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ABSTRACT: Molecular dynamics (MD) is one of the most common tools in computational chemistry. Recently, our group has
employed accelerated molecular dynamics (aMD) to improve the conformational sampling over conventional molecular dynamics
techniques. In the original aMD implementation, sampling is greatly improved by raising energy wells below a predefined energy
level. Recently, our group presented an alternative aMD implementation where simulations are accelerated by lowering energy
barriers of the potential energy surface. When coupled with thermodynamic integration simulations, this implementation showed
very promising results. However, when applied to large systems, such as proteins, the simulation tends to be biased to high energy
regions of the potential landscape. The reason for this behavior lies in the boost equation used since the highest energy barriers are
dramatically more affected than the lower ones. To address this issue, in this work, we present a new boost equation that prevents
oversampling of unfavorable high energy conformational states. The new boost potential provides not only better recovery of
statistics throughout the simulation but also enhanced sampling of statistically relevant regions in explicit solvent MD simulations.

’ INTRODUCTION

Molecular dynamics simulation (MD) is one of the most
common tools used by computational chemists to study the
dynamic behavior of biomolecules.1,2 However, conventional
MD techniques (cMD) are still limited to relatively short time
scales, which hinder observation of conformational transitions
that are essential for protein function.1,3 Most of these transitions
occur on a time scale of milliseconds to seconds or longer and
often involve the rare crossing of high energy barriers. In an effort
to extend the time scale of all-atom molecular dynamics simula-
tions of biomolecules, our group recently proposed an enhanced
sampling technique called accelerated molecular dynamics (aMD).
This method, which is based on the hyperdynamics technique in-
troduced by Voter,4 has been shown to increase conformational
sampling of biomolecules over cMD.3 Recently, our group has
been successfully using aMD in a wide range of applications and
biological systems.3,5�11

Two major implementations of the boost equation for aMD
have been proposed. In the original implementation, the boost
potential is defined according to eq 1.3,5

ΔV a ¼ ðE1 � VðrÞÞ2
ðα1 þ E1 � VðrÞÞ ð1Þ

A continuous non-negative boost potential function, ΔV a, is
added the original potential surface, V(r), such that regions
around the energy minima are raised and those near high barriers
or saddle points are left unaffected. Thus, whenever V(r) is below
a chosen threshold boost energy, E1, the simulation is performed
on the modified potential V *(r) = V(r) + ΔVa; otherwise,
sampling is performed on the original potential V *(r) = V(r).

The parameter α1 modulates roughness and the depth of the
energy minima on the modified surface.

To recover the correct canonical ensemble, each frame of the
simulation must be reweighted using the Boltzmann factor eβΔV[r].
Since the lowest energy wells may be associated with the largest
boost values, the reweighting can have a detrimental effect on the
statistics.8,12

To address this issue, a second implementation was intro-
duced in which energy barriers are modified, instead of energy
minima.8

ΔV b ¼ ðVðrÞ � E1Þ2
ðα1 þ VðrÞ � E1Þ ð2Þ

A continuous negative boost potential function,ΔVb(r), is added
to the original potential surface, V(r), such that regions around
the energy barriers are lowered and those near theminima are left
unaffected. Thus, whenever V(r) is above the boost energy, E1,
the simulation is performed on the modified potential V*(r) =
V(r) � ΔVb; otherwise, sampling is performed on the original
potential V*(r) = V(r).

This implementation improves the statistical reweighting
problem by allowing much of the simulation to remain in the
original potential surface, which in this case needs no reweighing.
However, application of ΔVb tends to oversample high energy
regions of the potential landscape. As can be seen in eq 2, the
boost potential is proportional to the difference V(r)� E, and as
a consequence regions of the potential surface displaying large
V(r) (or high-energy regions) are affected significantly more than
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regions with relatively low energy barriers. When applied to large
systems, such as proteins, the simulation tends to be biased toward
high energy regions of the potential landscape. In small systems,
application of ΔVb revealed promising results when combined
with free energy calculations, such as thermodynamic integration
(TI).8

In this work, we describe a new boost potential (eq 3) in an
attempt to combine the strengths of the two previous imple-
mentations.

’RESULTS AND DISCUSSION

A possible way to overcome the sampling issues associated
with ΔVb is to modify the boost potential equation so that its
magnitude reduces significantly at large values of V(r) � E.

New equation ΔVc:

ΔV c ¼ ðVðrÞ � E1Þ2
ðα1 þ VðrÞ � E1Þð1 þ e�ðE2 � VðrÞÞ= α2Þ ð3Þ

We defined a second energy level (E2) in order to return the
modified potential surface back to the original one whenever the
potential energy of the system is larger than E2. This boost
equation is shown above asΔVc (eq 3). The second energy level
allows the user to define a window of acceleration between E1
and E2. To regulate the return to the original potential upon
crossing E2, a second parameter α is required (α2). The term in
the large brackets in the denominator is responsible for bringing
the boost to zero when the potential energyV(r) is higher than E2.
Thus, when V(r) is higher than E2, (1 + e�(E2�v(r))/α2) tends to a
very large positive number, and as a result, the modified potential
converges to the original one, V(r). On the other hand, when V(r)
is lower than E2, the term (1 + e�(E2�v(r))/α2) tends to 1, which
results in ΔVc = ΔVb or eq 2.

We explored the new boost equation by creating a hypothet-
ical one-dimensional potential using the analytical equation
below:

VðrÞ ¼ � 200 þ 50

� cosðr � πÞ � 1� r2

r þ ð1� rÞ �
ffiffiffiffiffiffiffiffiffiffi
3� r
4

r
0
BBB@

1
CCCA
ð4Þ

Figure 1 displays the effect of boost energy E (E1 and E2) and α
(α1 and α2) on eqs 2 and 3. The upper solid black line represents
the unmodified potential V(r), while the lower solid black line
represents modified potential V(r)* generated after the applica-
tion of eq 2, ΔVb. Boost energies E are shown as dashed lines.
The solid colored lines represent different modified potentials,
V(r)*, generated by ΔVc with different sets of parameters.
Figure 1A shows that high energy barriers can be selectively
protected by setting different values of E2. It is worth noting that
the modified potential generated by ΔVc follows closely along
ΔVb until the difference between E2 and E1 is similar to the
difference between V(r) and E1 (Figure 1A and B).

Like in the original implementation, the degree of acceleration
is controlled by the parameter α1 and E1. Parameter α2 controls
how strongly energy barriers higher than E2 are protected. For
instance, when V is higher than E2, in the limit α2f∞, the term
(1 + e�(E2‑v(r))/α2)f2 and ΔVc converges to 1/2ΔVb, and

as a result, large energy barriers are not effectively protected anymore.
On the other hand, when α2f0, the term (1 + e�(E2�v(r))/α2)f∞
andΔVcf0, thus keeping all energy regions, whereV(r) is higher
than E2, unchanged. Figure 1C displays the effects ofα2 onV*(r).

Although this new implementation introduces two new para-
meters, E2 and α2 are easily estimated. Initial guesses for α2 are
based on the hypothetical one-dimensional potential shown in
Figure 1. To keep the underlying shape of the original potential
surface and effectively protect energy barriers higher than E2, α2

is recommended to be proportional to the difference∼ (E2� E1).
More specifically, we estimate α2 to be between 20 and 60% of
the difference (E2 � E1). Energy levels E1 and E2 are estimated
from short cMD simulations. SinceΔVc is only effectively applied
to the system whenever the potential V(r) is higher than E1, it is
important to not set E1 much higher than the average potential
energy of system, ÆV(r)æ, in order to guarantee a minimum
degree of acceleration. In this work, V(r) and ÆV(r)æ correspond

Figure 1. Hypothetical one-dimensional potential representing the
effect of ΔVc. In all charts, α1 = 200 and E1 = �250. The upper and
lower solid black lines represent the original potential and the modified
potential generated with ΔVb, respectively. This color scheme is
used throughout. (A) Effects of different parameters E2 (dashed colored
lines) on the modified potential generated with ΔVc (solid colored
lines). (B) Boost levelsΔVb (solid black line) andΔVc (colored lines) as
V(r) moves away from E1. For both A and B, α2 =15 and E2 = �100
(red), 0 (blue), and 150 (green). (C) Effect of varying α2 parameter on
ΔVc: α2 = 3 (red), 15 (blue), and 75 (green) with E2 = 0.
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to the instantaneous and average dihedral energy, respectively. E2
is simply defined as E2 = E1 +ΔE, whereΔE is the highest energy
barrier that is allowed to be crossed. The selection of optimum
boost parameters is bound to be system dependent. For this
reason, short aMD runs are strongly recommended to fine-tune
parameters α1 and E1. Failure in obtaining suitable parameters
may lead to two possible scenarios: (i) No or extremely low
acceleration is effectively applied to the system. In this case, aMD
and cMD will likely generate very similar trajectories. (ii)
Extremely high acceleration is applied to system, which results in
serious structural and energetic instabilities.

Unless otherwise stated, all simulations were performed applying
the boost potential ΔVc to the dihedral terms of the potential
energy function. Enhanced sampling techniques, such as aMD,
based on the dihedral energy contributions have been successfully
used to effectively enhance conformational sampling of biomole-
cules.10,13�17 The approach presented in this work can be easily
extended to the nonbonded energy terms via the dual boost

method.9 To investigate the use of the new boost equation ΔVc,
we first compared our aMD simulations results of fully solvated
alanine dipeptide to cMD protocols. Alanine dipeptide has been
extensively studied as a model system to evaluate free energy and
conformational change in biomolecular simulations.18�24 Figure 2A
displays the time evolution of the Ψ angle during the cMD and
five aMD simulations of 10 ns. As can be clearly seen, the number
of Ψ transitions dramatically increases as we modify boost
parameters E2 andα2. Figure 2B�E show the free-energy density
plots obtained from cMD simulations of 10 ns, 100 ns, and 1 μs
and an aMD simulation of 10 ns. The free-energy density plots
were calculated from the population of states sampled on each
simulation. To recover the corrected canonical ensemble, each
frame of the aMD trajectory was Boltzmann weighted by its
respective boost factor. Figure 2B reveals that the conformational
sampling obtained from 10 ns of cMD is mainly restricted to
α-helical (Φ < 0� and �60� < Ψ < 0�) and β-strand regions
(Φ < 0� and 120� < Ψ < 180�), with the α-helical region
displaying the most populated states. A significant increase in
conformational sampling is evident when the cMD is extended to
100 ns (Figure 2C). The most pronounced change can be seen in
the left-handed α-helix region (Φ ∼ 50 and Ψ ∼ 50), which is
now well sampled and is not observed in the cMD of 10 ns. A
dramatic increase in the number of transitions between the α-
helical and β-strand regions is also noted. To provide some
insights concerning the time scale accessed by our aMD runs, we
further extended the cMD simulation to 1 μs. A comparison of
Figure 2D and E clearly shows that there is good agreement
between the regions sampled by our short aMD of 10 ns and the
cMD of 100 ns and 1 μs. For the alanine dipeptide system, these
results suggest that aMD simulations with ΔVc can accelerate
conformational sampling by at least 10�100 fold.

While boosting through energy barriers is important for
sampling, limiting the boost to reduce the population of thermo-
dynamically unfavorable states is equally important. To illustrate
the advantage ofΔVc and its boost limiting capabilities overΔVb,
we analyzed and compared the Ψ and Ω angle transitions

Figure 2. Alanine dipeptide simulation results. (A) Ψ angle values
obtained from cMD and five different aMD simulations. From top to
bottom, aMDparameters were set toE2 = E1 + 15 andα1 = 5,E2 = E1 + 20
and α1 = 5, E2 = E1 + 25 and α1 = 5, E2 = E1 + 25 and α1 = 2.5, and
E2 = E1 + 25 and α1 = 1.25. In all simulations, E1 and α2 were set to 10
and 5, respectively. Weighted free energy density plots obtained from
cMD (B, C, D) and aMD with ΔVc (E). All values are in kcal/mol.

Figure 3. ψ and Ω angle values obtained from aMD simulations with
boost potentialsΔVb andΔVc. In all simulations, E1 = 10.0 and α1 were
set as shown on the far right. Additional parameters for aMD with ΔVc

were set to E2 = E1 + 15 and α2 = 5. All values are in kcal/mol.
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(cis/trans isomerization) obtained from the alanine dipeptide
simulations in both implementations. As seen in Figure 3, as the
degree of acceleration is increased (by reducing the value of
parameterα1),ΔV

b dramatically increases not onlyΨ but alsoΩ
dihedral transitions. Conversely,ΔVc promotes a very similar in-
crease inΨ dihedral transitions without affecting theΩ dihedral
angles. This result confirms the capability of ΔVc to accelerate
conformational transitions by selectively crossing energy bar-
riers lower than the predefined energy level. It is worth men-
tioning that ΔVb notably undersamples the normally preferred
region �50 > Ψ > +50 under high acceleration conditions.

To evaluate the applicability of equationΔVc to biomolecules,
we also performed aMD studies on a more complex model system,
decalanine.25 Figure 4 displays the distribution of eight Φ�Ψ
angles monitored along two cMD simulations of 50 and 350 ns
and two independent aMD of 50 ns. All simulations started from
a fully solvated and extended conformation. As expected, there is
a substantial improvement in conformational sampling when the
cMD simulation is extended from 50 ns to 350 ns (Figure 4A and B).
Similar results are obtained forΦ�Ψ angles 4�8 when we com-
pare aMD with both cMD simulations (Figure 4A, B, and C).
Interestingly, the opposite behavior is observed forΦ�Ψ angles
1�3 (Figure 4C). We attribute this result to the low degree of
acceleration used on the aMD simulation. Even though applica-
tion of ΔVc enhances conformational transitions of decalanine,
the small boost used in this simulation, as a test case, may not
generate the 7-fold acceleration expected from Figure 4C and B.
To investigate this issue and further explore the capability ofΔVc,
we carried out two extra aMD simulations of 50 ns in which we
(a) increased the acceleration by reducing theα1 value by a factor
of 2 (result is shown in Figure 4D) and (b) increased the degree
of acceleration by raising the energy level E2 (E2 = E1 + 35 kcal/mol),
in addition to reducing α1 by a factor of 2 (Figure S1, Supporting
Information). As expected, the different aMD simulations of

50 ns each (Figure 4C,D and Figure S1) cover different regions of
theΦ�Ψ subspace, with the more accelerated ones (Figure 4D)
showing better agreement with the cMD simulation of 350 ns
(Figure 4B). These results also agree with the fact that, by
lowering energy barriers, aMD increases the rate of escape from
minimum wells and thus generates more diverse trajectories for
complex systems with multidimensional energy landscapes such
as decalanine. Figure S1 displays the Φ�Ψ angle distributions
obtained with the highest degree of acceleration tested. It is
worth noting that there is better agreement with the conforma-
tional sampling obtained from the 350 ns of cMD, as a result of
the longer time scale accessed by this aMD simulation.

Decalanine can adopt numerous secondary structures making
it a challenging test case for enhanced sampling methods.25

Principal component analysis (PCA) shows that our ΔVc aMD
simulation explores energy wells that are not adequately sampled
by 350 ns of cMD simulation (Figure 5A, B, C). One of these
regions represents the state in which decalanine adopts an α-
helical conformation, energetically the most stable configuration.25

This folding event is evident in the aMD simulations, but not in the
cMD simulations despite the latter being 7-fold longer (Figure 2S).

Free energy calculations are useful in the optimization of com-
pounds for biological targets and host systems.26 However, these
calculations usually require a computationally expensive ensem-
ble generation either from Monte Carlo calculations or MD
simulations.27,28 As previously shown, coupling of aMDmethods
with free energy calculations, such as thermodynamic integration
(TI), revealed promising results when applied to simple model
systems.8 To further extend the applicability of aMD-based
approaches to free energy calculations, in this work, we modified
our original implementation by incorporating the boost equation
ΔVc into the TI simulations. As a test case, we calculated the
relative free energy difference between Ac2‑L‑Lys‑D‑Ala‑D‑Ala and
Ac2‑L‑Lys‑D‑Ala‑D‑Lac bound to vancomycin. This mutation, Ala

Figure 4. Decalanine Φ�Ψ angles distribution obtained from cMD
and aMD simulations. For the aMD simulations with ΔVc parameters
were set to E1 = 74, E2 = E1 + 25, α2 = 5, α1 = 30 (C), and α1 = 15 (D).
All values are in kcal/mol.

Figure 5. Principle component analysis obtained from decalanine MD
simulations. (A) 50 ns of aMD simulation withΔVc. Parameters were set
toE1 = 74,E2 =E1 + 25,α2 = 5, andα1 = 15, same as in Figure 4D. (B) 50 ns
of cMD simulation and (C) 350 ns of cMD simulation. Structures 1, 2,
and 3 shown in yellow represent relevant populated states in PC
subspace sampled by aMD and cMD.
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to Lac, confers to bacteria a resistance against vancomycin.29 The
experimental change in binding free energy has been determined
to be 4.1 kcal/mol, which corresponds to an approximately 1000-
fold decrease in affinity from DAla to DLac.

30

Figure 6A compares the relative free energy of binding (ΔΔG)
calculated from TI simulations using cMD and aMD with ΔVc.
To calculate the final free energy values, we divided the trajec-
tories in blocks of 200 ps, with the last block representing the
production phase. For example, a TI simulation of 800 ps
corresponds to an equilibration phase of 600 ps (three blocks)
followed by a collecting data phase of 200 ps, and a TI simulation
of 1000 ps corresponds to an equilibration phase of 800 ps (four
blocks) followed by the collecting data phase of 200 ps. Thus, the
points displayed in Figure 6A reveals how the calculated ΔΔG
changes as a function of the equilibration time.

It is worth mentioning that application of ΔVc notably
improves the convergence of ΔΔG when compared to standard
cMD TI simulation. In addition, the final free energy value ob-
tained with ΔVc (4.3 ( 0.3 kcal/mol) shows very good agree-
ment with the experimental value of 4.1 kcal/mol,30 while the
final free energy value from TI with cMD is 5.3 ( 0.3 kcal/mol.
Since the same force field and simulation conditions were applied
to both TI simulations, we attribute this difference solely on the
conformational sampling enhancement provided by the ΔVc.
Moreover, the error associated with each point suggests that the
faster convergence toward the final free energy value is statisti-
cally relevant. Interestingly, the cumulative free energy values
(Figure 6B) demonstrate that the TI simulations coupled with
cMD are indeed converging toward the ones coupled with aMD
as we increase the simulation time. Hence, inaccuracies in the
final value are likely to be primarily due to the lack of convergence

on λ points. These results indicate that ΔVc can effectively
enhance conformational sampling when coupled with TI simula-
tions and hence shorten the equilibration period required for
accurate free energy calculation.

’COMPUTATIONAL METHODS

ΔVc was implemented in the AMBER10 code31 as previously
reported.8

V
�
rð Þ ¼ V rð Þ �ΔV c

ΔV c ¼
ðVðrÞ � E1Þ2

ðα1 þ VðrÞ � E1Þð1 þ e�ðE2 � VðrÞÞ=α2Þ V rð Þ > E1
0 V rð Þ e E1

8>><
>>:

ð5Þ
All cMD, aMD and TI simulations were performed using a

modified version of the sander module of the AMBER10 package.31

TIP3P water molecules were used to solvate both the alanine
dipeptide anddecalanine systems.32 Abuffer region of 10 or 12Åwas
used in all systems. To eliminate any steric clashes, 100 steps of
conjugate gradient minimization were performed on all systems.
To bring the systems to the right density, we carried out cMD
simulations of 50 ps in which the NPT ensemble was applied.
Then, long cMD and aMD simulations were performed in which
the NVT ensemble was applied. All bonds involving hydrogen
atoms were constrained using the SHAKE algorithm.33 The
temperature and pressure were controlled using weak coupling
to external temperature and pressure baths.34 Electrostatic inter-
actions were computed via PME (particle mesh Ewald summation)
with a cutoffof 8.0Å. All simulationswere performed at temperature
of 300 K. In all accelerated simulations, the boost potential was
based on the dihedral energy. Principal components analysis was
performed using the ptraj module of the AMBER10 package. All
cMD simulations were projected onto the PC subspace obtained
from the aMD simulation displayed at Figure 4D. Alignment of the
trajectory was performed on backbone atoms of decalanine.

To study the use of the new boost equation on thermody-
namic integration calculations, we calculated the relative differ-
ence in the free energy of binding of Ac2‑L‑Lys‑D‑Ala‑D‑Ala and
Ac2‑L‑Lys‑D‑Ala�D‑Lac to a vancomycin dimer, starting from the
crystal structure of Ac2‑L‑Lys‑D‑Ala‑D‑Ala bound to vancomycin
(PDB ID: 1FVM). The glycopeptides and vancomycin were
parametrized using Antechamber. The system was solvated in a
cubic box of TIP3P water molecules, with a buffer region of 10 Å.31

Owing to the strong correlation between glycopeptides binding
affinity and vancomycin dimerization,35 we simulated the “back
to back” homodimer of vancomycin, as present in the X-ray
crystal structure. Both ligands were included in the model and
modified alchemically.

TI simulations were performed with nine equally spaced λ
parameters (λ = 0.1 to 0.9) in solution and in the vancomycin
receptor. In all transformations, electrostatic and van der Waals
contributions were decoupled and computed separately. More
specifically, in this work, the alchemical transformation of DAla to
DLac was carried out in three steps: (i) removal of partial charges
of the NH group from DAla, (ii) transformation of van der Waals
parameters of the NH group to the O (oxygen) atom, and (iii)
partial charge creation on the O (oxygen) atom. Softcore
potentials were used for step ii.36,37 The ΔV/Δλ values were
calculated over a production period of 200 ps along with five
equilibration periods 0, 200, 400, 600, and 800 ps. The final

Figure 6. (A) Relative free energy of binding between Ac2‑L‑Lys‑D‑A-
la�‑D‑Ala and Ac2‑L‑Lys‑D‑Ala‑D‑Lac to vancomycin calculated from
cMD (solid black line) and aMD with ΔVc (solid red line). A dashed
line displays the experimental value, 4.1 kcal/mol. (B) Cumulative free
energy curves calculated from simulations of 600 ps (left) and 1000 ps
(right) per λ point. The / shows points where there is no overlapping
between error bars.
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free energy values were averaged over three independent (with
reassigned initial atomic velocities) cMD or aMD simulations. As
previously shown, in order to recover the correct canonical
ensemble, ΔV/Δλ values collected from aMD runs were re-
weighted by their respective boost factor eβΔV[r].3,8

Error bars were calculated using, σÆAæ≈ σ/
√
MwhereM is the

number of independent simulations and σÆAæ is the standard
deviation of the average value A obtained from M independent
data values (M = 3 in all cases). An analysis of the trajectories was
performed using ptraj.31

Our aMD parameters were estimated on the basis of the
average dihedral energy term obtained from short cMD simula-
tions. For all alanine dipeptide aMD simulations, parameter E1
was set to 10 kcal/mol. Parameter α2 was set to 5 kcal/mol,
which corresponds to 0.2 to 0.33(E2 � E1). In Figure 2A, from
top to bottom, aMD simulations used the following param-
eters: E2 =E1 + 15 andα1 = 5,E2 = E1 + 20 andα1 = 5,E2 = E1 + 25
and α1 = 5, E2 = E1 + 25 and α1 = 2.5, and E2 = E1 + 25 and
α1 = 1.25. In Figure 2E, the aMD simulation used the parameters
E2 = E1 + 15and α1 = 5. In Figure 3, E2 = E1 + 15 (for ΔV c) and
α1 were varied as indicated in the far right column.

Boost parameters for decalanine simulations were E1 = 74,
E2 = E1 + 25, α1 = 30, and α2 = 5. Boost parameters for the
vancomycin-glycopeptides simulations were E1 = 211, E2 = E1 + 25,
α1 = 30, and α2 = 15.

’CONCLUSION

In this work, we introduced a new boost equation, ΔVc, for
aMD simulations aiming to overcome sampling issues intro-
duced by ΔVb. Since energy barriers located above a predefined
energy level can now be protected, the new boost equation ΔVc

provided much better control over high energy regions of the
conformational landscape when compared toΔVb. We used two
model systems, alanine dipeptide and decalanine, to study the
applicability and efficiency of ΔVc in enhancing conformational
sampling. In both cases, the new boost potential not only
provides better recovery of statistics throughout the simulation
but also enhanced sampling of statistically relevant regions in
explicit solvent MD simulations. When coupled with thermo-
dynamic integration, our results indicate thatΔVc can effectively
enhance conformational sampling and accelerate convergence
for a more accurate free energy calculation.
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