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Using the ground state dominance approximation and a variational theory, we study the encapsula-
tion of a polyelectrolyte chain by an oppositely charged spherical surface. The electrostatic attraction
between the polyelectrolyte and the surface and the entropy loss of the encapsulated polyelectrolyte
chain dictate the optimum conditions for encapsulation. Two scenarios of encapsulation are identi-
fied: entropy-dominated and adsorption-dominated encapsulation. In the entropy-dominated encap-
sulation regime, the polyelectrolyte chain is delocalized, and the optimum radius of the encapsulating
sphere decreases with increasing the attraction. In the adsorption-dominated encapsulation regime,
the polyelectrolyte chain is strongly localized near the surface, and the optimum radius increases
with increasing the attraction. After identifying a universal encapsulation parameter, the dependen-
cies of the optimum radius on the salt concentration, surface charge density, polymer charge density,
and polymer length are explored. © 2011 American Institute of Physics. [doi:10.1063/1.3662069]

I. INTRODUCTION

Adsorption of polyelectrolytes by oppositely charged
surfaces is a central issue in surface and colloidal science.1–3

Due to the electrostatic attraction between polyelectrolytes
and surfaces, polyelectrolytes tend to be adsorbed onto the
surface. This in turn induces confinement and consequent
entropy loss of polyelectrolytes. The competition between
the electrostatic attraction and entropy loss of the adsorbed
polyelectrolytes leads to a critical adsorption tempera-
ture Tc, below which adsorption occurs.2–14 The general
theoretical ideas are consistent with simulations15–20 and
experiments.21–23 For the adsorption of polyelectrolytes onto
a curved surface, the critical adsorption temperature depends
also on surface curvature. In addition to the critical adsorption
temperature, the question of optimum surface curvature for
the adsorption of a fixed amount of polyelectrolyte chains is
of interest. This question is motivated by extensive adsorption
phenomena of charged bio-macromolecules in cells. Most
bio-macromolecules including DNA, RNA and proteins,
as well as cell membranes are charged, and electrostatic
interaction is critical for cell self-organization.24–28 An
example is the electrostatically induced endocytosis of
polyelectrolytes.29–32 Similar issues also appear in experi-
ments involving vesicles.33, 34 In these experiments, some
polyelectrolyte chains are placed into a vesicle to study the
interaction between the polyelectrolyte and the membrane.
If the size of the vesicle does not match the adsorption
of polyelectrolyte chains, the loading of polyelectrolytes
induces stress in the vesicle, and sometimes, even leads to
rupture and re-assembly of the vesicle.35
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The simplest problem in the above context is the encap-
sulation of a polyelectrolyte chain by an oppositely charged
spherical surface, which is addressed in this paper. The spher-
ical surface can be a rigid virus capsid, nano-cavity or soft cell
membrane. Our study attempts to find the spatial distribution
of the polyelectrolyte chain encapsulated in the sphere, and
the optimum radius of the spherical surface for the encapsula-
tion of polyelectrolyte with a fixed chain length, for different
values of salt concentration, polymer charge density, and sur-
face charge density.

The theoretical approach used in this paper is the ground
state dominance approximation for the polyelectrolyte distri-
butions. Usually, the distributions of the adsorbed polyelec-
trolytes can be determined in the self-consistent field theory
(SCFT) without additional approximations by numerically
solving the diffusion equation.1 To avoid complicated numer-
ical calculation in the self-consistent field theory, the ground
state dominance approximation is adopted to simplify the
solution.36 The approximation method has been used success-
fully in previous studies on polymer adsorption by electro-
static interaction.4, 6, 25 We expect the approximation method
to provide qualitatively correct results for the issues addressed
here.

The outline of this paper is as follows: Sec. II describes
the theoretical model. We present the self-consistent field
equations for the system, and then instead of solving the
full SCFT equations, the ground state dominance approxima-
tion is introduced to simplify the solution. Moreover, we also
solve this equations by approximating the interacting poly-
electrolyte chain using an effective Gaussian chain. In Sec. III,
the main results from the two approaches are presented and
discussed. The density profiles are compared at different val-
ues of the attraction parameter. Two scenarios of encapsula-
tion are revealed. The dependencies of the optimum radius on
various parameters are analyzed in connection with the two
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scenarios of encapsulation. In Sec. IV, the main conclusions
are summarized and the constraints on our theoretical meth-
ods are pointed out.

II. THEORETICAL MODEL

We assume that a positively charged polyelectrolyte
chain of Kuhn length b is confined inside a negatively charged
spherical surface of radius R. The distribution of the poly-
electrolyte chain can be described by a propagator G(r, r0; s),
which gives the probability of appearance of segment s at site
r with segment 0 at site r0. According to the Gaussian chain
model, the propagator satisfies the modified diffusion equa-
tion,[

∂

∂s
− b2

6
∇2 + βω(r)

]
G(r, r0; s) = δ(r − r0)δ(s), (1)

where, β = 1/(kBT) and ω(r) is the space-dependent po-
tential field acting on the chain segment at r. kBT is the
Boltzmann constant times the absolute temperature. For the
polymer chain with interactions between segments, such as
the excluded volume interaction or the electrostatic interac-
tion, the potential field should depend on the propagator G
self-consistently. For the system concerned here, the self-
consistent potential in Eq. (1) consists of three parts: the
external electrostatic potential ωex, the excluded volume in-
teraction ωev, and the electrostatic repulsion between chain
segments ωep,

βω = βωex + βωev + βωep, (2)

with

βωev =
∫

dr′ρ(r′)vδ(r − r′), (3)

where v is the excluded volume interaction parameter. For
simplicity, the electrostatic interaction is formulated in the
framework of the Debye-Hückel theory,6

βωex = −4π |σzp|lBR exp(−κDR)
sinh(κDr)

κDr
, (4)

and

βωep =
∫

dr′ρ(r′)z2
plB

exp(−κD|r − r′|)
|r − r′| , (5)

where, zpe is the effective charge per segment of the polymer
chain, and σe is the charge density of the surface. The inverse
Debye-Hückel screening length is defined as κD = √

8πlBcs

of the monovalent salt concentration cs and Bjerrum length
lB = e2

4πεkBT
(where e is the elementary charge and ε is the

permittivity). In addition, the electrostatic potential distribu-
tion inside the sphere due to the charged surface in Eq. (4) can
be rewritten as

βωex = ωb
ex

R

sinh(κDR)

sinh(κDr)

r
= ω0

ex

sinh(κDr)

κDr
, (6)

where, ωb
ex = −4π |σzp|lB 1−exp(−2κDR)

2κD
is the potential on the

surface and ω0
ex = −4π |σzp|lBR exp(−κDR) is the potential

at the center. Obviously, the potential inside the sphere de-
creases by sinh (κDr)

r
from ωb

ex on the surface to ω0
ex at the

center. ωb
ex is a monotonically increasing function of radius

R, and approaches to the potential of infinite plane when
κDR �1.

ρ is the density of polymer segment, which can be related
to the propagator by

ρ(r) =
∫ Np

0 ds
∫

dr′G(r, r′, s)
∫

dr′′G(r, r′′, Np − s)∫
dr′ ∫ drG(r, r′′, Np)

, (7)

where Np is the chain length of the polymer chain.
Equations (1), (2) and (7) form a close and self-consistent

equation set, which need to be solved simultaneously and self-
consistently. So far, there is no exact analytical solution, and
usually it is solved numerically.

Using the solution to the above SCFT equations, the free
energy of the system can be written as

βF = − ln Q(βω) −
∫

drρ(r)βω(r)

+
∫

drβωex(r)ρ(r) + v

2

∫
drρ(r)2

+ z2
plB

2

∫
drdr′ρ(r)ρ(r′)

exp(−κD|r − r′|)
|r − r′|

= − ln Q(βω) − v

2

∫
drρ(r)2 − z2

plB

2

∫
drdr′ρ(r)ρ(r′)

× exp(−κD|r − r′|)
|r − r′| , (8)

where the single chain partition function Q is

Q(βω) =
∫

drdr′G(r, r′, N). (9)

Here, instead of solving the full self-consistent field
equations numerically, we use the ground state dominance ap-
proximation, and leave the full numerical self-consistent field
approach to another paper.

A. Self-consistent ground state dominance
approximation (ScGSDA)

The propagator G can be written as bilinear expansion,

G(r, r′, s) =
∞∑
i=0

ϕi(r)ϕi(r′) exp(−λis), (10)

with ϕi(r) being the ith eigenfunction of the equation,[
−b2

6
∇2 + βω

]
ϕi = λiϕi, (11)

with the corresponding eigenvalue λi.
In the ground state dominance approximation, the propa-

gator can be approximated by

G(r, r′, s) � ϕ0(r)ϕ0(r′) exp(−λ0s), (12)

and correspondingly, the density is

ρ(r) = Npϕ2
0 , (13)

and −ln Q is

− ln Q(βω) = Npλ0 − ln
∫

dr
∫

dr′ϕ0(r)ϕ0(r′)

� Npλ0, (14)
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where the trivial constant term is neglected in the last
equality.

Using spherical coordinates, the equation for the ground
state eigenfunction ϕ0 can be written as

Hϕ0 ≡ −b2

6

1

r

∂2

∂r2
[rϕ0(r)]+β[ωex + ωev + ωep]ϕ0 = λ0ϕ0.

(15)

Even for the ground state equation in Eq. (15), the exact
solution is unknown. Here we use a variational method anal-
ogous to Ref. 6, to approximate the solution. For the problem
concerned here, the wavefunction of the ground state should

satisfy the following boundary conditions:

ϕ0(R) = 0, (16)

and

∂rϕ0(0) = 0. (17)

Accordingly, we choose the variational ground state func-
tional as37

ϕ0 = N
[

1 −
( r

R

)2
]

exp

(
α

r2

R2

)
, (18)

where N is the normalization factor to satisfy
4π

∫ R

0 drr2ϕ2
0 = 1.

Using the ground state eigenfunction in Eq. (18), we can
get the density distribution as

ρ(r) = Np

64α7/2
[(

1 − (
r
R

)2)
exp

(
α r2

R2

)]2

πR3[4e2α
√

α(15 + 4α) − √
2π (15 + 24α + 16α2)erfi(

√
2α)]

, (19)

and −ln Q

− ln Q(βω) = Np4π

∫ R

0
drr2ϕ0Hϕ0. (20)

Therefore, the free energy can be written as

βF = −2πNpb2

3

∫ R

0
drrϕ0

∂2

∂r2
[rϕ0(r)]

+
∫

drβωex(r)ρ(r) + ν

2

∫
drρ(r)2

+ z2
plB

2

∫
drdr′ρ(r)ρ(r)′

exp(−κD|r − r′|)
|r − r′| . (21)

The free energy is a function of the variational parameter α

which can be determined by minimizing the free energy F.

B. Effective Gaussian chain approximation (EGCA)

In the above approach (ScGSDA), the interaction be-
tween segments is considered explicitly, and the distri-
bution of the polyelectrolyte should be determined in a
self-consistent way. Another method is to approximate the
self-excluding and interacting polyelectrolyte chain by a
Gaussian chain with an effective Kuhn length,4, 6 and the dis-
tribution of the effective chain is affected only by external po-
tential. The effective Kuhn length beff of the Gaussian chain is
determined by a variational method,4, 6

(
beff

b

)5/2

−
(

beff

b

)3/2

= 4

3

(
3

2π

)3/2

vN1/2
p + 4

45

(
6

π

)1/2

z2
plBN3/2

p

beff

b

×
(

15
√

πea

2a5/2
(a2 − 4a + 6)erfc[

√
a]

− 3π

a5/2
+ π

a3/2
+ 6

√
π

a2

)
, (22)

with a ≡ κ2
DNpbbeff

6 . The dimensionless effective Kuhn length
beff/b is a function of Np, κDb, zp, lB, and v, and reflects
the chain expansion and consequent entropy loss due to self-
interaction between segments. As the strength of the excluded
volume and electrostatic interactions increases, the entropy
loss increases and beff/b increases correspondingly. In this
way, the interaction between segments is reflected implicitly
through beff/b. Now, the problem is transformed into finding
the distribution of an effective Gaussian chain under the ex-
ternal potential ωex, that is,

[
∂

∂s
− bbeff

6
∇2 + βωex(r)

]
G(r, r0; s) = δ(r − r0)δ(s).

(23)

Here, we still adopt the ground state dominance approxi-
mation, and then the ground state equation becomes

Hϕ0 ≡ −beff

b

b2

6

1

r

∂2

∂r2
[rϕ0(r)]

− BRexp(−κDR)
sinh(κDr)

κDr
ϕ0 = λ0ϕ0, (24)

with λ0 the eigenvalue of the ground state and B = 4π |σ zp|lB.
Using γ = κDR and ζ = κDr, we have

− 1

ζ

∂2

∂ζ 2
[ζϕ0(ζ )] − B ′γ exp(−γ )

sinh(ζ )

ζ
ϕ0 = λ′

0ϕ0, (25)
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with

B ′ = 24π |σb2zp| lB
b

b

beff

1

κ3
Db3

λ′
0 = 6

b

beff

1

κ2
Db2

λ0. (26)

Here, B′ reflects the attraction strength between polyelec-
trolyte and membrane and also includes chain expansion
given by beff.

The same trial function in Eq. (18) is used to approxi-
mate the solution to Eq. (24), satisfying the same boundary
conditions in Eqs. (16) and (17). The same density profiles in
Eq. (19) are obtained.

In the ground state dominance approximation, we have

βF = − ln Q(βω) � Npλ0. (27)

Similarly, the free energy is a function of the variational pa-
rameter α, which needs to be determined by minimization of
free energy.

The effective Gaussian chain approximation (EGCA) has
been used to study the critical temperature for the adsorp-
tion of polyelectrolyte chain onto oppositely charged curved
surfaces.6 In the effective Gaussian chain approximation, all
relevant parameters (Np, κD, zp, lB, and v) are lumped into
a combined parameter B′. The free energy βF = Npλ0 and
the determination of variational parameter α depend only on
B′. So the advantage of EGCA is that we can get a universal
dependence λ′

0(B ′). From this universal dependence, we can
deduce the effect of various parameters.

III. RESULTS AND DISCUSSION

In this section, the main results are presented and dis-
cussed with emphasis on the optimum radius of the spher-
ical surface for the encapsulation of a polyelectrolyte chain
of a fixed chain length. We first describe the general feature
of encapsulation under different adsorption strengths. Then
we define the optimum radius for the spherical surface as the
location of the minimum of free energy and discuss the de-
pendence of the optimum radius on various parameters. Our
calculation shows that in most cases, the results from EGCA
and ScGSDA are qualitatively consistent. Therefore, in the
following, the general feature of encapsulation is revealed us-
ing the results from EGCA in terms of the combined param-
eter B′, and then effects of various parameters are discussed
based on results from EGCA, supplemented by results from
ScGSDA.

For the description of results, we choose b as length unit
and 1/β = kBT as energy unit. Correspondingly the following
dimensionless parameters σ = σb2, κD = κDb, beff = beff/b,
λ′

0/(4π ), and F = βF/(4π ) are used. We set lB = 1, and expect
no new qualitative results when varying lB value.

A. Two scenarios of encapsulation

The variational parameter α determines the density pro-
files of the polyelectrolyte according to Eq. (19). As shown
in Fig. 1 (where ρR3/Np is plotted against r/R), the polyelec-

FIG. 1. Typical density profiles of the encapsulated polyelectrolyte with
α = 0.5, 2, and 8.

trolyte is delocalized for small values of α, while the poly-
electrolyte is localized near the surface for large values of
α. By increasing α values, the distribution of the polyelec-
trolyte switches from the delocalized to the localized chain.
This change from delocalization to localization is gradual as
shown in Fig. 1. The extent of chain localization near the sur-
face versus delocalization is captured by the density profiles.
It is possible to construct moments of the density profiles as
measures of the thickness of the adsorbed layer. However, this
is not pursued here, due to the finite size of the confinement.
For the adsorption of a polyelectrolyte onto the inner spheri-
cal surface, localized states as well as delocalized states could
be bound states due to the confinement effect by the closed
surface. This is different from the adsorption of a polyelec-
trolyte on an open surface, e.g., planar surface, where only
the localized polyelectrolyte could be a bound state.4, 6, 14

We have calculated the optimum size of the encapsulat-
ing sphere for a polyelectrolyte chain of a prescribed length
and charge density at a given salt concentration, by the follow-
ing protocol. First we minimize the free energy with respect
to the variational parameter α for different values of R and
B′ to determine the density profile and free energy. In the ef-
fective Gaussian chain approximation, βF = Np

6
beff

b
κ2

Db2λ′
0;

therefore, λ′
0 plays the role as a free energy, and a minimiza-

tion of F over R is equivalent to a minimization of λ′
0 over R.

We have found that, only for B′ larger than the critical value
B ′

c � 3.207, bound states implying polyelectrolyte encapsu-
lation are allowed by Eq. (25). The free energy λ′

0 given in
Eq. (25) is plotted in Fig. 2 as a function of κDR for differ-
ent values of B′. For all values of B ′ > B ′

c, we observe that
λ′

0 shows a minimum at a certain value of R, labelled as R*,
which is computed by minimizing the free energy with respect
to R. Following this step, we calculate the dependence of R*

on B′, and explicitly on σ , cs, zp, and Np.
In an effort to seek an understanding of the computed

results on the dependence of R* on B′, we resolve the en-
tropic λ′

0,s and energetic λ′
0,u contributions to the free en-

ergy, at different values of B′. λ′
0,u and λ′

0,s are given by
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(a)

(b)

FIG. 2. Typical dependence of the free energy λ′
0 on the vesicle radius R (a)

at small values of B′, and (b) at large values of B′. The curve has a minimum
when B ′ > B ′

c , which we define as the optimum radius R*.

Eqs. (28) and (29) as

λ′
o,u = −4πγ exp(−γ )

∫ γ

0
dζζ 2ϕ2

0B
′ sinh(ζ )

ζ
, (28)

and

λ′
0,s = −4π

∫ γ

0
dζζϕ0

∂2

∂ζ 2
[ζϕ0(ζ )]. (29)

The relative contribution of the entropic part in comparison
with λ′

0,u depends on the value of B′. Representative results
are given in Fig. 3, where λ′

0,u and λ′
0,s are plotted against

κDR at B′ = 6 and 100 00. As shown in Fig. 3(a), for small
values of B′, an increase in the sphere radius R leads to a de-
crease in λ′

o,s and an increase in λ′
0,u. These opposing trends

lead to a minimum in the dependence of λ′
0 on R. Although a

similar minimum in λ′
0 occurs for large B′ values in Fig. 3(b),

the dependencies of the entropic and the energetic contribu-
tions on the radius are different from those for small values
of B′. For large B′ values, λ′

o,s increases but λ′
o,u decreases

when the radius is increased. It is to be noted that although
the magnitude of the entropic part is an order of magnitude

(a)

(b)

FIG. 3. R-dependence of the entropic and energetic contributions (λ′
0,s and

λ′
0,u) to the free energy λ′

0 at (a) B′ = 6 and (b) B′ = 100 00. Different trends
of λ′

0,s and λ′
0,u lead to a minimum in λ′

0.

smaller than the energetic part for very large B′ values, their
changes with R are comparable. The different behaviors of
λ′

o,s and λ′
o,u at different values of B′ can be explained from

the different distributions of the polyelectrolyte at various B′

values. To corroborate further, the value of α that corresponds
to R* is plotted in Fig. 4 against B′. Using α values, the dis-
tribution of polyelectrolyte chain can be obtained by referring
to Fig. 1. For small B′ values, the polyelectrolyte is delocal-
ized. Now an increase in the radius of the sphere leads to less
confinement of the polyelectrolyte so that λ′

0,s decreases. The
λ′

0,u naturally becomes less attractive for large R values due
to lesser number of monomer contacts at the surface. These
are seen in Fig. 3(a). On the other hand, for large B′ values,
the polyelectrolyte is strongly adsorbed at the spherical sur-
face. In this case, by increasing the radius, the space near the
surface with high attractive potential βωb

ex increases by R2

as shown in Eq. (6). Therefore, there are more polymer seg-
ments near the surface, which leads to an increase in λ′

o,s and
a decrease in λ′

o,u. These trends are clearly seen in Fig. 3(b).
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FIG. 4. B′-dependence of the variational parameter α at R = R*.

Therefore, depending on the attraction strength B′, the encap-
sulation can be dominated by the attraction or by the entropy.

For the attraction-dominated encapsulation at large B′

values, the polyelectrolyte chain is absorbed strongly to the
sphere; For the entropy-dominated encapsulation at small B′

values, the polyelectrolyte chain is delocalized in the sphere.

B. Optimum radius

We now consider the optimum radius of the spherical sur-
face required for the adsorption of the polyelectrolyte of a
fixed length. The existence of a minimum of the free energy
with respect to a particular sphere radius R implies that the ad-
sorption of the polyelectrolyte and the entropic reduction due
to confinement select the radius of the spherical surface. The
radius where the minimum free energy appears is defined as
the optimum radius R* and its reciprocal as the spontaneous
curvature 1/R*.

The optimum radius is a function of the parameter B′.
As shown in Fig. 5, the spontaneous curvature varies non-
monotonically with B′. The curve of the B′-dependent spon-
taneous curvature can be divided into two branches. For the
first branch at smaller B′ values, the spontaneous curvature
increases with increasing B′ and for the second branch at
higher B′ values, it decreases with increasing B′. The two-
branch behavior of the spontaneous curvature is correlated to
the two scenarios of encapsulation discussed above. As al-
ready pointed out, for large values of B′, the chain is localized
near the spherical surface so that the chain entropy plays a
minor role. However, the R-dependent λ′

0,u becomes more at-
tractive as B′ is increased with a consequent effect of shifting
R* to higher values at higher B′ values. We call this branch
to be the energy-dominated encapsulation. In contract, the
other branch of small values of B′ is dominated by entropic
considerations associated with the lack of chain localization.
For smaller values of B′, the chain is considerably delocalized
in the interior of the sphere. As B′ is increased (which being
small enough), these are an increasing number of contacts be-

FIG. 5. Dependence of the spontaneous curvature 1/(κDR*) on B′.

tween the surface and the polymer, which then reduces the
confinement entropy. Thus, λ′

0,u becomes more negative and
λ′

0,s becomes more positive as B′ increases. In consideration
of these two trends, the free energy minimum shifts to lower
values of R*. We call this branch to be the entropy-dominated
branched.

We must point out that the dependence of 1/R* on B′ as
shown in Fig. 5 is universal and depends on the only param-
eter B′ which is a combination of various specific parameters
of the model. Because B ′ = 24π |σb2zp| lB

b
b

beff

1
κ3

Db3 and beff is

a function of zp, cs, Np, and v, we need to work out the depen-
dence of B′ on these parameters, in order to analyze effects of
various parameters on the spontaneous curvature. After get-
ting B′(σ , zp, cs, Np, v), Fig. 5 can provide a reference to obtain
the dependence of the optimum radius on these parameters.

It is easy to obtain the effect of surface charge density
σ on R*. B′ is linear in σ , so the dependence of R* on σ is
just similar to that on B′, as shown in Fig. 6(a). There will be
a critical surface charge density, above which the polyelec-
trolyte can be encapsulated. At a low surface charge density,
an entropy-dominated encapsulation occurs, and the distribu-
tion of the polyelectrolyte is delocalized. At a high surface
charge density, an attraction-dominated encapsulation occurs,
and the distribution of the polyelectrolyte is highly local-
ized near the surface. The results from ScGSDA as shown
in Fig. 6(b) confirm the predictions from EGCA. The effect
of salt concentration is also included in Fig. 6.

Salt concentration influences both the attraction between
the polyelectrolyte and the surface, and the expansion of the
polyelectrolyte. Due to the screening effect considered in
Debye-Hückel theory used here, by increasing the salt con-
centration, the attraction decreases by 1/κ3

D and the chain ex-
pansion also decreases through a decrease in beff in EGCA.
Our results show that the screening effect is dominant and B′

decreases monotonically with increasing the salt concentra-
tion. According to the relation between 1/R* and B′ shown in
Fig. 5, it is predicted that by increasing the salt concentration
the optimum radius decreases at a low salt concentration but
increases at a high salt concentration as shown in Fig. 7(a). At
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(a)

(b)

FIG. 6. Typical dependence of the optimum radius R* on the charge den-
sity of the surface σ with results in (a) from EGCA and results in (b) from
ScGSDA.

a low salt concentration, the attraction is strong, an attraction-
dominated encapsulation occurs, and a decrease in the attrac-
tion by increasing the salt concentration leads to a decrease
the optimum radius. At a high salt concentration, the attrac-
tion is weak, an entropy-dominated encapsulation occurs, and
a decrease in the attraction by increasing the salt concentra-
tion leads to an increase in the optimum radius. The results
from ScGSDA shown in Fig. 7(b) are analogous to the results
from EGCA given in Fig. 7(a).

Charge density of the polyelectrolyte also affects both the
attraction between the polyelectrolyte and the surface and the
expansion of the polyelectrolyte. Roughly speaking, increas-
ing the charge density of the polyelectrolyte, the attraction
increases linearly with zp and the self-repulsion increases by
z2
p. The latter leads to an increase in beff. The net effect is that

B′ increases monotonically with increasing zp. With reference
to Fig. 5, we get that by increasing zp, the optimum radius R*

decreases at low zp values, but increases at high zp values as
shown in Fig. 8(a). This result is also confirmed by the results
from ScGSDA shown in Fig. 8(b). This behavior is explained
by the fact that entropy dominates at low zp and attraction

(a)

(b)

FIG. 7. Typical dependence of the optimum radius R* on the salt concentra-
tion cs with results in (a) from EGCA and results in (b) from ScGSDA.

dominates at high zp. The results from EGCA and ScGSDA
are in qualitative agreement. The relatively larger discrepancy
at higher values of zp can be traced to the uniform expansion
approximation used in EGCA.

The above results of the effects of various parameters on
the optimum radius R* further support two scenarios of en-
capsulation. We know that the encapsulation depends on the
competition between the energy gain of adsorption and the
entropy loss of confinement. An increase in the salt concen-
tration or a decrease in the charge density of the polyelec-
trolyte or the surface usually leads to a decrease in attraction.
When salt concentration is high enough or the charge density
of the polyelectrolyte or the surface is low enough, the en-
tropy loss will dominate over the attraction. In this case, if we
decrease the attraction, by increasing the salt concentration or
decreasing charge densities of polyelectrolyte or surface, the
optimum radius tends to increase. On the other hand, when
salt concentration is low enough and the charge density of
polyelectrolyte and surface is high enough, the attraction will
dominate. In this case, if we decrease the attraction, by in-
creasing the salt concentration or decreasing charge densities
of polymer chain or membrane, the optimum radius tends to
decrease.
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(a)

(b)

FIG. 8. Typical dependence of the optimum radius R* on the charge density
of the polyelectrolyte zp with results in (a) from EGCA and results in (b) from
ScGSDA.

Similar to the above deduction, we can analyze the ef-
fect of the excluded volume interaction. In EGCA, the ex-
cluded volume interaction only affects the expansion of poly-
electrolyte. Larger excluded volume interaction v (improving
the quality of solvent) leads to larger beff and smaller B′. So
improving the solvent quality, we conjecture that the encap-
sulation evolves from an attraction dominated scenario to an
entropy dominated case.

Despite the good qualitative agreement between the
EGCA and ScGSDA results for the above considered param-
eters, an exception arises for the chain length dependence of
R*. In EGCA, the chain length of polyelectrolyte affects B′

only weakly through beff. As a consequence, R* depends on
chain length only weakly, as shown in Fig. 9(a). Under the
same conditions of Fig. 9(a), ScGSDA results in Fig. 9(b)
show that the optimum radius increases with increasing the
chain length. For small values of Np, the increase is very
slight, but for large values of Np, the increase is rapid. The
results from ScGSDA are consistent with the two scenarios
of encapsulation. At small values of Np, the attraction is rela-
tively strong because the expansion is weak, and consequently

(a)

(b)

FIG. 9. Typical dependence of the optimum radius R* on the chain length of
the polyelectrolyte Np with results in (a) from EGCA and results in (b) from
ScGSDA.

the polyelectrolyte is strongly adsorbed to the surface. Both
the adsorption and entropy are apparently proportional to the
polymer chain length. Therefore, in this case, the polyelec-
trolyte chain length only has a small effect on the optimum ra-
dius. On the other hand, For large values of Np, the attraction
is relatively weak because the expansion is strong, and conse-
quently the polyelectrolyte is delocalized and thus the electro-
static self-repulsion of polyelectrolyte chain is dominant. The
electrostatic self-repulsion is N2

p-dependent and therefore the
optimum radius should increase rapidly as the chain length is
increased.

IV. CONCLUSIONS

The encapsulation of a polyelectrolyte chain by an
oppositely charged spherical surface is studied using the
ground state dominance approximation, with emphasis on the
optimum radius of the spherical surface to encapsulate the
polyelectrolyte. The encapsulation is governed by the com-
petition between the electrostatic attraction between the poly-
electrolyte and the surface and the entropy loss of the
encapsulated polyelectrolyte. Two scenarios of encapsulation
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are identified: when the attraction is dominant, the polyelec-
trolyte is localized around the surface, and the optimum radius
increases with increasing the attraction; when the polymer-
surface interaction is weak, the polyelectrolyte is delocalized
and the optimum radius decreases with increasing attraction.

Here we only consider the free energy of the polyelec-
trolyte and neglect the self-interaction of the charged surface.
The present model is valid for a polyelectrolyte encapsulated
in a solid cavity. If the surface is a fluid membrane, as in endo-
cytosis, the self-interaction and the elasticity of the membrane
should be considered. In this case the spontaneous curvature,
we get in this paper, is an additional spontaneous curvature of
the membrane induced by the encapsulated polyelectrolyte.

All of our results presented are based on the ground state
dominance approximation. The approximation is valid in the
limit of long chain polyelectrolyte and dilute solution con-
dition. In systems where the polyelectrolyte concentration is
not dilute, the entropy of solvent should be taken into ac-
count and more eigenfunctions should be included. In addi-
tion, the electrostatic self-energy of the confinement,38 the
entropy of counterions and salt ions are also neglected in this
paper.
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