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In this article, the authors demonstrate a time-series analysis based on a hierarchical Bayesianmodel of a Poisson
outcomewith an excessive number of zeroes. Themotivating example for this analysis comes from the intensive care
unit (ICU) of an urban university teaching hospital (New Haven, Connecticut, 2002–2004). Studies of medication use
among older patients in the ICU are complicated by statistical factors such as an excessive number of zero doses,
periodicity, and within-person autocorrelation. Whereas time-series techniques adjust for autocorrelation and
periodicity in outcome measurements, Bayesian analysis provides greater precision for small samples and the
flexibility to conduct posterior predictive simulations. By applying elements of time-series analysis within both
frequentist and Bayesian frameworks, the authors evaluate differences in shift-based dosing ofmedication in amedical
ICU. From a small sample and with adjustment for excess zeroes, linear trend, autocorrelation, and clinical covariates,
both frequentist and Bayesian models provide evidence of a significant association between a specific nursing shift
and dosing level of a sedative medication. Furthermore, the posterior distributions from a Bayesian random-effects
Poisson model permit posterior predictive simulations of related results that are potentially difficult to model.

autocorrelation; Bayes theorem; models, statistical; periodicity; time series

Abbreviations: ICU, intensive care unit; ZIP, zero-inflated Poisson.

Conducting an observational, clinical study of medication
use among older patients in a medical intensive care unit
(ICU) is complicated by both clinical and statistical issues (1).
First, the patients are critically ill, and treatments they receive
may include measures such as intubation and administration
of sedative hypnotic medications (2). Second, because patients
are admitted to the ICU around the clock, their medication
dosing is potentially influenced by circadian rhythms, as well
as changes in medical staff. Lastly, some patients will inevita-
bly die during their stay in the ICU (3). An important statistical
concern is that for some drugs, the great majority of doses
given over time will be at the zero level. Other statistical
challenges include potential periodicity in dosing and auto-
correlation among within-subject measurements.

Owing in part to these analytical concerns, there is a paucity
of clinical evidence regarding the temporal patterns of med-
ication dosing in the medical ICU across a 24-hour day. How-
ever, in one non-ICU study, Baker et al. (4) suggested that
there is a tendency for clinicians to more frequently prescribe

psychotropic medications in the late evening. Instead of ana-
lyzing medication doses, Baker et al. used a count of the
number of times that certain drugs were delivered to patients
within work shifts (4). Although a valid statistical test of
shift-based dosing levels will yield more directly interpret-
able quantitative results—that is, rates of medication usage
corresponding to shift—it must also contend with the above-
mentioned statistical concerns while adjusting for important
clinical covariates. For these reasons, the analysis proposed
here is significantly more complex.

Although there have been many applications of time series
to clinical studies (5–7) and a growing number of case studies
using Bayesian methods (8, 9), to our knowledge there are
few examples of time-series analysis of clinical data within
the Bayesian context. Our objective in this article is to em-
phasize the advantages of applying a Bayesian random-effects
Poisson model in the evaluation of differences in shift-based
dosing of a medication characterized by an extremely high
proportion of zero-level doses. To achieve that objective,
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we have organized the article as follows. In Materials and
Methods, we define the study sample, explore the periodicity
and autocorrelation of the data, present graphical trajectories
of average medication doses, and describe the advantages of
a Bayesian approach for this situation. In Results, we present
results from both frequentist and Bayesian models and dem-
onstrate how the posterior distributions of model coefficients
afforded by the Bayesian framework enable posterior predic-
tive simulations that can provide estimates of related findings
not easily modeled. In the Discussion, we review strengths
and limitations of the analysis and offer concluding remarks.

MATERIALS AND METHODS

Analytical sample and related statistical concerns

The original cohort of study participants consisted of
309 patients aged 60 years or older who were admitted to the

medical ICU at Yale-New Haven Hospital from September
2002 through September 2004. As described elsewhere
(10, 11), proxy respondents served as the primary source of
baseline information for critically ill patients. Hospital med-
ical records were reviewed to obtain demographic infor-
mation, admission diagnoses, laboratory data, and shift-based
medication dosing.

In this study, we analyzed the dosing levels of a common
benzodiazepine, midazolam, that is specified on the formulary
for sedation in this ICU. Its use was diligently recorded during
every shift, including all routes of administration. Also
recorded was the use of other psychoactive medications,
including typical and atypical antipsychotic agents, seizure
medications, and antidepressants. All prescriptions of med-
ication were made at the discretion of the treating physician.
A research nurse performed the chart reviews and recorded
the medication data from both nursing flow sheets and the
pharmacy’s electronic database.

Table 1. Characteristics of Persons Aged �60 Years Admitted to the Intensive Care Unit (ICU) of Yale-New Haven Hospital and of Patients

Receiving Midazolam With ICU Stays Spanning At Least 3 Calendar Days, New Haven, Connecticut, 2002–2004

Characteristic
Entire Cohort (n 5 309)a

Patients Receiving Midazolam and
Staying ‡3 Days in ICU (n 5 114)b

No. % Mean (SD) Median (IQR) No. % Mean (SD) Median (IQR)

Demographic factors

Age, years 74.7 (8.5) 73.4 (8.8)

Male gender 145 47 63 55

Education, years 12.5 (2.8) 12.5 (2.9)

Nonwhite race 51 17 19 17

Admitted from homec 241 78 96 84

Baseline medical status

APACHE II score (18) 23.5 (6.4) 24.3 (6.7)

Charlson comorbidity index (29) 1.8 (1.9) 1.6 (2)

Evidence of depressiond 85 28 33 29

Dementiae 95 31 34 30

Any impairment in Activities of
Daily Living (30)

111 36 41 36

Admitting diagnosis

Sepsis 51 17 18 16

Respiratory 156 51 56 49

Neurologic 5 2 1 <1

Gastrointestinal hemorrhage 52 17 31 27

Other 45 15 8 7

ICU factors

Intubation 167 54 86 75

No. of days of ventilationf 6 (8) 7 (8)

Length of stay, daysf 4 (5) 6 (8)

Abbreviations: APACHE, Acute Physiology and Chronic Health Evaluation; ICU, intensive care unit; IQCODE, Informant Questionnaire on

Cognitive Decline in the Elderly; IQR, interquartile range; SD, standard deviation.
a Data were missing for some subjects (1 for Charlson comorbidity index, 9 for education, 3 for dementia, and 4 for weight).
b Data were missing for some subjects (1 for Charlson comorbidity index, 1 for education, 1 for dementia, and 2 for weight).
c Admitted from home as opposed to a skilled nursing facility or rehabilitation center.
d Evidence obtained by surrogate or chart.
e IQCODE score (31) > 3.3.
f During entire ICU stay (includes first admission and, if applicable, readmissions to ICU).
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The formal model of our analysis, designed to evaluate the
dosing of the benzodiazepine midazolam across a potential
maximum time period of 5 days (i.e., 15 consecutive 8-hour
nursing shifts in the ICU), was restricted to those patients
with ICU stays spanning a minimum of 3 calendar days and
who received midazolam during their stay. The choice of
patients who spent 3 or more days in the ICU was guided by
our desire to obtain a sample size that would enable us to
analyze dose levels with full adjustment for linear trend, pe-
riodicity, autocorrelation, and clinical covariates. The nursing
shifts were defined as night (midnight–8 AM), day (8 AM–4 PM),
and evening (4 PM–midnight). Because 79% of the partici-
pants had data for at least 15 shifts, we decided to make use
of this additional clinical information (i.e., additional repeated
measures) across different patients to detect any potential dif-
ference in the medication doses during the night shift with
respect to the day and evening shifts.

Whereas the constraints on our study population, referent
to an observational study that does not impose restrictions on
the basis of the outcome and duration of ICU stay, might seem
arbitrary, they did provide the best study sample with which
to address our clinical hypothesis. The clinical question was
whether there was an association between the night nursing
shift and the dose of midazolam given to patients. In terms
of risk of exposure, a person who never receives midazolam
in the ICU is not truly at risk for the outcome of interest, that
is, a night-related change in dose. In like manner, if a person is
not in the ICU for at least 3 days, there is not adequate in-
formation to detect the temporal shift of interest. For these
reasons, the restrictions on our study population provided the
most appropriate sample with which to evaluate our clinical
hypothesis. These same restrictions also imply that results
of this study are generalizable only to older ICU patients in
this hospital who take midazolam during an ICU stay lasting
for 3 days or longer.

Table 1 presents information on the entire cohort, as well as
the analytic sample. Of the 309 patients in the full cohort, only

114 (37%) received midazolam and spent 3 or more days in
the ICU. The one person missing data on the dementia co-
variate was excluded from the analysis, because we were not
convinced that the Bayesian model would adequately impute
this missing dichotomous value based on the other model
terms. There were no missing data on the outcome or on the
other covariates used in the model. Web Figure 1, which ap-
pears on the Journal’sWeb site (http://aje.oxfordjournals.org/),
is a bar chart with color coding that indicates the number
of specific nonzero person-doses given to patients in each of
the 15 shifts. It is evident that in 3 of the night shifts (i.e.,
shifts 1, 7, and 10), there are fewer nonzero doses administered
to patients relative to their corresponding day (shifts 2, 8, and
11) and evening (shifts 3, 9, and 12) shifts, respectively.

Note the 4 noninteger dose values inWeb Figure 1: 0.5, 1.5,
2.5, and 3.5 mg. Because the probabilistic properties of the
Poisson distribution are defined only for nonnegative integers,
in our analysis we rounded up each noninteger dose to the
next integer value.

Outcome and hypothesis of interest

Our outcome was the dose of midazolam, in milligrams,
administered to that subset of patients who received at least
1 dose of midazolam and whose stay in the ICU spanned
at least 3 calendar days. Our hypothesis was that the doses
corresponding to the night shift (midnight–8 AM) would be
lower than the doses administered during the evening and day
shifts. Even within this restricted study population, 88% of
all of the person-doses recorded were zeroes. This situation
was appropriate for testing the utility of an approach that
proactively accounts for excess zeroes in a Poisson model.

Why Bayesian analysis?

There are 3 well-documented advantages to using Bayesian
methods for zero-inflated outcomes. First, Bayesian zero-
inflated regression models have been shown to possess better

0

1

2

3

No. of Consecutive Nursing Shifts in the ICU
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Day

Night

Day

Evening

Night

Day

Evening

Night

Day
Evening

Night

Day Evening

Night

EveningS
hi

ft-
S

pe
ci

fic
 A

ve
ra

ge

of
 N

on
ze

ro
 D

os
es

Figure 1. Average number of nonzero doses of midazolam given over the course of patients’ first 15 nursing shifts in the intensive care unit (ICU)
at Yale-New Haven Hospital, New Haven, Connecticut, 2002–2004. Results are shown for persons who stayed in the ICU for�3 days and received
midazolam, with spline-based interpolation.
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small-sample performance with tighter intervals and better
coverage probabilities than frequentist methods (12). Second,
Bayesian methods allow for seamless integration of infor-

mation from other sources, such as pilot data (13). Lastly,
Bayesian methods yield posterior distributions of the model
coefficients that facilitate posterior predictive simulations of
related findings that are often difficult to model (see section 8.4
of Gelman and Hill (14)). We demonstrate the latter property
in our example.

Analysis of time-series data

Time-series data are routinely analyzed in business and
engineering with models based on the seminal text of Box
and Jenkins (15). The key assumption in these models is that
the process generating the time-series data is weakly sta-
tionary (16). Weak stationarity is typically demonstrated by
showing that both the mean and the variance of the time-
series data are relatively constant over the period of mea-
surement. A relatively constant mean is often achieved by
adjusting for linear trend and periodicity, whereas constant
variance is typically obtained by adjusting for autocorrelation.
Significant autocorrelation means that data values closer to
each other in time are more similar than those further away
in time and thereby contradicts the crucial assumption of con-
stant variance over time for any regression model. For this
reason, terms that adequately capture the autocorrelation must
be present in the time-series model.

Evidence of periodicity and linear trend in shift-based
doses of midazolam

Figure 1 depicts the average dose of our data cohort across
their first 15 shifts in the ICU. In order to perform analyses
that accounted for the periodicity of nursing shifts, we had to
temporally align each person-shift in the ICU with its corre-
sponding nursing shift (night, day, or evening). For this reason,
each patient’s first shift in the ICU was recorded as either
shift number 1, 2, or 3 (per Figure 1), corresponding to the
person’s admission during either the night, day, or evening
shift, respectively, on the calendar day of admission. Conse-
quently, each participant contributed 7–15 person-shifts to
the analytical sample. Because people were admitted across
all 3 shifts, the doses contributing to each of the plotted points
did not necessarily pertain to the same persons as in previous
or subsequent shifts.

Figure 1 emphasizes the temporal patterns in the data in
two ways. The wavy plot was generated using cubic splines
that form the continuous curves between each pair of consec-
utive dots (17), that is, the shift-based average doses among
persons receiving the drug. The shape of the spline-based plot
suggests a periodicity wherein higher average doses, relative
to night shifts, appear to collectively correspond to both day
and evening shifts. The second plot is a simple linear regres-
sion of the average dose on shift number that provides evidence
of a negative trend over time. Although this simple linear re-
gression of the average dose on shift number provides evidence
of a negative trend over time, the mathematical properties of
the Poisson model in which it resides do not allow for the
prediction of negative doses. This exploratory graph, which
plots shift-based averages for only those persons receiving
midazolam in each specific shift, speaks to the need for model
terms that account for periodicity and linear trend.
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Figure 2. Correlation analysis of the average number of midazolam
doses given over the course of patients’ first 15 nursing shifts in the
intensive care unit at Yale-New Haven Hospital, by shift, New Haven,
Connecticut, 2002–2004. The 3 panels present different ways of con-
sidering autocorrelation for different temporal lags between data
points. From top to bottom, the 3 measures are the autocorrelation
function, the partial autocorrelation function, and the inverse autocor-
relation function. The lag represents the temporal difference between
shifts for which serial autocorrelation was estimated. With the inverse
autocorrelation function, autocorrelation exceeded the 95% confi-
dence interval for lag 2.
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where the tilde (~) denotes a probability distribution, j(t) in-
dicates person j at shift t, and pj is the probability of an excess
zero dose from the Bernoulli process. The linear model of the
natural logarithm of the mean parameter lj(t) is defined as

lnðljðtÞÞ ¼ lþ Ntaþ tbþ XT
j Xþ uj; ð2Þ

where all terms on the right-hand side of equation 2, except
uj, are fixed effects common to each submodel of equation 1.
Here, l is an intercept, Nt indicates whether time t is the night
shift referent to either the day or evening shift (1 for night
shift, 0 otherwise), and time t (shift 1, . . ., 15) is multiplied by
the slope of the linear trend (b).Xj is a vector of the following
important clinical covariates: age in years, APACHE II (Acute
Physiology and Chronic Health Evaluation) score for severity
of illness (18), an indicator for death in the ICU, an indicator
for dementia based on an IQCODE (Informant Questionnaire
on Cognitive Decline in the Elderly) score greater than 3.3
(19, 20), an indicator for mechanical ventilation, an indicator
for male gender, an indicator for nonwhite race, and an indi-
cator for whether the person did not remain in the ICU for
5 days. The indicators for death in the ICU and an ICU stay
less than 5 days accounted for potential selection effects
introduced by persons with shorter stays. The random effect
uj is person-specific and, in combination with l, represents
each person’s individual intercept. We present results ob-
tained from both the frequentist and Bayesian formulations
of equation 2.

The second model assumes that the outcome follows a reg-
ular Poisson distribution, midazolam dosej(t) ~ Poisson (lj(t)),
where the natural logarithm of the mean parameter lj(t) is
modeled as

lnðljðtÞÞ ¼ lþ Ntaþ tbþ XT
j Xþ uj þ hjðtÞ: ð3Þ

The last two terms on the right-hand side of equation 3 are
random effects that account for the overdispersion created by
the high number of zero doses and autocorrelation, respec-
tively. Here hj(t) is a unique random effect for each person-
shift, providing comprehensive treatment of autocorrelation.
Because a large number of random effects makes model con-
vergence difficult to achieve in the frequentist framework,
this second model is fitted in the Bayesian context only and
can be seen as a Bayesian enhancement of the generalized
linear mixed model approach used by Breslow and Clayton
(21).

For all formulations of equations 2 and 3, the fixed model
coefficients were given widely dispersed normal priors of
mean zero, and the precision terms corresponding to the
random effects uj and hj(t) were given gamma priors whose
parameters were assigned mildly informative values to expe-
dite Markov chain Monte Carlo convergence. For all Bayesian
formulations, 3 Markov chains initialized at disparate values
were each cycled for 20,000 iterations, with convergence con-
firmed by the Gelman-Rubin statistic as modified by Brooks
(22, 23). Following burn-in, each chain was cycled for an

Evidence of autocorrelation in shift-based doses of midazolam

We examined the shift-based averages for autocorrelation to verify compliance with the assumption of stationarity. Figure 2
presents 3 ways of examining autocorrelation that are calculated by means of the SAS procedure ARIMA (SAS Institute Inc.,
Cary, North Carolina). The 3 panels present different ways of considering autocorrelation for different temporal lags between
data points. From top to bottom, the 3 measures are the autocorrelation function, the partial autocorrelation function, and the
inverse autocorrelation function. With the exception of lag 2 on the inverse autocorrelation function, none of the measures of
autocorrelation were significant at a ¼ 5%. These graphs tell us that the variance of the time-series data remains relatively
constant over time.

Because stationarity requires, in addition to a stable variance, a temporally constant mean, it is more comprehensive than
a simple examination of autocorrelation. The ARIMA procedure also conducts a v2 test of autocorrelation for different lag
values. For the midazolam data, this test resulted in a P value of 0.15 for lags up to 6 and a P value of 0.015 for lags greater than
12. This is due to the strong, negative linear trend evident in Figure 1, which induces a negative correlation between longer
gaps. This means that over time periods of 12 shifts or longer, the negative linear trend violates the constant mean required to
satisfy stationarity. Whereas the bar graphs of Figure 2 affirm the need for model terms that account for autocorrelation, the
P values of the v2 test for lags of 12 emphasize the need to adjust for linear trend.

Two Poisson models for midazolam that adjust for excess zeroes

We consider 2 distinct Poisson models for the midazolam doses. The first is the traditional zero-inflated Poisson (ZIP)
model, where the outcome is assumed to be a mixture of 2 stochastic processes, one that generates Poisson-distributed values
and a second Bernoulli process that generates the excess zeroes. This mixed distribution is

Midazolam dosejðtÞ ~
�
0 with probability pj
Poisson ðljðtÞÞ with probability

�
1� pj

�
;

which implies

Midazolam dosejðtÞ ¼
�
0 with probability pj þ

�
1� pj

�
3 e�l jðtÞ

k ¼ 1; 2; 3; . . . with probability ð1� pjÞ3 e�ljðtÞ 3 ljðtÞ
k=k!;

ð1Þ
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additional 5,000 iterations to obtain estimates of posterior
distributions of all model parameters. Model fit was checked
with the posterior predictive evaluations described in chapter 8
of Gelman and Hill (14) and demonstrated elsewhere (24).
The posterior distributions of the model coefficients were
also used to calculate a related statistic in this study (dis-
cussed in Results). Exploratory analysis was performed
using SAS, version 9.2 (25); models were evaluated with
WinBUGS 1.4 (26); and posterior predictive simulations
were conducted in the R language, using the ‘‘arm’’ package
(27, 28). Significance for all parameters was interpreted as
a 95% credible interval that excluded the null value of 1.

Sample code for all models discussed is available in the
Web Appendix.

RESULTS

Table 2 presents the posterior estimates of the risk ratios
from the ZIP mixture models with their corresponding
95% confidence (frequentist) and credible (Bayesian) intervals.
Because the linear models in equations 2 and 3 are models
of the log of the Poisson parameter, the resultant model
coefficients are not directly interpretable until they are expo-
nentiated to yield the corresponding risk ratios. The ‘‘risks’’
are the effect of the covariates in either reducing or increasing
the dose with respect to the average. Any risk ratio whose
credible interval ranges exclusively below or above the null
value of 1 signifies that the corresponding model term is
associated, respectively, with a reduction or increase in dose.

Referent to the zero value used for day and evening shifts,
and after adjustment for linear trend and important clinical
factors, the night shift is associated with lower doses of

midazolam, that is, 78% and 83% as large in the frequentist
and Bayesian ZIP paradigms, respectively. Because of the
pronounced negative trend depicted in Figure 1, the dose
of any subsequent shift is only about 88% as large as that
preceding it. No other covariates show a significant asso-
ciation with shift-based doses of midazolam in either the
frequentist or Bayesian ZIP formulation.

Table 2 also presents posterior estimates of the risk ratio
and 95% credible interval from the Bayesian random-effects
Poisson model of equation 3. Owing to the use of random
effects for each person-shift, the credible intervals are gen-
erally wider. Here the effect of the night shift is even smaller
(risk ratio ¼ 0.63) and nonwhite race has a significant posi-
tive association (risk ratio ¼ 2.05). All other associations are
of a magnitude proximate to that in the ZIP models.

The statistically smaller dose level for the night shift in our
analysis is attributable to the fact that the average person-dose
across the night shifts (0.45 mg) was smaller than those of
both the day (0.66 mg) and evening (0.89 mg) shifts. This is
at least partially due to the fact that only 37 patients (32%)
received nonzero doses during at least 1 night shift, as com-
pared with 66 patients (58%) and 63 patients (55%) in at least
1 day or evening shift, respectively. Because the average dose
of midazolam was so low (0.66 mg over any given 8-hour
shift), the statistically significant association with the night
shift is not clinically meaningful. For the same reason, the
significantly positive effect of nonwhite race is also not of
clinical concern.We use the demonstrated association of non-
white race, however, to illustrate the potential of posterior
predictive simulation enabled by the Bayesian approach.

The Bayesian random-effects Poisson model is based on
a simple Poisson distribution, and given the posterior

Table 2. Risk Ratios and 95%Confidence/Credible Intervals FromModels for MidazolamDose That Accommodate Excess Zeroes, NewHaven,

Connecticut, 2002–2004

Model Term Notation

Frequentist ZIP Mixture
With Random Intercept

Bayesian ZIP Mixture
With Random Intercept

Bayesian Random–Effects
Poisson Model

RR
95% Confidence

Interval
RR 95% CrI RR 95% CrI

Night shift 1 ¼ night, 0 ¼ day or
evening

0.78* 0.63, 0.97 0.83* 0.67, 0.98 0.63* 0.44, 0.90

Shift no. 1, 2, . . ., 15 0.89* 0.87, 0.92 0.88* 0.85, 0.99 0.85* 0.78, 0.92

Age, years Continuous 0.97 0.53, 1.75 0.98 0.95, 1.01 1.01 0.96, 1.05

Severity of illnessa Continuous 0.99 0.95, 1.02 0.99 0.95, 1.01 1.01 0.96, 1.07

Death in ICU 1 ¼ decedent,
0 ¼ survivor

1.51 0.88, 2.59 1.59 0.97, 2.75 0.94 0.42, 2.14

Intubation 1 ¼ yes, 0 ¼ no 1.60 0.84, 3.04 1.50 0.78, 2.71 0.96 0.46, 1.97

Dementiab 1 ¼ yes, 0 ¼ no 1.23 0.79, 1.92 1.28 0.81, 1.93 1.34 0.69, 2.80

ICU stay <5 days 1 ¼ yes, 0 ¼ no 0.99 0.96, 1.01 0.95 0.49, 1.67 1.51 0.73, 3.13

Male gender 1 ¼ male, 0 ¼ female 1.38 0.91, 2.09 1.28 0.81, 1.93 1.30 0.69, 2.65

Nonwhite race 1 ¼ yes, 0 ¼ no 1.52 0.87, 2.67 1.54 0.99, 2.64 2.05* 1.03, 5.16

Abbreviations: APACHE, Acute Physiology and Chronic Health Evaluation; CrI, credible interval; ICU, intensive care unit; IQCODE, Informant

Questionnaire on Cognitive Decline in the Elderly; RR, risk ratio; ZIP, zero-inflated Poisson.

* P < 0.05.
a APACHE II score for severity of illness (18).
b IQCODE score (31) > 3.3.
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distributions of all model coefficients, provides a direct way
to calculate related statistics that may inform the question
at hand. Suppose we were interested in knowing the proba-
bility of someone’s receiving a clinically high dose of mid-
azolam in their first shift. By making 1,000 random draws
from the posterior distributions of the model coefficients, we
can simulate 1,000 doses for any combination of covariates in
a given shift. For example, noting that the covariates non-
white race, male gender, dementia, and ICU stay <5 days
each have risk ratios greater than 1, we make 1,000 Poisson
draws of random combinations of these model coefficients,
while setting the intercept and shift covariate to values of 1
and the other covariates to 0. This simulates 1,000 predicted
doses for this combination of covariates in the first shift, and
for illustrative purposes we will interpret doses �3 mg as
clinically high. Using the percentiles of the simulated dose
values, we can readily provide a credible interval for the
probability of receiving a dose at this level in the first shift,
conditional on having the covariates male gender, nonwhite
race, dementia, and ICU stay<5 days. In the first shift of our
recorded data, only 0.9% of all midazolam doses received
by persons with these covariates were �3 mg, which resides
within the credible interval yielded by the corresponding
posterior simulation (95% credible interval: 0%, 1.8%).
Regardless of whether or not the nonwhite covariate has
a positive association with midazolam, there is a very low
probability that a nonwhite male with dementia and an ICU
stay less than 5 days (among the scenarios for highest pre-
dicted doses of midazolam) will receive a dose of �3 mg in
his first shift. This sort of result is often difficult to model
directly but is easily obtained by sampling from the poste-
rior distributions of the model coefficients from the Bayes-
ian random-effects Poisson model.

The results presented here provide neither strong agreement
nor disagreement with the previously mentioned non-ICU
study in which Baker et al. (4) reported a higher number of
prescriptions of psychotropic medication in the evening. That
study was largely descriptive, and Baker et al. did not analyze
specific dose levels.

DISCUSSION

Strengths

For clinical researchers, the ability to accurately estimate
important clinical effects in statistically complicated circum-
stances is a valuable research asset. In this time-series analysis
of the dosing of medications for a critically ill population, the
chief clinical predictor was an indicator variable representing
the night shift, relative to the day and evening shifts. Using
Bayesian and frequentist formulations of the ZIP mixture
model, we were able, with a small sample, to analyze a longi-
tudinal outcome for linear trend, periodicity, and within-person
autocorrelation while adjusting for excess zeroes and key
clinical covariates. Because simulation studies have shown
the Bayesian approach to be more precise for zero-inflated
regression models and because the simpler Poisson distribu-
tion of the second model facilitates posterior predictive sim-
ulations, we emphasize the Bayesian random-effects Poisson
model. Detailed exposition of this generalized Bayesian

time-series analysis is the focus of this article. The exposited
method has potential application in studies of the effects
of drug dosing on sleep patterns and delirium among older
persons hospitalized in the ICU.

Limitations

These data did not include a term for the specific physicians
who prescribed doses in any given shift, which was probably
a substantive source of variability in the dosing patterns. From
a clinical perspective, this was a small, observational sample
from a single, urban medical ICU, so findings from this study
may not be easily generalizable. As we noted above, the
constraints on data collection raise concern about the proper
inferential population for these results. Lastly, because the
data came from an observational study, there was potential
for an imbalance of unmeasured covariates across the nursing
shifts that may have introduced bias into the estimates. While
this might be protected against with a randomized trial,
conducting trials in the ICU is expensive and complicated
and would, in any case, need to be justified with rigorous
observational results like those presented here.

Conclusion

In many clinical circumstances, such as a medical ICU,
data analysis is complicated by statistical concerns like excess
zeroes, periodicity, and autocorrelation. While these issues
can often be resolved using frequentist techniques, in some
cases Bayesian analysis may be the preferred option because
of its greater precision in small samples, its systematic ac-
commodation of complementary data sources in the prior
distribution, and its easy provision of related results based
on posterior predictive simulations. We have demonstrated
here how the Bayesian random-effects Poisson model can
flexibly integrate elements of time-series analysis and how it
facilitates estimation of related findings that are potentially
difficult to model.
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