[i1,3] - eps)*pcwt.ful[i,3];
# Assign pcwt to categories
# > 5% loss in bodyweight
pcwtO[i,k] <- step(-5 - pcwt[i,k]+eps);
# change in bodyweight <= 5% (gain or loss) [Maintenance, REF]
pewtl[i,k] <- step(pcwt[i,k] + 5)*step(5 - pcwt[i,k]);
# change in bodyweight > than 5% and <=10%
pewt2[i,k] <- step(pcwt[i,k] - 5 + eps)*step(10 - pcwt[i,k]);
# change in bodyweight > 10%
pewt3[i,k] <- step(pcwt[i,k] - 10 + eps);

# Model for time to event conditional upon observed and unobserved

variables

theta[i,k] <- lambda[k]*exp(beta[l]*pcwtO[i,k] + beta[2]*pcwt2[i,k]

beta[3]*pcwt3[i,k] + beta[4]*chemo[i] + beta[5]*erstat[i] +
beta[6]*prstat[i] + beta[7]*tsize_cat[i] + beta[8]*dxage

# define the likelihood
d[i,k] ~ dpois(mu[i,k]);
mul[i,k] <- delta[i,k]*theta[i,k];

# Models for missing fixed (baseline) covariates
logit(p-chemo[i]) <- alpha4[1l] + alpha4[2]*dxage[i] +

pha4[3]*equals(income[i],2) + alpha4[4]*equals(income[i],3) +
pha4[5]*equals(income[i],4) + alpha4[6]*equals(educ[i],2) +
pha4[7]*equals(educ[i],3) + alphad4[8]*equals(educ[i].,4) ;

chemo[i] ~ dbin(p-.chemo[i],1);

logit(p.erstat[i]) <- alpha3[1] + alpha3[2]*dxage[i];
erstat[i] ~ dbin(p.erstat[i],1);

logit(p.prstat[i]) <- alpha2[1] + alpha2[2]*dxage[i] ;
prstat[i] ~ dbin(p.prstat[i],1);

LD
3
al
al
al
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logit(p-tumor2[i]) <- alphal[l] + alphal[2]*dxage[i] +
alphal[3]*equals(income[i],2) + alphal[4]*equals(income[i],3) +
alphal[5]*equals(income[i],4) + alphal[6]*equals(educ[i],2) +
alphal[7]*equals(educ[i],3) + alphal[8]*equals(educ[i],4) ;

tsize_cat[i] ~ dbin(p.tumor2[i],1);

# Models for missing time-varying covariates

# Model for weight change at 3rd f/u

mu.pcwt[i,3] <- alpha7[1] + alpha7[2]*dxage[i] + alpha7[3]*chemo[i] +
alpha7[4]*postmenp[i] + alpha7[5]*bmiref[i] + alpha7[6]*pcwt.fu[i,

alpha7[7]*pcwt.fu[i,1];
pewt._ful[i,3] ~ dnorm(mu.pcwt[i,3],taul);
# Model for weight change at 2nd f/u (1 year post-diagnosis)
mu.pcwt[i,2] <- alpha6[1] + alpha6[2]*dxage[i] + alpha6[3]*chemo[i] +
alpha6[4]*postmenp[i] + alpha6[5]*bmiref[i] + alpha6[6]*pcwt.fu[i,

pewt.ful[i,2] ~ dnorm(mu.pcwt[i,2],tau2);

# Model for weight change at 1st f/u (at diagnosis)

mu.pcwt[i,1] <- alpha5[1] + alpha5[2]*dxage[i] + alpha5[3]*chemo[i] +
alpha5[4]*postmenp[i] + alpha5[5]*bmiref[i];

pewt.fu[i,1] ~ dnorm(mu.pcwt[i,1],taul);

# Models for missing time-varying covariates

# Missingness model for third f/u

logit(p.r.ful[i,3]) <- phi3[1] + phi3[2]*pcwt.fu[i,3] + phi3[3]*dxage[i]

phi3[4]*fu.years[i,3] + phi3[5]*r.ful[i,1] + phi3[6]*r.fu[i,2];
r.ful[i,3] ~ dbin(p.r-fu[i,3],1);
# Missingness model for second f/u
logit(p.r.ful[i,2]) <- phi2[1] + phi2[2]*pcwt.fu[i,2] + phi2[3]*dxage[i]

phi2[4]*r.fu[i,1];
r.ful[i,2] ~ dbin(p.r-fu[i,2],1);
# Missingness model for first f/u
logit(p.r.ful[i,1]) <- phil[1] + phil[2]*pcwt.fu[i,1] + phil[3]*dxage

r.ful[i,1] ~ dbin(p.r-fu[i,1],1);

3

# PRIORS ON PARAMETERS

# Parameters for survival model

for (k in 1:3) { lambda[k] ~ dgamma(0.01, 0.01); }
for (I in 1:8) { beta[l] ~ dnorm(0, 0.000001); }

# Regression parameters for pcwt model

for (1 in 1:7) { alpha7[1] ~ dnorm(0, 0.000001); }
for (1 in 1:6) { alpha6[1] ~ dnorm(0, 0.000001); }
for (I in 1:5) { alpha5[1] ~ dnorm(0, 0.000001); }
# Variance parameters for missing data models

tau3 ~ dgamma(0.01, 0.01);

tau2 ~ dgamma(0.01, 0.01);

taul ~ dgamma(0.01, 0.01);

# Regression parameters for missingness model

for (I in 1:6) { phi3[1] ~ dnorm(0, 0.000001); }
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for (1 in 1:4) { phi2[1] ~ dnorm(0, 0.000001); }
for (1 in 1:3) { phil[l] ~ dnorm(0, 0.000001); }
# Regression parameters for treatment and tumor characteristic models
for (I in 1:8) { alphal[l] ~ dnorm(0, 0.000001);}
for (1 in 1:2) { alpha2[1] ~ dnorm(0,0.000001);}
for (1 in 1:2) { alpha3[1] ~ dnorm(0,0.000001);}
for (I in 1:8) { alpha4[l] ~ dnorm(0, 0.000001);}
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Table 3

Page 19

Posterior estimates of logistic regression coefficients and 95% credible intervals for models for the indicator of
missing weight change from selection model under NMAR assumption for all-cause mortality in the Long Island

Breast Cancer Study Project.

Posterior estimate of ¢ (95% credible interval)

Variable

At diagnosis

1-year after diagnosis

At follow-up interview

Constant

~1.78 (-2.37,-1.23)  —4.09 (-5.56, —2.68)

0.85 (~0.76, 2.39)

Percent weight change®

-0.07 (-0.14,-0.01)  —0.01 (~0.05, 0.03)

0.00 (~0.03, 0.02)

Age

0.02 (0.01, 0.03) 0.02 (0.00, 0.05)

0.00 (~0.02, 0.01)

Missing weight change at diagnosis

- 6.77 (6.15, 7.46)

6.06 (4.46, 7.74)

Missing weight change 1-year after diagnosis

3.48 (2.15, 4.96)

Time since diagnosis

~1.77 (-2.12, ~1.43)

a N .
At corresponding time point.
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Table 5

Page 22

Coefficient estimates (posterior log-hazard ratios) and 95% credible intervals from piecewise exponential
proportional hazards model for breast cancer mortality in the Long Island Breast Cancer Study Project under
different missing data assumptions.

Posterior estimate of B (95% credible interval)

Variable

Complete Case?
(n=499)

MARD
(n=1461)

NMARC
(n=1461)

Change in bodyweight

>59% loss

2.15 (1.30, 3.09)

1.98 (1.39, 2.61)

1.98 (1.40, 2.59)

5-10% gain

0.00 (-1.57, 1.37)

~0.13 (~1.40, 0.96)

~0.17 (~1.44, 0.90)

>10% gain

0.50 (-0.77, 1.72)

1.25 (0.39, 2.06)

1.03(0.12, 1.87)

Chemotherapy treatment

0.85 (0.05, 1.69)

1.09 (0.56, 1.62)

1.10 (0.57, 1.64)

ER positive tumor

-0.20 (-1.10, 0.72)

~0.38 (~0.85, 0.09)

~0.39 (-0.86, 0.09)

PR positive tumor

~0.50 (~1.34, 0.37)

~0.41 (~0.85, 0.05)

~0.41 (-0.87, 0.04)

Tumor size > 2cm

1.01 (0.32, 1.68)

1.06 (0.66, 1.45)

1.06 (0.67, 1.46)

Age at diagnosis

0.01 (~0.03, 0.04)

0.02 (0.00, 0.03)

0.01 (0.00, 0.03)

a . . L .
Excludes subjects with missing data on one or more covariates.

Specifies model for distribution of missing covariates.

CSpecifies model for distribution of missing covariates and missing data indicator for change in bodyweight. Precision 1076 on beta.
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