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Abstract
The process of sprouting angiogenesis involves activating endothelial cells in a quiescent
monolayer of an existing vessel to degrade and migrate into the underlying matrix to form new
blood vessels. While the roles of biochemical factors in angiogenic sprouting have been well
characterized, the roles of fluid forces have received much less attention. This review summarizes
results that support a role for wall shear stress in post-capillary venules as a mechanical factor
capable of synergizing with biochemical factors to stimulate pro-angiogenic signaling in
endothelial cells and promote sprout formation.
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INTRODUCTION
The growth of new blood vessels from pre-existing vessels is necessary to support the
perfusion of blood into new tissues during formation of the vascular system in the
developing fetus. In adults, angiogenesis also occurs during menstruation, ovulation, wound
healing, and in certain diseases (e.g. tumor growth, diabetic retinopathy). The viability of
engineered tissues depends on the ability to transport nutrients and oxygen to cells that
cannot be accessed through simple diffusion, thus providing a strong motivation for
understanding the mechanisms involved in controlling angiogenesis.

As depicted in Figure 1, sprouting angiogenesis is a complex, multi-step process (reviewed
in 32). First, one or more cells in the endothelium of a pre-existing blood vessel must be
induced to enzymatically digest the underlying extracellular matrix to generate a space for
subsequent migration into the matrix. These tip cells are then followed by other endothelial
cells (ECs) to form the stalk of the nascent sprout (9). A lumen is created through formation
and fusion of vacuoles within the sprouting structures (53). Tip cells from neighboring
sprouts eventually join to form a continuous conduit for blood flow that is eventually
stabilized by pericytes and smooth muscle cells.
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Sprouting angiogenesis is stimulated by growth factors (32). In addition, ECs are exquisitely
sensitive to fluid wall shear stress (WSS). Much of the EC flow mechanotransduction
literature has been motivated by a need to understand the role of fluid forces in
atherosclerosis. These studies largely indicate that arterial levels of WSS (>15 dyn/cm2)
promote a quiescent cell phenotype, while low and/or reversing WSS stimulates a pro-
atherogenic phenotype (69). Fluid forces also play a role in sprouting angiogenesis, as was
first reported 80 years ago (21). Sprouting primarily occurs in the post-capillary venules,
where WSS is estimated to range from 1 to 8 dyn/cm2 (51, 56, 58). In this review, we shall
briefly review studies that have investigated the role of flow in sprouting angiogenesis and
associated signal transduction. These studies provide evidence indicating that blood flow
within venules provides an optimal WSS stimulus for sprouting angiogenesis.

Roles of Biochemical Factors and Fluid Forces
Of the many extracellular signals that are capable of inducing the transition of a quiescent
EC into an invading phenotype, biochemical signals have been the most studied by far.
Vascular endothelial growth factor A (VEGF-A) is generally regarded as the master
regulator of angiogenesis. Secretion of VEGF-A from cells in an avascular region creates a
concentration gradient that provides a chemoattractive cue for stimulating and directing
angiogenic sprouting from nearby blood vessels. Other growth factors, including acidic-and
basic-fibroblast growth factors (aFGF and bFGF), platelet-derived growth factor (PDGF),
stromal-derived factor-1α (SDF-1α), and placental growth factor (PlGF) are also potent pro-
angiogenic factors with similar influences on sprouting. With the exception of SDF-1α,
which signals through a G-protein coupled receptor, CXCR4, these growth factors bind to
their cognate tyrosine kinase receptors to elicit effects on EC function via intracellular
signals. Sphingosine 1-phosphate (S1P) is a lysosphingolipid that acts as both an
intracellular signaling molecule and an extracellular factor deposited by activated platelets
during wound healing (17, 47). Sphingosine kinase 1 (SPHK1) and SPHK2 phosphorylate
the sphingosine backbone to produce S1P. S1P binds one of five G-protein coupled
receptors (S1P1-S1P5). ECs express S1P1 and S1P3 receptors and activate
phosphatidylinositol 3-kinase (PI3K). Exogenous S1P administration or endogenous S1P
production by SPHK1 over-expression promotes post-ischemic angiogenesis and blood flow
recovery in mouse ischemic hind limb models (82).

Only a few studies have directly evaluated the role of WSS in angiogenesis in vivo. Zhou et
al. (118) reported angiogenesis occurring through internal capillary division in response to
elevated flow in rat skeletal muscle in response to chronic vasodilation with the alpha1-
antagonist prazosin. Ichioka et al. (51) reported that increasing WSS from 3.7 to 5.3 dyn/
cm2 using prazosin increased the rate of microvascular ingrowth through sprout formation in
a rabbit ear chamber. While enhanced flow due to prazosin treatment may have additional
pro-angiogenic effects other than changes in WSS, these studies suggest that flow promotes
angiogenesis in vivo. Dickinson and colleagues (66) demonstrated that shear forces stimulate
endothelial nitric oxide synthase (eNOS) expression and are crucial for vascular remodeling
during development in the murine yolk sac. Altogether, these studies indicate mechanical
forces contribute to proper vascular remodeling and angiogenesis.

In Vitro Systems for Studying Sprouting Angiogenesis
Multiple approaches have been developed that recapitulate the process of angiogenesis in
cell culture. These approaches can be separately categorized as 2-D and 3-D systems.

2-D systems—Unlike the EC monolayers formed on tissue culture plastic, ECs cultured
on surfaces coated with Matrigel create cord-like networks of cells (Fig. 2A). Although
widely-used to test activity of many pro-and anti-angiogenic compounds, some caution
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should be used in interpreting those results, because many non-vascular cell types such as
fibroblasts, tumor cells and kidney cells also form cords when cultured on Matrigel (11, 31,
33, 108). Cord formation is inhibited by reducing the thickness of the matrix, by including
fibrillar type I collagen in the matrix, or by disrupting cytoskeletal microfilaments and
microtubules (108). These results suggest that cord formation on Matrigel may be caused by
intracellular tension generation rather than by specific differentiation of ECs into capillary-
like structures.

The effects of pro-angiogenic stimuli on cell migration have been characterized by
quantifying cell motility along a 2-D surface (3). A drawback to this assay is that the cells
do not need to circumnavigate a dense matrix. Boyden chambers or Transwell migration
assays (Fig. 2B) are a convenient method for quantifying migration orthogonal to the cell
monolayer. In this assay, cells in a monolayer on the top face of a porous substrate are
driven to migrate through the pores to the opposite face due to the presence of a chemotactic
factor (e.g. VEGF-A) in the lower media chamber. The substrate can be coated with matrix
proteins to occlude the pores, thus requiring the cells to degrade the matrix to transmigrate.

3-D systems—Standard 2-D cell culture systems cannot replicate all the steps involved in
sprouting angiogenesis, including EC activation, basement membrane degradation, invasion
and proliferation of ECs, lumen formation, and stabilization. Three-dimensional
extracellular matrices (ECM), typically composed of fibrillar collagen I, fibrin, or basement
membrane components, provide an environment in which some or all of these steps can be
observed. As summarized in Figure 2 and described below, there are a number of ways to
introduce ECs into these matrices.

Vasculogenesis model—During vasculogenesis, individual foci of ECs assemble into
vascular structures, thus distinguishing this process from angiogenesis, where new blood
vessels originate from pre-existing vessels. Individual ECs can be suspended in collagen and
fibrin matrices prior to polymerization (7, 26). In these systems, ECs interconnect to form
tubes through sprout extension and the formation and coalescence of vacuoles and lumens.
Davis and colleagues have utilized this model extensively to study molecular signals that
drive lumen formation events (27). These studies illustrate the utility of 3-D systems for
better understanding various steps of vasculogenesis, and angiogenesis, many of which are
likely to overlap.

Blood vessel explant assays—Another commonly used assay to quantify angiogenesis
is the ex vivo aortic ring assay (Fig. 2C), where a segment of rat or mouse aorta is embedded
within an ECM. ECs, primarily from the vessel intima, sprout into the matrix. In this system,
key steps of angiogenesis (cf. Fig. 1) are represented, and native cells (including pericytes,
fibroblasts and monocytes) are available to contribute to stimulate growth and stabilize the
sprouts. A disadvantage of this system is the variability introduced by incomplete removal
of connective tissue surrounding the aortas and variability in the aorta sources themselves.

Angiogenesis typically occurs in microvessels, but not major vessels such as the aorta.
Microvascular fragments isolated from adipose tissue can be implanted in collagen matrices
(59) to provide ECs for sprouting angiogenesis (Fig. 2D). These sprouts are then able to
intersect and fuse with other nascent microvessels, yielding complex 3-D networks. Like the
aortic ring preparation, this model incorporates multiple cell types. Disadvantages are the
heterogeneity in microvessel fragments and the lack of a homogenous imaging plane to
perform quantification studies.

EC spheroids and EC-coated microbeads—ECs cultured with water-soluble
methylcellulose polymers spontaneously form cell spheroids (Fig. 2E). These spheroids
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have been implanted into collagen matrices to induce sprouting (57). In separate assays,
microbeads coated with ECs prior to embedding in fibrin matrices recapitulates EC
sprouting, migration, proliferation, lumen formation and anastomosis (77, 79). In these
experiments, fibroblasts are cultured on the surface of the fibrin matrix and secrete factors
that complement exogenous VEGF and bFGF. This model has the advantage of studying the
contribution of fibroblasts, but does not incorporate a polarized layer of ECs forming an
interface between the underlying ECM and luminal compartment.

EC monolayer invasion assay—Bayless and Davis (5) developed a model of sprouting
angiogenesis where an EC monolayer is seeded on the surface of a 3-D collagen matrix and
stimulated to invade into the underlying matrix (Fig. 2F). Unlike other 3-D systems
described above, this is the only system which begins with a monolayer of ECs seeded on a
basal ECM with an apical fluid-filled compartment. EC sprouting responses stimulated by
S1P, VEGF, and bFGF occur overnight in the absence of serum and are readily quantifiable
(6).

Systems for studying the role of WSS on angiogenesis—The assays above are
generally used to study the effects of biochemicals (e.g. growth factors) on angiogenic
processes in static cultures. Many of these assays are not amenable to studying the role of
fluid forces. Initial approaches involved first applying WSS to cell monolayers and then
performing angiogenic assays afterwards using the presheared cells. Gloe et al. (38)
presheared ECs on laminin-coated plates at 16 dyn/cm2 for 6h, then further cultivated the
cells under static conditions to observe tubulogenesis. Preshearing caused cord formation in
a manner dependent on WSS-induced bFGF secretion. After applying WSS to ECs for 16h,
Cullen et al. (22) trypsinized and transferred presheared cells to new chambers to quantify
cord formation on Matrigel and migration through Transwell filters. Both migration and
cord network formation increased monotonically with increasing preshearing magnitude
from 1 to 20 dyn/cm2 in a manner dependent on G-protein signaling. Using a similar
approach, Tressel et al. (105) compared the effects of preshearing cells with either steady (5
and 15 dyn/cm2) or oscillatory WSS (0±5 and 0±15 dyn/cm2) on cord formation on
Matrigel. They found that steady, but not oscillatory, WSS significantly inhibited network
formation (relative to static cells) and this correlated with downregulation of Ang-2
production by steady WSS. Though the results of these studies are not consistent with each
other, the results do indicate that angiogenic responses are highly dependent on the WSS
magnitude and pattern. A drawback to these approaches is that the effects of WSS must be
“remembered” by the cells during the angiogenesis assay.

We and others (54, 106) have applied WSS to endothelial monolayers in parallel-plate flow
chambers while the ECs simultaneously invaded into the underlying 3-D collagen matrix.
These two studies demonstrated that 3 dyn/cm2 WSS promoted sprouting. By performing
our experiment using defined culture media, we found that S1P must be present within the
collagen matrix for WSS to induce sprouting into the matrix (54). Apparently, the S1P
serves as a chemoattractant to stimulate the cells to move deeper into the matrix. The
synergy between WSS and S1P is similar to that observed between VEGF/bFGF and S1P
(54, 98). Furthermore, the number of sprouts was highly dependent on WSS magnitude, with
the greatest number of sprouts occurring at an intermediate WSS of 5.3 dyn/cm2 (54). As
illustrated in Figures 3A–C for human dermal microvascular ECs, the 3-D collagen invasion
assay provides information about the morphological characteristics of the resulting sprouts
using primary ECs. At 0.12 dyn/cm2 WSS, some cell invasion was observed (Figure 3A),
while at 5.3 dyn/cm2 WSS, many more cells invaded (Figure 3B). At 12 dyn/cm2 WSS, very
few cells invaded (Figure 3C). Quantification of human dermal (Figure 3D) and retinal
(Figure 3E) microvascular EC, and HUVEC (Figure 3F) invasion reveals the same
dependence on WSS magnitude we previously reported (54).
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While WSS experiments with 2-D EC monolayers are comparatively simple, a number of
unique issues must be considered when performing WSS experiments on a 3-D collagen
matrix. Wells containing collagen matrices must be fabricated within one of the plates of a
parallel-plate system so that the gels are flush with the plate surface. Our system involves a
simple modification of a typical parallel-plate flow chamber with the addition of a
customized silicone rubber gasket to form the wells. The collagen density must be
sufficiently high to provide the mechanical resilience required to keep the collagen matrix
flat during exposure to WSS. In our experience, WSS alone does not induce invasion; hence,
a chemoattractive agent (e.g. S1P) must also be incorporated into the collagen matrix. After
gaining experience with this system, we have found that EC invasion in our system is
reproducible. Under these conditions, we have documented a role for activated Akt and
metalloproteinases in sprouting responses induced by WSS and S1P (54). In addition, we
have recently shown calpains regulate localization of a key metalloproteinase to facilitate
sprouting events (Kang et al., in revision). Thus, this system incorporates application of
controlled levels of WSS to an endothelial monolayer, which is seeded on an underlying 3-D
matrix. This design is amenable to varying WSS and S1P levels, as well as separation of
biochemical extracts to better understand how S1P and WSS combine to direct sprouting
behavior.

Angiogenic Signaling Regulated by Biochemical Signals and Fluid Forces
In addition to the handful of studies that have directly quantified the effects of WSS on
angiogenic events, a number of studies have been performed using ECs cultured on 2-D
substrates to investigate flow mechanotransduction relevant to angiogenesis. Several of
these studies have reported changes in angiogenic signaling induced by flow in a manner
that is highly dependent on WSS magnitude. These findings are summarized in Table 1 and
discussed below.

Cell surface receptors—Like VEGF receptors, the Tie receptors (Tyr kinase with Ig and
EGF homology domains) represent a class of receptor tyrosine kinases specific to vascular
cells that are important contributors to angiogenesis (101). The two known Tie receptors,
TIE1 and TIE2, bind to angiopoietins, Ang-1 and Ang-2, and phosphorylate tyrosine
residues to mediate intracellular signaling. Ang-1 and Ang-2 are agonistic and antagonistic
TIE2 ligands, respectively. Ang-TIE signaling is closely associated with the stabilization of
new microvessels. Mice deficient in Ang-1 or TIE2 expression fail to develop their
cardiovascular system beyond the primary capillary plexus (101). Overexpression of Ang-2,
on the other hand, disrupts blood vessel formation (68). In contrast to TIE2, TIE1 signal
transduction is poorly understood. Goettsch et al. (40) demonstrated that Ang-2 mRNA,
protein expression and release from HUVECs was upregulated by 1 dyn/cm2 WSS, but
downregulated by 30 dyn/cm2 WSS. VEGF-A expression was upregulated at both levels of
WSS, while vascular endothelial growth factor 2 (VEGFR-2) inhibition attenuated the
effects of low WSS on Ang-2. Interestingly, high WSS blocked the ability of VEGF to
upregulate Ang-2 expression. Thus, VEGF and WSS have a complex interactive effect on
signaling via the Tie receptors.

Ephrin is a transmembrane signaling molecule involved in cell-cell communication during
angiogenesis. Ephrin-B2 is capable of binding to several different transmembrane Eph
receptor tyrosine kinases. While the Ephrin-B2 receptor EphB4 is primarily expressed in
veins, it is also observed in retinal capillaries and sprouts. Ephrin-B2 is essential for
angiogenesis and is upregulated during both physiological and pathological angiogenesis in
adults (93). Recently, Ephrin-B2 has been reported to regulate sprouting through regulation
of VEGF internalization and signaling (92, 112). HUVECs and human coronary arterial ECs
each express Ephrin-B2 in static culture, but the level of expression decreases significantly
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in response to 24h of high WSS (30–50 dyn/cm2), but not for low WSS (1–10 dyn/cm2)
(39). Hu and Chien (50) reported that 20 dyn/cm2 WSS induced increased Protein Kinase C
immunostaining in HUVECs. Consistent with a role for WSS induction of PKC in mediating
Ephrin-B2 suppression, the downregulation of Ephrin-B2 expression by high WSS was
blocked by an inhibitor of Protein Kinase C (39). The expression of the receptor EphB4 was
not significantly changed by any WSS in the range of 1–50 dyn/cm2 (39). Since Ephrin-B2
is critical to angiogenesis, these results are consistent with high WSS having a negative
impact on cell invasion.

Only a fraction of the cells in the endothelium of a vessel are induced to invade, and this
decision is regulated by the Notch pathway. Delta-like 4 (Dll4) and Jagged1 are each
proangiogenic transmembrane ligands for the Notch receptor (8). Tip cells express relatively
high levels of Dll4, which binds Notch receptors on adjacent stalk cells leading to
downregulation of VEGF receptors. With relatively high levels of VEGF receptors, tip cells
are thought to be more responsive to VEGF gradients to induce their migration. Stalk cells
primarily express Jagged1, which antagonizes Dll4-Notch signaling and thereby upregulate
the number of tip cells and sprouts. Inhibition of Notch signaling leads to enhanced
sprouting through increased tip cell proliferation in 3-D fibrin (89) and collagen (98)
matrices. The effects of WSS on Notch signaling has not been investigated in ECs, though
experiments performed using murine embryonic stem cells (mESC) positively expressing
VEGF receptor 2 (VEGFR2) may provide insight (70). WSS induced an increase in Ephrin-
B2 expression in VEGFR2-positive mESCs in a magnitude-dependent manner for WSS
magnitudes of 5 to 20 dyn/cm2, while 10 dyn/cm2 WSS decreased EphB4 expression. The
levels of Notch ligand cleavage and Ephrin-B2 expression induced by 10 dyn/cm2 WSS was
equivalent to that induced by VEGF. The expression of the Notch signaling proteins Notch1,
Notch4, Dll4 and Jagged1 were each increased in a WSS magnitude-dependent manner for
WSS applied over a range of 1.5 to 10 dyn/cm2. Further, the upregulation of Ephrin-B2 by
WSS was abolished upon inhibition of Notch signaling using inhibitors of γ-secretase, as
well as by a VEGF receptor tyrosine kinase inhibitor. There is still much to learn regarding
the role of WSS on Notch signaling.

Intracellular signaling—Akt is a serine/threonine kinase that plays a major role in EC
invasion and sprouting. Akt1 knockout mice exhibit a 40% reduction in the average length
of sprouts compared to wild-type mice in ex vivo aortic ring assays (115), which is
consistent with the proposed role of Akt in vascular maturation and angiogenesis during
wound healing (97). Multiple angiogenic events are mediated by Akt, including EC
migration, survival, and tube formation (95). WSS, growth factors (VEGF-A and bFGF),
and S1P induce dose-dependent Akt phosphorylation and correlate with tubulogenesis and
endothelial sprouting (29–30, 52, 54, 60, 75). Dimmler et al. (28) demonstrated that Akt
phosphorylation increases monotonically with increasing WSS ranging from 0 to 45 dyn/
cm2 in 2-D cultures. We found S1P and WSS-induced Akt phosphorylation at Ser473 in
ECs cultured on 3-D collagen matrices was maximal at 5.3 dyn/cm2 WSS and decreased at
12 dyn/cm2 WSS (54). Furthermore, Akt inhibition diminished EC invasion responses
induced by the combined application of WSS and S1P (54). S1P1 receptor activation in ECs
stimulates Akt activation via pertussis toxin-sensitive Gi proteins (41, 64), and S1P-induced
migration (64) and 3-D invasion (5) are blocked by pertussis toxin. Interestingly, EC
migration and tubulogenesis following preshearing are also attenuated by pertussis toxin
(22). Akt has several downstream targets implicated in angiogenesis, including endothelial
nitric oxide synthase (eNOS) (29), hypoxia-inducible factor (42), and the transcription factor
FOXO (19). WSS regulation of eNOS activity has an important role in the regulation of
vascular remodeling and angiogenesis. Dickinson and colleagues (66) reported that WSS is
critical for vessel remodeling and eNOS expression in mouse embryos. WSS induces Akt
phosphorylation at Ser473, which then mediates eNOS activation and subsequent NO
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production (29). S1P and VEGF are also reported to stimulate the phosphoinositide 3-kinase
(PI3K)/Akt pathway to induce eNOS activation (19, 29). WSS (12 dyn/cm2) induces
tyrosine phosphorylation of the junctional protein PECAM-1 in ECs, and PECAM-1
expression is necessary for shear-induced Akt and eNOS phosphorylation, suggesting that
PECAM-1 may act as the mechanosensor for this pathway (35).

Transcriptional regulation—An important component of homeostatic mechanisms
linking vascular oxygen supply with demand is the regulation of angiogenesis by hypoxia.
Hypoxia increases the expression of VEGF and PDGF in ECs and this is mediated by
activation of hypoxia-inducible transcription factors (HIF) (19, 29). HIF is a heterodimer
composed of α and β subunits. HIF-1α is stabilized by hypoxia, while HIF-1β is
constitutively expressed in the nucleus. Activated HIF-1α and HIF-2α bind to hypoxia
response elements (HREs) to increase promoter activity, while HIF-3α appears to negatively
regulate transcription. After 24 h of 16 dyn/cm2 WSS, HIF-1α and HIF-2α expression were
reduced significantly relative to static controls and HIF-α proteins were undetectable (71).
Consistent with the regulation of VEGF-A by both HIF isoforms, VEGF-A expression was
significantly reduced by 16 dyn/cm2 WSS (71). These results suggest long-term application
of laminar WSS promotes vascular stabilization by downregulating HIF and VEGF
production. Interestingly, NO can either drive HIF-1α stabilization under normoxia or
degradation under hypoxia (4).

The O subgroup of forkhead transcription factor (FoxO) proteins are involved in vascular
development and maturation. Loss of FoxO1 expression results in embryonic lethality
caused by severe defects in vascular development (37). The FoxO protein family is
regulated primarily by posttranslational modifications, including phosphorylation,
acetylation, and ubiquitination, which control protein levels, subcellular localization, and
transcriptional activity (25, 90). FoxO factors are negatively regulated by Akt;
dephosphorylated FoxO1 localizes to the nucleus and exhibits transcriptional activity,
whereas Akt-dependent phosphorylation of FoxO1 induces nuclear export and allows
proteasomal degradation (2, 10, 16). Activation of the FoxO pathway increases expression
of Angiopoietin-1, which promotes vascular stability, and (although it is not well-
understood) also increases expression of its antagonist, angiopoietin-2 (24, 40). FoxO1 and
FoxO3a may elicit anti-angiogenic effects in part by repressing eNOS (84). Haas and
colleagues demonstrated that chronic ischemia reduced Akt signaling, and enhanced FoxO1
levels, which ultimately suppressed angiogenic responses (73). FoxO1 binding activity and
nuclear translocation were also reduced by 30 dyn/cm2 WSS, but were not affected by 1
dyn/cm2 WSS. Chlench et al. (19) reported that 6 dyn/cm2 WSS downregulates FoxO1
expression and increases Foxo-1 exclusion from the nucleus. Meanwhile, WSS at 6 dyn/cm2

(vs. static) had no effect on Ang-1 expression. Together, these studies indicate that Ang-2
induction via Foxo-1 is inversely related to the magnitude of applied WSS. Whether or not
these signals are affected by the S1P signaling pathway in either 2-D or 3-D settings remains
to be investigated.

Matrix proteolysis—Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that
can cleave extracellular matrix proteins including collagen type I and fibrin to control tissue
morphogenesis (76, 113) and vascularization (62) by regulating many biological processes
including liberation of growth factors (55, 76). A link between mechanotransduction and
MMPs has been extensively reviewed (23). Various studies have linked MMPs and their
endogenous inhibitors to regulating angiogenic sprouting and invasion events (1, 62, 102–
103, 110). The membrane-type matrix metalloproteinases (MT-MMPs) have been shown to
play a critical role in invasion of 3-D matrices by degrading ECM proteins at the cell
surface-ECM interface (5, 91). MT-MMPs allow highly-regulated proteolysis to occur at the
cell surface, while maintaining the integrity of the supporting ECM scaffold (46). MT-
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MMPs coordinate with integrins and growth factors to direct angiogenic sprouting and
lumen formation (5, 88), and mice lacking MT1-MMP, (but not MMP-2 or MMP-9), exhibit
defective sprouting responses (20). Thus, membrane-associated metalloproteinases are
critical in mediating successful angiogenic responses. Using gelatin zymography, we
measured increases in pro and active forms of MMP-2 in the perfusate that was highest at
5.3 dyn/cm2 WSS and significantly lower when WSS was either 0.12 or 12 dyn/cm2 (54).
Active MT1-MMP cleaves pro-MMP-2, and in HUVEC, MMP-2 activation is a reliable
indicator of MT1-MMP activity (63). In addition, a number of studies have investigated the
effects of WSS on MMP activity and expression. Microvascular ECs produced more
MMP-2 mRNA and protein levels when subjected to 5 dyn/cm2 WSS than to 16 dyn/cm2

WSS (72). MMP-2 secretion is downregulated by 30 dyn/cm2 WSS in bovine aortic ECs
(BAECs) (116), while MMP-2 secretion was upregulated by 8 dyn/cm2 WSS in human
saphenous vein ECs (HSVEC) (99). Furthermore, MMP-9 expression and activation
increased in HSVEC and HUVEC subjected to WSS in the range of 4 to 8 dyn/cm2 (99).
These results are consistent with MMP activity being increased by WSS at intermediate, but
not high, magnitudes.

A Disintegrin and Metalloproteinases (ADAMs) are membrane-associated proteinases that
contain N-terminal zinc-dependent metalloproteinase, disintegrin, transmembrane and
cytoplasmic tail domains. Like MT-MMPs, anchoring at the plasma membrane renders these
molecules perfectly poised to mediate shedding events. ADAM17 was originally identified
as tumor necrosis factor (TNF)-alpha-converting-enzyme, or TACE, because of its ability to
mediate TNF-α release (12). Other substrates for ADAMs include adhesion molecules,
surface receptors and members of the epidermal growth factor family (13–14). Like MT1-
MMP, ADAMs also co-localize with integrins (34). Functional ADAM17 appears to be
required for normal embryonic development and most transgenic animals lacking the
ADAM17 metalloproteinase domain die between embryonic day 17.5 and birth (83).
Regarding angiogenesis, pathological retinal neovascularization and growth of
heterotopically injected tumor cells was reduced in mice lacking ADAM17 expression in
ECs. Moreover, silencing of ADAM17 in ECs decreased endothelial sprouting responses
(61) and cord formation on Matrigel (114). Mice lacking expression of ADAM15, ADAM8
and ADAM9 exhibit reduced neovascularization responses in a model of retinopathy of
prematurity (43–44, 49), and ADAM10 null mice die at day 9.5 of embryogenesis, a critical
time at which the vasculature is forming (45). Recently, ADAM17 has been implicated in
mechanotransduction by compressive stress in airway epithelial cells (96). Whether the
ADAMs family of metalloproteinases is modulated by mechanical signals remains to be
demonstrated. Clearly, ADAM proteinases regulate vasculogenesis and angiogenesis in vivo
and in vitro. Recombinant, soluble ADAMTS1 inhibited angiogenesis in corneal pocket and
chick chorioallantoic angiogenic assays (107). In rat mesentery, Hohberg et al. (48)
demonstrated positive immunostaining for ADAMTS1 in microvessels experiencing flow,
while there was a lack of ADAMTS1 staining in unperfused sprouts. Hohberg et al. also
reported that ADAMTS1 expression and liberation of TSP fragments in HUVECs increased
monotonically with WSS in the range of 1 to 20 dyn/cm2 (28). These results are consistent
with an anti-angiogenic role for ADAMTS1, where ADAMTS1expression is high in
stabilized, non-angiogenic vessels experiencing high WSS, but is downregulated in
sprouting structures where WSS is low. In contrast, ADAMTS1 is expressed in the highly
vascularized tissue during ovulation (15, 74, 86), suggesting a positive effect on
angiogenesis. In our 3-D EC invasion assay, increased expression of full length, cell-
associated ADAMTS1 correlated with endothelial sprouting responses, and ADAMTS1
silencing inhibited sprout formation (94). ADAMTS1 can degrade collagen (85), consistent
with our data showing that decreasing ADAMTS1 expression levels resulted in decreased
endothelial sprout density and length (94). ADAMTS1 can cleave and release anti-
angiogenic polypeptides from matrix-bound Thrombospondin 1 and 2 (TSP1 and TSP2),
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and TSP1 is critical for the anti-angiogenic response mediated by soluble ADAMTS1 (65).
The C-terminus of ADAMTS1 can be cleaved to release the last two TSP domains and
liberate ADAMTS1 from the cell surface. The cleavage event requires metalloproteinases,
which may include MMP-2, MMP-8, and MMP-15 (87). In our 3-D invasion system,
ADAMTS1 remains associated with the endothelial surface (98), suggesting a more limited
ability to release the TSP domains within ADAMTS1. Altogether, these data indicate that
the ability of ADAMTS1 to promote angiogenesis depends on the solubility state of
ADAMTS1, as well as other local factors, including TSP and MMPs, which must be tested
and considered carefully.

Clinical Relevance of WSS Effects on Angiogenesis
Angiogenesis plays a critical role in wound healing and tumor vascularization (36, 104).
Experimental and computational studies indicate that WSS and S1P modulate microvascular
growth during these pathogenic events. During wound healing, the levels of blood flow and
cytokines such as S1P provided by activated platelets are increased in the wound area (47).
Local hemodynamics have been implicated in microvascular growth within tumors (78). In
silico models incorporating WSS-dependent microvascular growth rules have been used to
describe angiogenic network formation during tumor growth and wound healing (18, 67,
81). Quantitative relationships between WSS and angiogenic sprouting responses can be
used to inform such models and may potentially lead to a more accurate description of
angiogenic network formation.

CONCLUSIONS
Post-capillary venules have relatively thin walls that are particularly permissive to
angiogenic sprouting. The WSS at these locations appears to also prime ECs to respond to
pro-angiogenic signals such as S1P. It remains unclear how cells perceive the magnitude of
WSS to regulate an angiogenic response. While it is tempting to draw upon the vast
literature of WSS mechanotransduction studies, results obtained from flow experiments
performed on 2-D substrates do not always translate directly to endothelial
mechanoresponses on 3-D matrices. For example, Akt activation increases monotonically in
response to WSS for ECs on 2-D substrates (28), but Akt shows maximal activation at an
intermediate WSS of 5.3 dyn/cm2 for ECs on 3-D collagen matrices (54). ECs are sensitive
to matrix stiffness (117), so it is very possible that the endothelial response to WSS on
pliable collagen matrices may differ significantly from that of ECs on stiff matrix-coated
glass slides.

This review focused on the effects of luminal WSS on angiogenesis, but ECs are also
subjected to fluid forces generated by fluid flow through the matrix, i.e. interstitial flow.
There is strong evidence that interstitial flow has profound effects on endothelial network
morphology in 3-D matrices (80, 109). Cell culture systems capable of controlling both
tangential WSS and interstitial flow are expected to provide even greater insight into the
roles of fluid forces on sprouting angiogenesis.
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Figure 1.
The process of angiogenesis occurs as an orderly series of events. 1) Fluid WSS and a
chemotactic concentration gradient of biochemical agonists synergistically activate ECs
lining a pre-existing blood vessel. 2) Activated ECs begin to cleave the underlying
extracellular matrix through enzymatic proteolysis and migrate into newly-formed passages.
3) A lumen forms while additional ECs migrate and proliferate behind the tip cell to form
the stalk. 4) Sprouts join at their tips, anastomosing with existing vessels, to form a new path
for blood flow.
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Figure 2.
Experimental models for studying angiogenic events.
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Figure 3.
EC invasion depends on the magnitude of WSS. Human dermal microvascular ECs
(HDMVECs) on 3-D collagen matrices containing 1μM S1P were subjected to 24h of 0.12
(A), 5.3 (B) and 12 dyn/cm2 WSS (C). The cultures were fixed and stained with toluidine
blue to identify invading cells. Scale bar, 100μm. Quantification of HDMVECs (D), human
retinal MVECs (E) and HUVECs (F) invasion into 3-D collagen matrices containing 1μM
S1P subjected to 22h of WSS ranging from 0.12 to 12 dyn/cm2. Cultures were fixed, stained
with toluidine blue for morphometric analysis and analyzed for invasion density. The
density of invading ECs are plotted as a function of WSS magnitude (mean ±SD). *
indicates the invasion density at 5.3 dyn/cm2 is significantly different from the values at the
other WSS magnitudes (ANOVA followed by Student-Newman-Keuls post-hoc test;
P<0.01).
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Table 1

Effects of WSS magnitude on angiogenic events and signaling. Experiments were performed using HUVECs
unless otherwise stated.

<2 dyn/cm2 3–8 dyn/cm2 >10 dyn/cm2 References

3-D invasion assay

 invasion density ↓ ↑ ↓ (54)

 invasion depth ↑ ↑ (54)

2-D Matrigel tubule formation assay ↑ ↑ ↑ ↑ ↑ ↑ (22)

Transwell cell migration rate - ↑ ↑ ↑ (22)

Ang-2 expression ↑ ↓ ↓ (40)

↓ (19)*

TIE-2 expression ↑ ↑ (19)*

- ↑ ↑ (40)

VEGF-A expression (in skeletal muscle microvascular EC) ↑ ↑ ↑ (40)

↑ (71)*

Ephrin-B2 expression ↑ ↓ ↓ (39)

Ephrin-B2 expression (in VEGFR+ ESC) ↑ ↑ (70)

Ephrin-B4 expression (in VEGFR+ ESC) ↓ (70)

Notch ↑ (111)

Notch1 and Notch 4 expression (in VEGFR2+ ESC) ↓ ↑ (70)

Akt Phosphorylation ↓ ↑ ↓ (54)

↑ (19)*

↑ ↑ ↑ (29)

eNOS phosphorylation ↑ (29)

HIF-1α, HIF-2α expression (in skeletal muscle microvascular EC) ↓ (71)*

Foxo-1 binding activity - ↓ (40)

Foxo-1 expression ↓ (19)*

Foxo-1 phosphorylation and nuclear exclusion ↑ (19)*

MMP-2 secretion ↓ ↑ ↓ (54)

- ↓ (72)

↓ (116)

↑ (99)*

MMP-9 secretion ↑ (100)*

↑ (99)*
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<2 dyn/cm2 3–8 dyn/cm2 >10 dyn/cm2 References

ADAMTS1 expression - ↑ ↑ ↑ (48)

*
vs. static condition
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