
Stimulus and Network Dynamics Collide in a Ratiometric
Model of the Antennal Lobe Macroglomerular Complex
Kwok Ying Chong¤, Alberto Capurro, Salah Karout, Timothy Charles Pearce*

Centre for Bioengineering, Department of Engineering, University of Leicester, Leicester, United Kingdom

Abstract

Time is considered to be an important encoding dimension in olfaction, as neural populations generate odour-specific
spatiotemporal responses to constant stimuli. However, during pheromone mediated anemotactic search insects must
discriminate specific ratios of blend components from rapidly time varying input. The dynamics intrinsic to olfactory
processing and those of naturalistic stimuli can therefore potentially collide, thereby confounding ratiometric information.
In this paper we use a computational model of the macroglomerular complex of the insect antennal lobe to study the
impact on ratiometric information of this potential collision between network and stimulus dynamics. We show that the
model exhibits two different dynamical regimes depending upon the connectivity pattern between inhibitory interneurons
(that we refer to as fixed point attractor and limit cycle attractor), which both generate ratio-specific trajectories in the
projection neuron output population that are reminiscent of temporal patterning and periodic hyperpolarisation observed
in olfactory antennal lobe neurons. We compare the performance of the two corresponding population codes for reporting
ratiometric blend information to higher centres of the insect brain. Our key finding is that whilst the dynamically rich limit
cycle attractor spatiotemporal code is faster and more efficient in transmitting blend information under certain conditions it
is also more prone to interference between network and stimulus dynamics, thus degrading ratiometric information under
naturalistic input conditions. Our results suggest that rich intrinsically generated network dynamics can provide a powerful
means of encoding multidimensional stimuli with high accuracy and efficiency, but only when isolated from stimulus
dynamics. This interference between temporal dynamics of the stimulus and temporal patterns of neural activity constitutes
a real challenge that must be successfully solved by the nervous system when faced with naturalistic input.
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Introduction

The macroglomerular complex (MGC) is a structure within the

antennal lobe (AL) of some insect species specialized to process

pheromone information. It is composed of a group of specialized

glomeruli located where the antennal nerve first enters the AL and

is almost entirely functionally separated from the general olfactory

system. As such, the MGC can be considered to be an AL in

miniature, but with the very specific task of identifying the

presence of one behaviourally significant chemical cue: the species-

specific pheromone blend [1]. This system is very important for

reproduction. During anemotactic orientation for seeking a mate,

detecting and identifying the correct ratio of sex pheromone

components of a calling female is vital for enabling male moths to

fly up the pheromone plume to locate the female [2–4].

Behavioural evidence shows that male moths prefer the full

pheromone blend extracted directly from female glands [5]. In

wind tunnel experiments, male oriental fruit moths, Grapholita

molesta, can distinguish between the full pheromone blend and

chemical cues composed of incomplete blends of major phero-

mone component agonists [5]. This moth will usually complete

anemotaxis to the source of the full pheromone extract, even when

another plume is simultaneously presented composed of an

incomplete blend. Also, there are examples of species of moths

that live in overlapping habitats that use common pheromone

components but do not interbreed because males are attracted

only to the conspecific pheromone blend [6].

The olfactory receptor neurons (ORNs) responsible for relaying

pheromone information to the MGC are very specifically tuned to

individual pheromone components [7]. Each component is

detected by just one receptor type that sends convergent axons

to the projection neurons (PNs) of just one glomerulus, while the

local neurons (LNs) innervate many glomeruli [8,9]. Thus,

information regarding each component is integrated in a different

glomerulus. This makes the MGC ideal for modelling since it

offers a relatively simple system with a specific task.

Electrophysiological studies have found MGC neurons that

respond to all pheromone stimuli or selectively to just one

pheromone component, or even to a particular blend or ratio

[10–14]. For S. littoralis in particular, some interneurons responded

to one, two, three or all four pheromone compounds, and some just

to the mixture of all four indicating that MGC second order neurons

are involved in pheromone blend encoding.
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The behavioural and electrophysiological studies mentioned

above indicate that moths can detect ratios of pheromone blends

very precisely. This is a difficult task because it requires the

detection of both the individual components and their relative

concentrations when presented as a blend varying in time. The

optimal solution requires non-overlapping information channels as

described in the MGC, and its associated ORN tunings. Since the

male moth needs to detect pheromone ratios in odour plumes, the

possible conflict between the temporal dynamics of the stimulus

with the temporal patterns of neural activity that are used to

encode concentration ratios constitutes a real challenge that is

successfully solved by the insect in behavioural situations. In this

context, we present here a neural network model that is able to

encode ratios between the concentrations of two odorants in a

blend, and investigate how this goal can be achieved using two

types of neural population dynamics that are associated with two

different encoding strategies. In particular, we focus on the

performance of these two different dynamics to detect concentra-

tion ratios when the stimulus pattern displays complex variations

in time as happens in odour plumes.

In our computational model [15], the connections are

biologically constrained to known morphological details of moth

MGC. Two types of dynamics are generated with networks that

share the same neural connectivity, except for the LN-to-LN

inhibitory connections, that we call fixed point attractor (FPA) and

limit cycle attractor (LCA) behaviours, reminiscent of ‘‘Winner-

Takes-All’’ and ‘‘Winnerless Competition’’, respectively [16]. FPA

networks employ symmetrical inhibition between competitive

elements, and the resulting neural network encodes stimulus

through the spatial identity of neurons, while LCA networks have

asymmetrical inhibition and the output is rich in spatiotemporal

dynamics. We compare the ability of the two encoding schemes to

represent binary odour ratios and in the process provide insights

about certain details of the network connectivity that are still

unknown.

Methods

Modelling of Neurons
Individual neuron dynamics are modelled using first order

differential equation that describes the evolution of the firing-rate

activity over time,

t
dai

dt
~{ai(t)zS

X
j [P

wi,jaj(t){
X
k [L

wi,kak(t)zRi(t)

 !
, ð1Þ

where ai is the activation level of the ith interneuron; P is the

subset of neurons that are PNs, and L the subset of neurons that

are LNs; wi,j is the strength of synaptic influence of j on the activity

of i (similarly for wi,k); Ri~vi,1r1zvi,2r2~vi
:r is the afferent input

from receptor neurons to the ith interneuron, which is the dot

product of glomerular inputs from the two receptor neuron types,

r~(r1,r2), weighted by the strength of connections, vi~(vi,1,vi,2);
S is a sigmoidal squashing function; and t (set at 10 ms for all PNs

and at 20 ms for all LNs) is the time constant governing the speed

of neuronal dynamics. S(x)~x3=(0:53zx3) for xw~0, and

S(x)~0 for xv0, is a rectified sigmoid function that limits the

neuronal activity to values between 0 and 1 while still allowing a

linear-like response to a range of input levels between non-

activation and saturation. Note that synaptic influence from PNs,

j [P, is excitatory and therefore positive, while LNs, k [L, are

inhibitory and negative. More details for the determination of the

connection weights wi,j and wi,k are given in the next section.

Simulations were carried out on a PC running MATLAB using

customized code. The evolution of the neuronal firing-rates over

time was calculated using integration by a Runge-Kutta algorithm

with fixed time-steps of 1 ms. A Gaussian noise j (m = 0,

s = 5|10–4) was added to this equation at each time-step to

create non-deterministic firing-rates. The value of s was chosen

such that the neuronal activity was not completely dominated by

noise, but still generated variability between repetitions to allow a

comparison of the robustness to noise between different instances

of the model.

The initial activation values were taken from a Gaussian

random distribution with m = 0.01 and s = 0.0025. In both LCA

and FPA models, the values of ai rapidly converged to an

equilibrium point that was zero in the absence of stimulation (i.e.,

there was no spontaneous activity). We waited 100 ms from the

start of the simulation until the stimulus onset to ensure that the

initial conditions did not influence the comparison between both

dynamics (FPA and LCA).

Network Connectivity
The general connectivity of the network (Figure 1) was set according

to morphological studies of the moth MGC [8,9,13,17–21]. The

number of MGC glomeruli equals the number of behaviourally

relevant pheromone components, with each ORN type projecting to

one MGC glomerulus [21]. This number can typically range between

1 and 8, depending on the species of moth. Since the encoding of blend

ratio is investigated here, a two-component pheromone blend and,

accordingly, two glomeruli are simulated.

The number of PNs and LNs has large variation in different

species of moth. In Manduca sexta there are 35–40 PNs in the

MCG, and the total number of LNs is 360 in the whole AL (Table

1 in [17]). From this number of LNs the proportion that belongs to

the MGC is undetermined, but it is likely to be only a minor

fraction because most glomeruli are part of the general olfaction

system. In this context, we decided to use 30 PNs (divided in 2

glomeruli) and 30 multiglomerular LNs as a plausible approxi-

mation that allows a rich dynamic behaviour in our model

network.

In the moth MGC, pheromone sensitive ORNs are specifically

tuned to just one pheromone component and relay information to

the PNs of one particular glomerulus [9], while the connectivity

within PNs is mostly uniglomerular [19]. The input to each

glomerulus was taken to be the aggregated activity of ORNs

activated by the respective pheromone component, represented by

a scalar value within a two element vector (r1,r2). Therefore, each

PN in the model receives input from just one receptor type (either

vi,1 or vi,2 = 0, for all i [P) via a randomly weighted connection (in

order to give most PNs direct afferent excitation, weights were

drawn from a normal distribution, m = 1, s = 1, with negative

values rectified to 0), and has random excitatory interconnections

with other PNs of the same glomerulus. PNs have 0.8 probability

of synapsing to another PN within a glomerulus, with a relatively

small connection weight of 0.0125+0.1 (negative values were

rectified to 0). These values have been chosen so as to not cause

runaway excitation (PN trajectories showed little change for weight

values between 0 and 0.4 in FPA and from 0 to 1.6 in LCA).

In contrast to PNs, the LNs of the moth MGC are generally

multiglomerular and receive input from many types of pheromone

sensitive ORNs [13]. Therefore, in the model LNs receive input

from both receptor types, so receiving information for both

pheromone components. The connection probability was set to

1.0, with weights drawn from a normal distribution, m = 1, s = 1,

with negative values rectified to 0.

Ratiometric Model of Macroglomerular Complex
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As output and input synapses have been identified between LNs

and PNs in many species [13], these contacts were included in our

model. Inhibitory connections from the LNs to the PNs were chosen

randomly. A LN had a probability of 0.2 to connect to any PN,

irrespective of the glomerulus to which the PN is associated, and a

high strength weighting for that connection (22.5+0.1). The high

strength of connection ensured that any post-synaptic PN would be

completely inhibited, and as such, any value smaller than 21 would

suffice. Relatively sparse connectivity from LNs to PNs was required

to ensure that not all PNs were completely inhibited during odour

presentation. Although the exact value was not important, 0.2

provided a balance that allowed LNs to influence but not

overwhelm PN response. We also included excitatory feedback

from PNs to LNs with a connection probability of 0.5, and synaptic

weight set to 0.033+0.1 (negative values were rectified to 0).

FPA network and LCA network models differed by how

interconnections between LNs were determined. For FPA

networks, competition between cells was created through mutual

inhibition, so LNs were given all-to-all connections with a high

inhibitory connection strength (215+0.1). For LCA networks,

cells were connected asymmetrically with high inhibitory connec-

tion strength (215+0.1), leading to uneven competition that

prevents a long-term winner, and therefore prevents a stable

equilibrium point. To generate this asymmetry, connections

between LNs were chosen randomly with a probability of 0.25

for any LN connecting to any other. For this value, the

subnetworks of LNs generate switching behaviour. Indeed, any

value between 0.2 and 0.4 could also generate switching

behaviour. However, for values less than this the subnetworks

would lack LN interactions, and for values greater, subnetworks

would become largely symmetrical. In either case switching

behaviour would not occur.

In FPA models, for each LN that contacts another there exists a

reciprocal connection (with both synaptic weights being drawn

from the same random distribution), so the coupling must be

symmetric. When the connection probability turns lower (e.g.,

0.25 in LCA), it becomes very probable that if a given LN contacts

another the opposite may not be true, giving rise to an asymmetric

connectivity pattern in the LN subnetwork.

20 realizations of each network type (LCA and FPA) were

created following the above rules so as to investigate the general

properties of the model and the effects of the noise level. The

connectivity is summarized in Figure 1.

Results

Network Behaviours
The behaviours of the MGC models created are illustrated by

an example response of a FPA network, and one of a LCA

network (left and right panels in Figure 2a, respectively). The LNs

in the FPA network compete directly with one another through the

all-to-all inhibitory connectivity. The random ORN to LN

connectivity determines that for any ratio there is one LN that

receives greater excitation, and inhibits its competitors becoming

dominant. In the left panel of Figure 2a, this FPA competition can

be seen in the LN responses: after a short initial transient only one

LN remains active, and the network settles into a stable spatial

pattern of activity. This is also reflected in the PN responses,

showing a very brief activity transient immediately after stimulus

onset until a stable pattern is established. In contrast, the LNs in

the LCA network do not settle to a stable spatial pattern within the

time period considered (500 ms), but change continuously, driving

the PN activity to do the same. This results in a sequence of PN

activation patterns comprising rich spatiotemporal dynamics (right

Figure 1. Neuronal connectivity schematic. Excitatory connections are represented with arrows and inhibitory connections with circles. Just two
glomeruli are modelled, which are the convergent sites for axons of two ORN types (cyan for ORN1 and light green for ORN2). The receptor neurons
provide afferent excitation to both classes of AL neurons. PNs, being exclusively uniglomerular, receive excitation from just one type of receptor,
while LNs, being multiglomerular, receive excitation from multiple receptor types. LNs and PNs have mutual random connections (red and black solid
lines – see Methods). PNs innervating a single glomerulus form random excitatory interconnections with fixed probability (dashed lines – see
Methods). Two cases of inhibitory LN interconnectivity are considered: random connections of fixed probability to produce LCA behaviour (as in the
example shown here) and all-to-all connectivity generating FPA behaviour (not shown).
doi:10.1371/journal.pone.0029602.g001
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panel in Figure 2a). We investigated the evolution of these

complex dynamics for longer stimulus durations (5 seconds) and

found that the network typically reaches a fixed point (Figure S1)

or a periodic orbit (not shown) after 0.5 to 1 second of simulation.

This later fixed point includes many LNs active at the same time,

in contrast with the earlier fixed point of the FPA network

(Figure 2a) in which only a single LN remains active. As

pheromone information in natural odour plumes is presented in

pulses of short duration, this fixed point is unlikely to be reached in

the moth during behaviuoral situations. For this reason we kept

the term LCA, as it refers to the dynamics observed during the

stimulus period used in our simulations (500 ms). However, this

issue is interesting from a theoretical point of view in the

comparison between LCA and ‘‘Winerless Competition’’ types of

neuronal dynamics because this late fixed point is not reached in

the last case, although it was observed in electrophysiological

recordings performed in the locust AL [22] (see Discussion).

The transient PN responses can also be seen in the trajectory

plots depicted in the lower panels of Figure 2. The FPA model

responses (left panel in Figure 2b) show fast onset transients that

lead to stable attractors at a given instant. The system stays near

these stable attractors until the return transients after stimulation.

The LCA model (right panel in Figure 2b) also displays fast

transients from rest at stimulus onset, and then enters into complex

spatio-temporal patterns which are both sensitive to the input ratio

and repeatable over trials perturbed with different realizations of

noise.

The trajectories show how the responses differ across input

ratios in each network (lower panels of Figure 2). In both networks,

the PN population responses to different ratios are separated. In

the FPA model, trajectories never cross for different ratios during

the transient phase or as these approach the fixed point. The

separation of the fixed points for different ratios indicate reliable

encoding of the blend ratios considered over time. In the LCA

model, the trajectories are shown to be localized in different

regions of the PN phase space that do not overlap. In both

networks, the trajectories also show that responses that are closest

together are induced by neighbouring ratios, suggesting that the

response trajectories and their associated attractors vary smoothly

and continuously with changes in the input ratio.

Conflict between Stimulus Dynamics and Network
Dynamics

An issue with using time as an encoding dimension for odour

quality is that this temporally structured code may become

confounded with the dynamics of the stimulus. This is especially

problematic for animals such as the moth that perform

anemotactic orientation in odour plumes, where the stimulus

dynamics can be very complex and have been shown to be

behaviourally relevant [23,24].

Both FPA and LCA models can preserve and accurately pass on

the stimulus dynamics to downstream neural processes, as

illustrated in Figure 3. The smallest pulse in Figure 3 is around

40 ms, which is realistic for odour plumes [24]. However, we

wondered if the stimulus dynamics reflected in the activity of the

PN population could interfere with the encoding of the blend ratio.

To assess this issue, we correlated the spatiotemporal output

patterns of the PN population for a single stimulus pulse of long

duration with the patterns obtained from stimulation with

differently timed pulses. This result is presented in the next

section for both the FPA and LCA models. The spatiotemporal

output was taken to be the activity of the PNs partitioned into

time-bins. The mean activity for each PN was found over each

time-bin, Dt~tj{tj{1 = 10 ms, for each time-step j. This

produced a matrix, Aij , composed of a time series of activity for

each PN, i [P:

Aij~
1

Dt

ðtj

tj{1

ai(t)dt: ð2Þ

Correlating PN Population Responses. To assess the

evolution of the PN code over time and its dependence upon

the stimulus, the matrix of spatiotemporal responses to a 500 ms

duration stimulus, Aij , was broken into a set of column vectors Aj ,

each describing the instantaneous spatial activation pattern of the

PNs at the jth time-bin. This process was repeated for the PN

responses to a differently timed pulsed stimulus, generating the set

of vectors A
0

j . The similarity between PN responses for the two

different stimuli and at different times j1 and j2 was measured

using the correlation coefficient between response vectors defined

as

c~
AT

j1A
0
j2

AT
j1Aj1:A

0T
j2 A

0
j2

h i1=2
: ð3Þ

In this way, we assessed the effect of inter-pulse intervals on the

correlation (Figure 4).

The different network behaviours are clearly evident in the cross

correlation diagrams. The stable spatial patterns of the FPA

models result in high correlation coefficients between all time-steps

for the 500 ms single pulse (Figure 4a). The large square region of

almost perfect correlation shows that the network dynamics were

relatively consistent over time. The transients leading to the stable

attractor can be seen as a small region of high correlation on the

diagonal immediately after stimulus onset. In contrast, the

temporally rich behaviour of the LCA models results in relatively

low correlation except for a narrow band on the upward diagonal

(Figure 4e). This narrow diagonal shows that the changes in spatial

patterns happen smoothly but quickly, with the width being no

greater than 50 ms, as the spatial pattern must be switching within

this time.

When 10 ms inter-stimulus intervals are introduced to break up

the single long pulse, in both the FPA and LCA models (Figure 4b

and f), the systems begin to return to rest at each interval, but these

return transients have not enough time to get established. Thus,

the progression of responses is temporarily halted at each interval,

but then resumes at the onset of the next pulse.

Longer inter-stimulus intervals of 100 ms (Figure 4d and h)

allows enough time for these networks to fully reset and start

responses afresh, and so each pulse produces the same initial

spatiotemporal response. For FPA models, there is still the block of

high correlation for each pulse (Figure 4d), and for LCA models,

there is the same diagonal for each pulse (Figure 4h). For both

networks, the correlation pattern during the pulse is the same as

the first 50 ms of the 500 ms pulse. In the next 50 ms after each

pulse, the correlation pattern does not change significantly from

that at stimulus offset. This indicates that the spatial response

pattern does not change during the return transients. However, it

decreases in strength until fading away due to the decorrelation

introduced by the noise in the firing-rate.

In the case of 50 ms inter-stimulus intervals, this intermediate

time length allows overlap between the return transients after

each pulse and the initializing transients of the next pulse

(Figure 4c and g). Given the simple temporal structure of the

Ratiometric Model of Macroglomerular Complex
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responses in the FPA models, the high correlation for each pulse

is re-stablished, as happened for the 100 ms interval pulses

(Figure 4c). However for LCA networks, 50 ms intervals do not

allow a full reset in the dynamics as for longer intervals, nor a

continuation of the temporal sequence as for shorter intervals

(Figure 4g). Instead, except for the first 20 ms after stimulus

onset, the spatial patterns appear to be altered and are no longer

correlated with spatiotemporal response for the 500 ms pulse.

This has a profound effect on the encoding of ratio identity by the

spatiotemporal PN responses when the network is exposed to

stimulus dynamics on certain time scales, as we show in the next

section.
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Figure 2. Examples of modelled responses. a) These two panels show examples of the response to stimulation from a FPA network (left) and a
LCA network (right). The bar in the horizontal abscissa indicates stimulus duration and timing. For illustrative purposes, a 0.5:0.5 ratio stimulus was
used. In the sub-panels, the rows are the activity for each neuron. The top two sub-panels show PN activity in the two glomeruli, while the bottom
sub-panel shows LN activity. The FPA model displays transient activity patterns before settling to a stable spatial pattern around 100 ms after
stimulus onset, whereas the LCA model displays rich temporal patterning during the stimulus period. b) Trajectories of the PN responses to different
input ratios for the same model realizations displayed in the rasters above, each with 20 repeats perturbed with different realizations of Gaussian
white noise of m = 0 and s = 5|10–4. The first three principal components have been taken to produce 3-dimensional plots so that a point in these
plots represents a spatial response pattern at an instant in time (bin size was 5 ms). Solid lines indicate the trajectories during stimulation, while
dotted lines indicate return trajectories after stimulation. The crosses are plotted at regular time intervals of 50 ms, and thus indicate the local velocity
of the trajectories and its variability between trials. The different network behaviours are also apparent in these plots. The time in which the mean
Euclidean distance between the trajectories reaches a maximum value is 358+198 ms for FPA, and 226+143 ms for LCA (m+s for 20 model
realizations, p = 0.02 in the t-test).
doi:10.1371/journal.pone.0029602.g002
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Identifying Ratios from PN Responses. In order to

investigate how well FPA and LCA models encode odour ratios,

we assessed the separability of the spatiotemporal outputs between

ratios, and its robustness to noise. This was done by discriminant

analysis, to quantify how well the input ratio could be identified

from the PN responses. Stimuli were created by randomly selecting

ratios from a uniform distribution. They were categorized into five

ratio groups 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, 1:0 corresponding to

R= 0, 0.25, 0.5, 0.75, 1 (+0.125) respectively. More formally, for a

ratio r1:r2, R~r1=(r1zr2).

Figure 3. Responses to randomly timed stimulus pulses. Responses to randomly timed stimulus pulses. The FPA network (left) and the LCA
network (right) were presented with the same randomly timed stimulus. Both models were able to follow the odour pulses, and at each onset of
stimulus, the initial transients governed by networks dynamics appear to start anew. The averaged PN activity shows that both models follow the
odour pulses closely and this averaged activity accurately relays the timing information of the stimulus.
doi:10.1371/journal.pone.0029602.g003

Figure 4. Cross correlation and stimulus timing. Cross correlation and stimulus timing. Time-binning the PN population responses results in a
series of instantaneous spatial activity patterns. The spatial activity patterns for a 500 ms duration stimulus (vertical axis) were correlated with the
spatial patterns from differently timed pulsed stimuli (indicated by bars on horizontal abscissas). This was done for FPA networks (a–d) as well as for
LCA networks (e–h). The pulse patterns are: a) one 500 ms pulse and; b) five 50 ms pulses with inter-stimulus intervals of 10 ms, c) 50 ms and d)
100 ms. The same patterns were used for LCA (e–h). The correlation coefficients shown are mean values taken from 400 random input ratios and 20
networks. The different network behaviours between FPA and LCA networks result in very different looking cross correlation maps for the 500 ms
pulse results (a and e). FPA networks show high correlation throughout periods of stimulation, indicating that the spatial patterns are very similar
across time-bins (a). LCA networks display lower correlations, with highest values in a thin region along the diagonal (e). For both FPA and LCA
networks, very short inter-stimulus intervals of 10 ms have little effect except to slow the progression of the sequence of spatial patterns (b and f).
The pulses with long inter-stimulus intervals of 100 ms do not interfere, and each pulse elicits a separated response that is almost identical to each
other pulse (d and h). However, for 50 ms inter-stimulus intervals, the tail of the previous pulse overlaps with the next response (c and g). This has no
apparent effect on FPA models, but LCA models show a marked difference in the shape of pattern of correlation for pulses following the first.
doi:10.1371/journal.pone.0029602.g004

Ratiometric Model of Macroglomerular Complex
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In the same way as for correlation analyses, the spatiotemporal

output was taken to be the time-binned PN responses. Thus, for

each odour presentation, a time series of instantaneous PN activity

patterns was constructed. A 500 ms pulse was used to generate a

training set of 100 stimuli, which gave 100 instantaneous PN

responses for each time-step. These time-steps were set on the

vertical axis of the plots in Figure 5. Then, the time steps of a data

set composed of 400 stimulations were placed on the horizontal

axis and classified using discriminant analysis. In this way, we can

visualize the times at which the data set is coherent with the

training set and therefore allow correct classification. The colour

code represents success rate of ratio blends correctly classified.

As part of the discriminant analysis algorithm, the covariance

matrix of the variables has to be inverted. In this situation, redundant

linearly dependent dimensions of the training set can cause failures in

the calculations. To avoid this problem, principal component analysis

(PCA) was applied beforehand to retain only the principal dimensions

reflecting 90% of variance before classification was attempted.

Figure 5 confirms the underlying behaviours of the FPA and LCA

models observed in Figure 4. FPA models show a large square

region of almost perfect classification from 50 ms after stimulus

onset to the stimulus end in both axes (Figure 5a). This is indicative

of the constant spatial code generated by the stable attractor that the

FPA networks attain after initial transients. The transients leading to

the stable attractor are evident in the line of high classification rates

along the diagonal in the first 50 ms after stimulus onset.

LCA models show a narrow band where the accuracy is greater

than 90% (Figure 5e). The narrow width indicates the fast

switching behaviour of the spatiotemporal PN code. This diagonal

is pronounced for the whole stimulus duration in this analysis,

showing that the temporal code spans the whole stimulation.

There are also elevated success rates that are off of the diagonals

during the last half of the stimulation. This is evidence of the LCA

models entering limit cycles, repeating spatiotemporal output.

However, these regions do not seem well defined since the

properties of these limit cycles are different for each model

instantiation and stimulus ratio. These features were also evident

in the correlation analysis, but the colour scale of the diagram

made it more difficult to visualize, and also the correlation analysis

was more affected by the variability of the neural activity, which

accumulates over time, gradually weakening the correlation.

The effect of short 10 ms intervals can be seen to momentarily

halt the progression of the response dynamics, which resume at the

next pulse (Figure 5b and f). During these intervals the drop in

classification rates can be seen clearly. The 100 ms intervals

provide enough separation for each pulse to start a completely new

response for both FPA and LCA models (Figure 5d and h). The

most interesting case of the intermediate length 50 ms intervals

shows that FPA responses allow classification in each pulse just as

if they were presented individually (Figure 5c). However, LCA

models suffer a big drop in classification accuracy as the tail of

responses to the first pulse is confounded with the spatiotemporal

responses of subsequent pulses (Figure 5g). This shows that the

spatiotemporal encoding scheme cannot reliably convey odour

identity for certain dynamical stimuli, specifically when the

stimulus dynamics are on a similar time scale thus interfering

with the intrinsic dynamics of the LCA network.

Time as an Encoding Dimension
Measure of Ratio Specificity. The advantage of using time

as an extra encoding dimension is that, theoretically, it can greatly

Figure 5. Cross classification and stimulus timing. Again, we use the series of instantaneous spatial patterns as in Figure 4. FPA (a–d) and LCA
(e–h) networks were repeatedly stimulated with 500 ms pulses of five different ratios. The subsequent PN spatial patterns for each time-bin were
used to train a linear model. The networks were also stimulated with the differently timed pulses of the same 5 ratios, generating spatial patterns
which were then classified by the linear model, estimating which ratios generated each spatial pattern (see methods). The colour scale is the same for
all panels, and shows the mean success rate for multiple trials and networks. 20% is the chance success rate. For the single pulse of 500 ms, there is
high accuracy along the diagonal for both FPA and LCA networks (a and e). LCA networks have a thin region around the diagonal of high accuracy (e),
indicating a smooth transition between spatial patterns, which are constantly switching. FPA networks simply show a block of high accuracy (a),
indicating that the spatial patterns change very slowly or not at all. The dynamics is not affected for inter pulse intervals of 10 ms (b and f) and
100 ms (d and h). For inter pulse intervals of 50 ms, LCA models suffer a big drop in classification accuracy as the tail of responses to the first pulse is
confounded with the spatiotemporal responses of subsequent pulses (g), while FPA responses allow classification in each pulse just as if they were
presented individually (c).
doi:10.1371/journal.pone.0029602.g005
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increase the potential encoding space available. No longer is the

information confined to just a static spatial activity pattern, but can

entail a sequence of spatial patterns, multiplying the possible

representations with each time step. Here, we compare the

spatiotemporal PN codes for the FPA and LCA models to

investigate if the more temporally complex output of LCA models

utilizes this advantage.

In this section, analyses are performed on the spatiotemporal

code including time, not just instantaneous ‘snapshots’ as before.

Here, the response to stimulation is taken to be a vector produced

by all the elements of the matrix Aij (as defined by equation 2),

giving

(A11,A12,:::,A1m,A21,:::,Anm);

if Aij is an n|m matrix. This makes a vector space with a

dimension for each time-step for each PN.

When the response to one input ratio is correlated with other

ratios, the closest ratios have highly correlating neuron responses

while very different ratios have low correlating responses. This

creates a bell-shaped curve (Figure 6a). We use the second

moment about the peak correlation as a measure for the width of

this bell-shaped curve, and thus the specificity of the PN code. Let

the input ratio be denoted by the proportion of the input

composed of type 1 receptor input, R~r1=(r1zr2), then the

curve width, sRm
, for a particular ratio, Rm, is defined to be

s2
Rm

~

ðq

p

(R{Rm)2:c(Rm,R):dR, ð4Þ

where p~Rm and q~Rmz0:5 for 0vRmƒ0:5, and p~Rm{0:5
and q~Rm for 0:5vRmƒ1 in order to avoid problems at the

boundaries of R. c(Rm,R) is the correlation coefficient for the

spatiotemporal responses to the two ratios. The average width for

a network was taken to be the mean width over ratios.

This bell-curve width is indicative of the specificity of the PN

output to ratios. Since the correlation between the spatiotemporal

output to different stimuli gives a measure for the similarity of the

these outputs, a narrow bell-curve would be produced by a

spatiotemporal code that changes greatly across ratios. The

sharper the bell-curve, the better the differentiation can be of

the input ratios from the spatiotemporal output. This measure for

ratio specificity was used to assess the importance of time to FPA

and LCA models. The time-length from stimulus onset of the

spatiotemporal PN responses was changed, and the analyses were

carried out for each time-length. In this way, we tested the effect of

the time-length of the code on the ability of PN population

responses to encode ratios.

The temporal consistency of the PN responses from FPA models

determines that the ratio specificity is not enhanced by taking

longer time-lengths of PN responses. The fixed spatial response

patterns do not allow any more information to be conveyed once

the transient patterns have completed. Therefore for FPA models,

one would not expect that ratio specificity is dependent on code

length once the stable attractor has been reached, and this is

indeed the case (Figure 6b). Interestingly however, specificity is not

dependent on code length, except for the first 10 ms transient

phase before a stable spatial pattern is fully established, as depicted

in Figure 6b by a horizontal plot for code lengths of over 50 ms.

In contrast, LCA models have much improved ratio specificity

as time allowed for encoding is increased. The largest drop in bell-

curve width is within the first 200 ms, after which the rate of

change is reduced, and a stable value is reached by 500 ms

(Figure 6b). This drop in bell-curve width corresponding to an

increase in ratio specificity of the PN code demonstrates that the

spatiotemporal activity of PN responses in LCA models does

indeed utilize time as a coding dimension. Part of this effect can be

related to the fact that PN responses are sparser because they

receive larger inhibition from the LN population, which is more

active due to a lesser degree of inhibitory self coupling.

In summary, our results suggest that a spatiotemporal code can

and does carry more information than spatial-only code, allowing

a more precise determination of the input ratio over time.

Response Length and Reliability. In this final section, we

take the idea of the spatiotemporal code over limited time-lengths

presented in Figure 6a, and apply it to the training and data set

responses used in Figure 5. Then, we perform the discriminant

analysis on this spatiotemporal output (Figure 6c). Surprisingly, the

FPA models display a strong time dependence for classification

Figure 6. Ratio specificity, output reliability and code length. a) An example illustrating the bell-shaped correlation curve. Correlating the PN
population response for a particular ratio,Rm, against all other ratios gives this approximately bell-shaped curve, which peaks atRm with a correlation
coefficient of value 1. The more specific the PN response to a ratio, the sharper and thinner the bell-shaped curve. Thus, the width of the bell-curve, s,
marked by the dotted lines (see text for definition) indicates the specificity of the PN response. b) The effect of response length on code specificity.
This shows the specificity of the spatiotemporal PN responses as the response length taken into account is changed, indicating how the ability of the
models to encode ratios is dependent on the temporal dynamics. The shaded areas show standard error. c) The effect of response length on
reliability. Discriminant analysis was used to predict the input ratios from PN responses according a training set of responses (see text). The accuracy
of this classification indicates the reliability of the PN responses for the identification of input ratios. This test was applied to different response
lengths as in b). The accuracy of both types of networks becomes stable by 100 ms, with FPA networks at around 85% and LCA networks at around
91%. LCA networks start with lower accuracy but quickly increase and exceed that of FPA networks. The FPA networks’ ability to hold ratio
information actually decreases as they reach the stable attractors. Again, shaded areas represent the standard error.
doi:10.1371/journal.pone.0029602.g006
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accuracy for the first 100 ms period after stimulus onset.

Moreover, the accuracy largely decreases as code length initially

increases. This is because the FPA network has a limited number

of discrete attractors, so the encoding space is smaller for the stable

patterns than during the transient phase before neural activity has

saturated.

LCA models behave more intuitively, with accuracy increasing

during the transient phase, and plateauing around 100 ms with

better accuracy than the best that FPA models achieve during

stimulation. Classification accuracy is dependent on the consis-

tency of the PN responses as well as on the separability between

responses to different input ratios. The PN output of LCA models

have increasing separability for the first 100 ms since the ratio

specificity increases (Figure 6b).

Discussion

In the present article we presented a neuronal model

constructed with a connectivity pattern based on the morphology

of the moth MGC, and showed how this model is able to encode

ratios between odour concentrations in a binary blend. We aim to

contribute to the ongoing discussion about spatial and temporal

coding strategies in the insect AL. The two different dynamical

regimes FPA and LCA were generated without using any special

intrinsic neuron properties (all neurons were first-order linear

equations except for the addition of a sigmoidal squashing

function), so that as few as possible assumptions were made and

we can be sure that they arise as a purely network phenomena,

due entirely to the way in which LN inhibitory interconnections

were chosen. Using this simple modelling approach, we intend to

gain insight into MGC working principles rather than provide an

extensive recreation of its physiology in a particular species,

because the two types of dynamics explored here may be operative

to a certain degree in very different invertebrate nervous systems.

The connectivity of our model was based on morphological

studies of the moth, principally Manduca sexta [8,9,13,17–21,25] To

keep the network patterns as simple as possible, we did not include

some features that were described in other insects but not

confirmed in the moth, such as the existence of excitatory LNs

[26] or feedback from LNs to ORNs [27]. Similarly, the dynamics

of the receptors (e.g., [28]) were omitted in order to focus on the

ratio encoding capabilities of the MGC circuitry.

From the previous efforts to model different aspects of the AL,

only a handful have been specific to the MGC [29–36]. Linster

et al. (1994) describes an oscillatory model, showing that by

balancing numbers of inhibitory and excitatory neurons in a

network receiving two component input, a system can oscillate

when a particular ratio is presented. Linster et al. (1996) built a

more biologically constrained model including LNs that mediate

information to PNs. Again, the balance between inhibitory and

excitatory elements is investigated, this time to show that PN

response patterns can be made dependent on the input ratio. The

model can be tuned such that PNs will display both inhibitory and

excitatory influences from the LNs when a particular ratio is

presented. As such, model PNs will respond with a pattern of

activation, which includes mixed periods of excitation and

inhibition, only for input that is close to a particular ratio. The

recent article of Zavada et al. [36] presents minimalistic feed-

forward networks displaying ‘‘Winner-Takes-All’’ type of compe-

tition between LNs in the MGC of the moth. These models are

based on specific connection strength ratios between ORNs and

LNs that allow the recognition of pheromone component ratios

across a wide range of concentrations.

In some studies that model the MGC, and those that model the

AL for general olfaction, focus has been on generating biologically

realistic PN response patterns. Highly-detailed neurons exhibiting

bursting behaviour have been used within different neuronal

circuits of four-or-less interneurons [29–31]. It was shown that

these circuits can be designed such that the model PNs display

excitation or inhibition depending on which components are

present in a simulated pheromone blend input. This replicated

some responses observed in the activity of PNs in the Sphinx moth,

Manduca sexta, when pheromone components were presented

[11,12].

From a theoretical point of view, the issue of excitatory-

inhibitory synaptic balance has been addressed in [37], analysing

the conditions to have reproducible encoding in ‘‘Winnerless

Competition’’ dynamics, which is comparable to LCA. Concern-

ing the FPA dynamics, an AL model of this type has been used for

identification of real mixture data using an artificial sensor array to

address classification methods and working memory in insect

olfactory systems [38,39].

The existence of a population code in which odours are

represented as spatial activation patterns that evolve in time has

been extensively described in insects using functional imaging

methods, e.g., [9,40]. On the other hand, both LCA networks and

the theoretical framework of ‘‘Winnerless Competition’’ proposed

by Laurent’s group and collaborators [16,22,41–44] produce

orbits in the PN phase space as a suitable principle by which odour

identity and concentration can be represented. In the case of

‘‘Winnerless Competition’’, the trajectories are defined by

sequences of unstable attractors, each corresponding to the

transient activation of a specific subset of synchronized PNs. They

share the property of being robust against perturbations and, at

the same time, very sensitive to the input. There exists

considerable evidence that this type of sensory encoding is used

in the locust AL [22,45], and may also constitute a general

principle of perceptual representation of multi-dimensional signals

widely extended across species and sensory modalities [46,47].

Our LCA networks show similar sensitivity to the input whilst also

being robust to perturbations, although they do not depend upon

heteroclinic dynamics.

The facts outlined in the previous paragraph highlight that both

spatial and spatiotemporal codes can carry information about

odour identity in the insect olfactory system. This illustrates the

point of our present modelling effort aimed to address the

dynamical behaviours underlying both encoding strategies and

compare their ability to encode ratio information. We found that

the main advantage of the spatiotemporal code resides in holding

more information by its improved specificity between ratios

(Figure 6c), and the earlier time in which it reaches the maximum

Euclidean distance between the ratio-specific trajectories (legend

of Figure 2). The disadvantage is, however, that the potential

collision between stimulus and network dynamics can degrade

ratio specific information. This is particularly a problem for

olfactory coding in moths, since highly dynamic odour plumes

occur in the natural environment, generating a temporal structure

that is very significant for anemotactic search [23,24].

We focused on the problem of a potential interference between

the stimulus temporal patterns and the network dynamics and

found that the LCA encoding of ratios can be indeed disrupted by

inter-pulse intervals durations of a range that can occur in

pheromonal odour plumes. The simulations show that LCA

encoding can seriously fail in certain cases compared with FPA.

The interference may arise when frequencies within the natural

plume and network dynamics are in the same range. This is not a

purely hypothetical issue since frequencies in natural odour plumes
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have some overlap with those observed in the temporal patterns of

PN recordings [23], which also match those found in the dynamics

of our LCA model. The real MGC may be able to deal with this

problem by having neurons with different time constants so as to

ensure the precise encoding in the behaviourally relevant

frequency range of stimulus using a LCA scheme. The simulations

presented here were done using identical time constants for all the

neurons of each type (PNs and LNs). This does not allow a

triphasic (inhibition-excitation-inhibition) response pattern as

observed in M. sexta MGC-PNs [48], except as a random network

behaviour. Having a triphasic response pattern would also help to

separate the pulses by resetting the responses before coding of the

next odour pulse, preventing interference. Another factor that can

potentially contribute to avoid interference in biological neural

networks is the presence of an offset response to the stimulus that

may allow the system to discriminate between blends in spite of

collisions between the dynamics of the stimulus and those

generated by the network. This type of offset response, described

in the locust [49], depends on intrinsic properties of the cells that

were not considered in our model. An additional possibility to

preserve ratio encoding under complex stimulation patterns would

be to rely upon FPA encoding strategies, or to use a combination

of FPA and LCA dynamics working in parallel using different

neuropils within the MGC.

The biological relevance of the computational simulations

presented here can be appreciated in light of Mazor and Laurent’s

(2005) results in the locust AL. In this study [22], the authors

recorded multiple PNs simultaneously while stimulating the

antennae with long lasting pulses of odour blends. They found

that odour representations can be described as trajectories in PN

state space with a transient phase lasting 1–2 seconds, a stable

fixed point attractor for about 8 seconds and a final off transient.

The optimal stimulus separation occurred during the dynamic

phase of the response rather than at the fixed point. Moreover, the

period of maximum odour discriminability corresponds to the few

hundreds of milliseconds following the stimulus, which is in

accordance with behavioural evidence from the reaction time to

odours in insects. The dynamical trajectory of the PN vector in the

phase space is not only the most informative segment of the

response, but it is also responsible for most of the increase in the

total activity of the Kenyon cells, that are the targets of the PNs in

the mushroom body [22]. The dynamical response that occurs

before reaching the fixed point (see Figure 4 in [22]) strongly

resembles the LCA dynamics we show in this paper (right panels of

Figure 2-A and B), while the fixed points reached some seconds

later resemble the FPA framework results (left panels of Figure 2-A

and B). Regarding our LCA network, the time in which the

trajectories reach maximum Euclidean distance is around 250 ms

(legend of Figure 2), and we checked that they reach a fixed point

(Figure S1) or a periodic orbit (not shown) after 0.5 to 1 second of

simulation. This is similar to Mazor’s observations, and differs

from the ‘‘Winnerless Competition’’ framework in which a fixed

point is never reached (see page 669 in [22]). The late fixed point

shown by the LCA network is different from the early fixed point

of the FPA network because it includes many LNs active at the

same time instead of a single winner. Thus, the difference between

both dynamics is not only how fast they can reach a fixed point. As

explained above the first 0.5 seconds in which the two dynamics

are radically different constitute the most relevant time window

from a biological point of view.

In the context of our reductionist modelling approach, many

details of MGC morphology and physiology were included as had

been observed in the MGC of moths, e.g., the afferent input to the

two classes of AL neurons, LNs and PNs, and their interconnec-

tions in the glomerular structure [13]. Although it is known that

LN dendritic arborization is multiglomerular, more precise

connectivity is not known, and our computational simulations test

two possible connection arrangements and their respective

consequent encoding schemes. Considering the same general

architecture and set of synaptic weights, if the LNs’ inhibition

pattern is symmetric we get FPA dynamics, while an asymmetric

connectivity leads to LCA. This is potentially a simple way to

explain differences in the dynamics observed in different species

that may share a general connectivity pattern in the odour

processing networks. More precisely, our results predict that the

total LN to LN connectivity should be roughly symmetrical in

insects where the spatial coding of odour identity is prominent.

Indeed, the odour-specific trajectories in the left panel of Figure 2

appear to follow similarly shaped paths to trajectories of

glomerular activity observed in the honeybee [50]. This suggests

that the total strength of inhibition between glomeruli should be

symmetric. Conversely, in species where temporal patterns seem to

be prominent, as the example of the locust mentioned above (e.g.,

compare the Figure 4 of [22] with the right panels of Figure 2), a

more asymmetric inhibition between LNs would be expected. If

we consider long term changes in the efficacy of some LN to LN

synapses, this line of thinking can also offer possible explanations

to learning related modifications in the network dynamics that we

plan to address in our forthcoming research.

Supporting Information

Figure S1 Fixed point in LCA. Long lasting LCA simulation

showing that the dynamics reaches a fixed point at the end of the

first second. The stimulus elapse is shown with a bar under the

abscissa. Stimulus ratio was 0.5:0.5, and LN to LN connection

probability 0.25.
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