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Abstract
A Mannich-type multicomponent assembly process/1,3-dipolar cycloaddition strategy has been
developed for the rapid and efficient construction of a parent tetrahydroisoquinoline fused
isoxazolidine scaffold, which was subsequently functionalized using well-established protocols to
access a diverse 70-membered library of novel 2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-
a]isoquinoline-2-amine derivatives.
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INTRODUCTION
Modern day drug discovery relies on the identification of potent and selective modulators of
biological systems, either as probes for the functional and mechanistic study of these
systems, or as drug leads. Once initial leads are identified, their properties can be fine-tuned
through selective modification of functional groups and substituents to achieve the desired
physiochemical attributes. According to Lipinski’s rule of five, compounds with a molecular
weight of 500 or less, a clogP of 5 or less, 5 or less hydrogen bond donors, and 10 or less
hydrogen bond acceptors are more likely to be successful candidates than compounds
violating more than one of these rules.1 Although these criteria are certainly not absolute,
they provide medicinal chemists with a reliable guideline for rational library design. In the
context of lead compound identification, various strategies have been developed for
generating small molecule libraries2 that are then evaluated for their biological properties by
high-throughput screening (HTS).

Some years ago we developed a novel approach to the total synthesis of (±)-
tetrahydroalstonine. A pivotal step in this synthesis was a Mannich-type multicomponent
assembly process (MCAP) that allowed facile access to a key aldehyde intermediate that
was further elaborated via an intramolecular Diels-Alder reaction to a pentacyclic
intermediate, refunctionalization of which delivered the natural product in a mere five
chemical operations from tryptamine.3 We have since developed this reaction into a four-
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component process,4,5 and have demonstrated its utility for the diversity oriented synthesis
(DOS) of unique heterocycles comprising the benzodiazepine,6 tetrahydropyridine,7 2-aryl
piperidine,8 and tetrahydroisoquinoline ring systems.9,10

The tetrahydroisoquinoline ring system is present in a variety of natural products and
pharmaceutical agents that exhibit a wide array of biological properties including
antihypertensive,11 antitumor,12 and antimalarial activities.13 Moreover, compounds
containing the 2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinoline-2-amine scaffold (1)
are documented as α2-adrenoceptor antagonists (2–4),14 opioid receptor antagonists (5),15

and dipeptidyl peptidase IV (DPP-IV) inhibitors (6)16 (Figure 1). We have recently reported
a method for the rapid and efficient assembly of the scaffold comprising 1 via an MCAP/
1,3-dipolar cycloaddition strategy.9 In order to demonstrate the utility of this chemistry in
the synthesis of libraries of small molecules, we prepared a diverse 70-membered library of
2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinoline-2-amine (1) derivatives from a
readily accessible scaffold by exploiting well-established palladium-catalyzed cross-
coupling protocols, and simple N-functionalization reactions. We now report the details of
these studies.

RESULTS AND DISCUSSION
The library synthesis commenced with the construction of the parent tetrahydroisoquinoline
fused isoxazolidine scaffolds 10 and 11 from readily available 7-bromodihydroisoquinoline
(7) (Scheme 1).17 In the event, treatment of imine 7 with trans-crotonoyl chloride and silyl
enol ether 8 in the presence of catalytic amounts of TMSOTf at room temperature furnished
aldehyde 9, which upon condensation with N-methylhydroxylamine gave an intermediate
nitrone that underwent facile 1,3-dipolar cycloaddition to provide the isoxazolidine 10 in
66% yield from 7; no other stereoisomers were detected. The relative stereochemistry of 10
was determined unambiguously by single crystal X-ray analysis.9d Notably, 10 is easily
prepared from 7 on a multi-gram scale, without the need for column chromatography.
Reduction of the lactam moiety in 10 with freshly prepared borane gave tertiary amine 11 in
82% yield. It was necessary to use borane for this transformation, because reaction with
lithium aluminum hydride was unselective and resulted in reductive cleavage of the N,O-
bond of the isoxazolidine ring as well as reduction of the lactam moiety.

With scaffolds 10 and 11 in hand, we prepared the corresponding libraries of lactams and
amines, respectively. Accordingly, reaction of 10 under standard Suzuki18 or Buchwald-
Hartwig19 cross-coupling conditions provided chemset 13 in moderate to excellent yields
(Scheme 2, Figure 2, Table 1). For Suzuki reactions, arylboronic acids were chosen such
that electron neutral (12{1}), electron rich (12{2}), and electron deficient (12{3}) groups
with varied substitution patterns were incorporated in the biaryl products in order to enable
exploration of structure-activity relationships (SAR) during biological screening.
Subsequent N,O-bond cleavage mediated by nickel(II) boride that was generated in situ
proceeded smoothly to furnish chemset 14 in 81–92% yields.20 This transformation could
also be achieved with Zn/AcOH, however this reductive method was typically lower
yielding.

The secondary amine functionality resident in chemset 14 was an obvious embarkation point
for derivatization, and as such we sought to exploit it for rapid access to novel derivatives of
1. Reaction of chemset 14 with the N-functionalizing reagents 15 under standard conditions
provided chemset 16 (Scheme 3, Figure 3, Table 2) in moderate to excellent yields. A wide
array of N-functionalizing reagents was chosen including alkyl, heteroaryl, and aryl
substituents with varied electronics and substitution patterns to gain useful SAR data.
Notably, these reactions were selective for reaction on nitrogen, and products of O-
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functionalization were only seldom detected in trace quantities. Although the biological
profiles of compounds related to 1 are well documented, lactam derivatives such as those
embodied in chemset 16 have not been thoroughly studied.

Analogous to the chemistry outlined in Scheme 2, cross-coupling of amine 11 with the
reagents in chemset 12 under Suzuki21 or Buchwald-Hartwig22 conditions provided chemset
17 in 81–95% yield (Scheme 4, Figure 4, Table 3). Perhaps because of the tertiary amine
functionality present in 11, we found that catalyst systems different from those used to
promote the related cross-couplings of lactam 10 (Scheme 2) gave better yields of product.
Subsequent N,O-bond cleavage proceeded without event to furnish chemset 18 in good
yields.

The secondary amine functionality present in chemset 18 was exploited to rapidly prepare
derivatives of 1. Chemset 19 was readily accessed through reaction of amines 18 with
15{3}, 15{13}, and 15{5} under standard conditions (Scheme 5, Figure 5, Table 4).
Attempted reductive amination of amines 18 under standard conditions resulted in mixtures
of N,O-acetals 20 and tertiary amines 21. Because the N,O-acetals 20 proved markedly
stable, a two-step procedure was employed to access tertiary amines 21. Accordingly,
amines 18 were condensed with cyclohexane carboxaldehyde (15{14}) to give N,O-acetals
20, which underwent facile reduction with sodium cyanoborohydride in the presence of
acetic acid to provide tertiary amines 21 in good overall yield.

SUMMARY
We have prepared a 70-membered library of derivatives of the pyrido[2,1-a]isoquinoline 1
utilizing a sequential MCAP/1,3-dipolar cycloaddition process to generate functionalized
scaffolds that were readily diversified. It is noteworthy that only three members of this
library violate Lipinski’s rule of five. Thus, the vast majority of the members of this novel
library are worthy lead candidates having favorable physiochemical properties (see table in
Supporting Information). These compounds have been submitted to the NIH Molecular
Libraries Small Molecule Repository (MLSMR) for distribution to HTS centers within the
Molecular Libraries Probe Production Centers Network (MLPCN) and subsequent
evaluation of their biological properties. Moreover, selected compounds have been sent to
the National Institute of Mental Health’s Psychoactive Drug Screening Program (NIMH
PDSP). Further applications of this and related approaches to the synthesis of compound
libraries are in progress, and the results of these investigations and the biological activities
of representative members will be reported in due course.
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Figure 1.
Biologically active compounds containing the 2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-
a]isoquinoline-2-amine scaffold.
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Figure 2.
Reagents used for cross-coupling reactions of lactam 10.
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Figure 3.
N-Functionalizing reagents.
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Figure 4.
Reagents used for cross-coupling reactions.
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Figure 5.
N-Functionalizing reagents.

Granger et al. Page 10

ACS Comb Sci. Author manuscript; available in PMC 2013 January 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 1.
Synthesis of isoxazolidine scaffolds 10 and 11.
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Scheme 2.
Cross-coupling reactions of lactam 10 and N,O-bond cleavage of isoxazolidines 13.
Conditions: (a) 12{1–3}, Pd[P(t-Bu)3]2 (1 mol %), Cs2CO3, 1,4-dioxane, 100 °C (b)
12{4,5}, Pd(OAc)2 (5 mol %), JohnPhos (5 mol %), NaOt-Bu, toluene, 100 °C (c) 12{6},
Pd(OAc)2 (5 mol %), JohnPhos (5 mol %), K3PO4, toluene, 100 °C
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Scheme 3.
N-Functionalization of secondary amines 14.
Conditions: (a) 15{1–5}, Et3N, CH2Cl2, 0 °C → rt (b) 15{6,7}, Et3N, CH2Cl2 (c) 15{8–10},
CH2Cl2 (d) 15{11,12}, CH2Cl2

Granger et al. Page 13

ACS Comb Sci. Author manuscript; available in PMC 2013 January 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 4.
Cross-coupling reactions and N,O-bond cleavage of amine 11.
Conditions: (a) 12{7,8}, [PdCl2(dppf)]•CH2Cl2 (5 mol %), CsF, toluene, 110 °C (b) 12{4},
Pd(OAc)2 (10 mol %), (±)-BINAP (12 mol %), Cs2CO3, toluene, 100 °C
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Scheme 5.
N-Functionalization of secondary amines 18.
Conditions: (a) 15{3}, Et3N, CH2Cl2 (b) 15{13}, Et3N, CH2Cl2 (c) 15{5}, CH2Cl2 (d)
15{14}, DCE, 84 °C (e) NaCNBH3, AcOH, DCE
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Table 2

Data for compounds 16 synthesized via N-functionalizations

Entry Secondary Amine N-functionali zing Reagent Product Yield (%)

1 14{2} 15{1} 16{2,1} 76

2 14{3} 15{1} 16{3,1} 65

3 14{4} 15{1} 16{4,1} 67

4 14{1} 15{2} 16{1,2} 64

5 14{5} 15{2} 16{5,2} 84

6 14{6} 15{2} 16{6,2} 79

7 14{1} 15{3} 16{1,3} 44

8 14{5} 15{3} 16{5,3} 69

9 14{6} 15{3} 16{6,3} 85

10 14{1} 15{4} 16{1,4} 81

11 14{5} 15{4} 16{5,4} 99

12 14{6} 15{4} 16{6,4} 80

13 14{1} 15{5} 16{1,5} 74

14 14{5} 15{5} 16{5,5} 89

15 14{6} 15{5} 16{6,5} 88

16 14{2} 15{6} 16{2,6} 64

17 14{3} 15{6} 16{3,6} 92

18 14{4} 15{6} 16{4,6} 61

19 14{1} 15{7} 16{1,7} 78

20 14{5} 15{7} 16{5,7} 55

21 14{6} 15{7} 16{6,7} 75

22 14{1} 15{8} 16{1,8} 72

23 14{5} 15{8} 16{5,8} 62

24 14{6} 15{8} 16{6,8} 78

25 14{2} 15{9} 16{2,9} 69

26 14{3} 15{9} 16{3,9} 86

27 14{4} 15{9} 16{4,9} 74

28 14{1} 15{10} 16{1,10} 73

29 14{5} 15{10} 16{5,10} 61

30 14{6} 15{10} 16{6,10} 48

31 14{1} 15{11} 16{1,11} 42

32 14{5} 15{11} 16{5,11} 65

33 14{6} 15{11} 16{6,11} 87

34 14{1} 15{12} 16{1,12} 75

35 14{5} 15{12} 16{5,12} 74

36 14{6} 15{12} 16{6,12} 68
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Table 4

Data for compounds 19–21 synthesized via N-functionalizations

Entry Secondary Amine N-functionali zing Reagent Product Yield (%)

1 18{7} 15{3} 19{7,3} 77

2 18{8} 15{3} 19{8,3} 67

3 18{4} 15{3} 19{4,3} 99

4 18{7} 15{13} 19{7,13} 62

5 18{8} 15{13} 19{8,13} 55

6 18{4} 15{13} 19{4,13} 73

7 18{7} 15{9} 19{7,9} 55

8 18{8} 15{9} 19{8,9} 70

9 18{4} 15{9} 19{4,9} 99

10 18{7} 15{14} 20{7,14} 99

11 18{8} 15{14} 20{8,14} 84

12 18{4} 15{14} 20{4,14} 81

13 -- -- 21{7,14} 83

14 -- -- 21{8,14} 70

15 -- -- 21{4,14} 64
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