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Abstract

The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an
efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism

that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the

stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in

height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval.

Wood sections (8–12 mm thick) were stained and observed under a light microscope with polarized light to

differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first

enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-

dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at
9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion

phase is positively correlated with the lumen area of the tracheids ( r2¼0.68, P < 0.01) at the same height. By contrast,

thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down

the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase.

However, the inductive signal of such long-distance patterned differentiation remains to be identified.
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Introduction

In the xylem, water transport occurs through a complex

network of very narrow conduits. There are still a number

of unanswered questions about the way in which the three-

dimensional organization of xylem conduits (in the order of

micrometres) can guarantee an efficient delivery of water to

the leaves over very long distances (up to 100 m in the
world’s tallest trees) so that trees can be correctly defined as

masters of microfluidics (Holbrook and Zwieniecki, 2008).

According to physical laws (Hagen–Poiseuille), the amount

of water passing through a cylindrical conduit in a unit of

time under a given pressure (hydraulic conductivity, Kh)

is strongly affected by the length and diameter of xylem

conduits (Tyree and Ewers, 1991):

Kh ¼
p � q � d4

128 � g � l: ð1Þ

where q is the density and g the dynamic viscosity of water,

and l and d are length and diameter of the conduit,

respectively. For increased conduit length, like the increase in

root-to-leaf distance in real trees during ontogenesis, equation

1 states that Kh decreases accordingly unless the conduit

width increases basipetally (see the hydraulic limitation

hypothesis, Ryan and Yoder, 1997): for high rates of conduit
enlargement towards the base (i.e. conduit tapering), the

negative effect of path length on Kh is markedly reduced

(Becker et al., 2000; Enquist, 2003; Petit and Anfodillo, 2009),
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because Kh per unit length (hydraulic conductivity, k)

increases from the stem apex downwards (Yang and Tyree,

1993; Petit et al., 2008).

The longitudinal variation in xylem conduit diameter has

been extensively studied and the pattern of conduit enlarge-

ment towards the base (i.e. the so-called conduit tapering)

was similar among plants of different size and species (Leitch,

2001; Anfodillo et al., 2006; Weitz et al., 2006; Coomes
et al., 2007; Petit et al., 2008, 2009, 2010). Typically, the

variation is less than linear, with conduit width increasing

from the stem apex to the base following a power trajectory

of the form:

d¼ aLb ð2Þ

where d is the conduit diameter of the xylem conduits, L the

distance from the stem apex (path length), a the allometric

constant, and b the scaling exponent. In tall trees, the

scaling exponent b approaches the value of 0.20 which is
considered the minimum degree of tapering to overcome the

negative effect of increased hydraulic resistance when trees

grow taller (Petit et al., 2008, 2010).

Given the importance of the size of xylem conduits in the

transport system, a question naturally arises: how do plants

control the size of the xylem conduits along the pathway

of the interconnected elements that move water from roots

to leaves? This question appears particularly intriguing
because the hydraulic system has to be completed before the

whole network is functioning. In fact, the effective hydraulic

resistance of the entire conduit path is tested after cell

plasmolysis occurs, when the inner protoplasts are destroyed,

xylem cells are biologically dead, and no other change in the

vascular structure is possible. In trees, the question is even

more fascinating because this control mechanism has to be

applied in leaves, stems, and roots over distances that, in the
tallest individuals, can exceed 100 m.

A pivotal role in controlling the differentiation of the

vascular tissues would seemed to be played by auxin, namely,

indole-3-acetic acid (IAA) (Aloni, 2004). Although the un-

derstanding of how auxin regulates secondary xylem de-

velopment at molecular level is still rudimentary (Nilsson

et al., 2008), there is evidence that (i) the major sources of

auxin are the developing buds and young shoots (Uggla et al.,
1998; Scarpella and Meijer, 2004); (ii) auxin moves in a polar

fashion from the apex to the stem base (Aloni, 2001; Muday

and DeLong, 2001; Lovisolo et al., 2002; Friml, 2003)

according to an asymmetric disposition within the cells of

efflux-facilitating transmembrane proteins of the PIN family

(Berleth et al., 2007); (iii) the major path of the auxin flow in

trees is through the vascular cambium (Sundberg et al., 2000);

(iv) there is a general decrease in the auxin concentration
downwards in the stem (Lovisolo et al., 2002).

In their model, Aloni and Zimmermann (1983) proposed

that high auxin concentrations would accelerate cell dif-

ferentiation, thus reducing the period available for cell

enlargement. So, according to the different auxin concen-

tration along the stem of a tree, conduit elements should be

narrower at the top and attain the greatest sizes at the base,

because of the longer duration of the expansion phase. This

simple explanation has often been criticized because of the

observed radial gradient in auxin concentration and the

unclear mechanism of influence of this hormone on cell

expansion (Uggla et al., 1998; Lev-Yadun, 2000). Indeed,

recent analyses showed that the role of auxin in determining

cell dimension seems to be more complex than thought,

because auxin responsive genes are more expressed (i.e. cells
would become more sensitive to auxin) even if the level of

auxin decreased, as occurs away from the cambial zone

(Nilsson et al., 2008).

Whatever the control and variations in cell responsive-

ness, the xylogenetic processes along the stem are largely

unknown and detailed information on the relationship

between timings of differentiation and cell size is still lacking.

The aim of this paper is to answer the following two
questions: (i) does the duration of cell expansion differ along

the stem? (ii) is the duration of cell expansion correlated with

xylem conduit diameter?

Monitoring of xylem formation at high temporal resolu-

tion was carried out on one Picea abies tree to provide the

basic anatomical and developmental information for clari-

fying the possible role of inducing signals (e.g. auxin

concentration and/or responsiveness) in regulating structure
and size of the conductive pathways in plants.

Materials and methods

Sample collection and preparation

One 30-year-old Norway spruce (Picea abies) was selected in
a mixed forest in the Dolomites (North-Eastern Italy) (46�26# N,
12�13# E, 1000 m a.s.l.). The tree height and diameter at breast
height were 11.5 m and 25 cm, respectively, with good vegetative
conditions (annual longitudinal increment about 0.5 m) and living
branches until 1.5 m above ground. An 8-m-tall trestle was erected
to enclose the tree and collect samples along and around the stem.
Sampling was carried out in 2003, from 16April (day of the year
[DOY] 105) to 13November (DOY 316), every 3–5 d until July,
when the greatest cambial divisions occur (Rossi et al., 2006) and
weekly from July to November. During sampling, microcores were
collected along the stem at 1 m from the ground and at intervals of
1 m on the same longitudinal line. The microcores (2.5320 mm)
were collected with a surgical needle (Trapsystem�; Rossi et al.,
2006) from extraction points at least 5 cm apart. Overall, 40
samples for each position were extracted, leading to a total of 360
microcores.
Immediately after sampling, the microcores were placed in

Eppendorf microtubes with an ethanol solution (50% in water)
and stored as soon as possible at 5 �C in order to avoid tissue
deterioration. Each sample was oriented by marking the transverse
side with a pencil under a stereo-microscope at 10–20 magnifica-
tions. The microcores were dehydrated with successive immersions
in ethanol and D-limonene, embedded in paraffin according to
Rossi et al. (2006b) and transverse sections of 8–12 lm thickness
were cut with a rotary microtome. Sections were stained with cresyl
violet acetate (0.16% in water) and observed within 20 min with
visible and polarized light under a light microscope at 400–500
magnifications to distinguish the developing cells.

Dynamic of cell differentiation

For each sample, the radial number of cells in the cambial zone,
radial expanding phase, cell wall thickening and lignification
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phase, and mature cells were counted along three rows (Deslauriers
et al., 2003; Rossi et al., 2006a). Cells in the cambial zone and in
radial enlargement showed only primary wall that, unlike secondary
wall, did not shine under polarized light. The radially expanding
cells were wider in diameter and nearly isometric in shape
compared with cambial cells and could be quite easily detected
(Rossi et al., 2006b). The transition from the expanding tracheids
to those forming a secondary wall was determined by the
presence of birefringence under polarized light (Abe et al., 1997),
because of the arrangement of the cellulose microfibrils. Once
their final size had been reached, the cells began maturing
through cell wall thickening and lignification, which was detected
by staining the sections with cresyl violet acetate reacting with the
lignin (Deslauriers et al., 2003). Lignification was shown by
a colour change from violet (unlignified secondary cell walls) to
blue (lignified cell walls). The blue colour over the whole cell wall
indicated the end of lignification and the attainment of the
mature stage for the tracheid.
The duration of tracheid expansion was calculated as the

difference between the onset of xylem differentiation and the date
when cell wall formation began. Similarly, the duration of cell wall
formation was found as the difference between the onset of
secondary cell wall formation and the date when the first mature
tracheids were observed (Deslauriers et al., 2009). Therefore, our
analysis of duration of cell differentiation processes deals essen-
tially with the first formed cells of earlywood, which are the most
important in determining the efficiency of the water transport
system.

Anatomy of xylem

At the end of the growing season, the lumen area of conduits
and cell wall thickness were measured with WinCELL� (Régent
Instruments Inc., Quebec, Canada), using digitalized images taken
by a Nikon camera mounted on a microscope at 400 magnifica-
tions. Three cell rows from earlywood to latewood of the tree ring
formed during 2003 were analysed and measured. Cell diameter
was also calculated considering the lumen to be circular.
In order to compare the estimated durations of each differenti-

ation phase and the degree of tapering of xylem conduits all the
cells with a diameter of more than half the diameter of the largest
one (James et al., 2003) were used. Only the selected cells were then
included in the calculation of the weighted average of hydraulic
diameters (Dh) as proposed by Mencuccini et al., (1997) according
to the following equation of

Dh ¼
+N

n¼1
d5
n

+N

n¼1
d4
n

ð3Þ

where dn is the diameter of the n cell (Sperry et al., 1994) which
weights the hydraulic diameters of single cells according to
hydraulic conductance.

Meteorological and physiological measurements

A standard meteorological station was installed close to the
sampled tree. By using very thin thermocouples (copper-constan-
tan), temperatures of needles (two probes, north and south facing),
stem (two probes, north and south facing), and soil (one probe,
10 cm depth) were recorded every minute and averaged every
15 min. In an adjacent tree of the same dimensions as the sampled
one, sap flow density was measured using the thermal dissipation
method (Granier, 1985) for monitoring tree water transport
throughout the year. All data were averaged and stored in a
datalogger (Campbell CR10X).
In parallel with the sampling of the cambial activity, phenolog-

ical observations on vegetative organs (timing of budburst) were
recorded on two branches at two different tree heights (4 m and
7 m) and with north and south exposures.

Results

Xylem and budburst phenology

The number of cells in the cambial zone changed throughout

the year: in mid-April, cambium was composed of 5–6 rows

of cells at the base and 8–9 at the top of the tree, indicating

that no division was occurring and meristems were inactive.

During the growing season (May–September), the number of

cambial cells was 13–14, irrespective of tree height (data not
shown). The first expanding cells were observed in late April,

within a 5 day interval, irrespective of tree height (Table 1),

which revealed a lack of temporal trend in the post-cambial

growth along the stem. By contrast, cell wall thickening and

lignification started earlier at the top of the tree, showing an

evident height-dependent trend. Cell expansion lasted 7 d at

9 m while a longer duration (19 d) was observed at 3 m. At 1 m,

the duration of cell expansion decreased again to 14 d (Fig. 1).
The duration of cell wall thickening and lignification for the

first-formed tracheid lasted between 7 d and 17 d at all sam-

pling heights, except at 3 m where the duration was estimated

as 4 d. So, no evident temporal pattern was observed along

the stem for this differentiation phase (Fig. 1).

Notably, cambial activity appeared to be uncoupled from

the phenology of vegetative organs: budburst generally

occurred 15 d after the reactivation of the cambial cells.
In south-facing branches, buds were activated on DOY 136,

with no difference among tree heights. In north-facing

branches, budburst occurred on DOY 140 at 7 m height,

while the latest opening shoots were recorded on the bottom

north-facing branches on DOY 143.

Xylem anatomy

The lumen area of the cells varied along the stem with the

smallest values (460 lm2) observed at 9 m (Fig. 2).

Increasing values were measured towards the base up to 3-4 m,
where lumen area exceeded 860 lm2. At heights of 1–2 m

from the ground, lumen area decreased again slightly

with mean values varying between 690 and 750 lm2. The

differences between sampling heights were statistically

significant (F¼5.26, P <0.05). Cell wall thickness of the first

Table 1. Dynamics of cell differentiation at different tree heights

Sampling
height(m)

Cambial
reactivation
(DOY)*

First cell with
secondarywall
appearing
(DOY)a

First mature
cell
appearing
(DOY)a

1 122 135 145

2 120 138 149

3 122 141 145

4 122 137 147

5 122 134 145

6 123 137 144

7 118 131 143

8 121 131 142

9 120 127 141

a Day of the year.
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Fig. 1. Duration of expansion phase (left) and cell wall thickening and lignification (right) of the first earlywood cells at different sampling

stem heights along the stem, from 1 to 9 m from the ground.

Fig. 2. Variation of tracheid lumen area (lm2) (left) and cell wall thickness (lm) at different sampling heights (right). Values are expressed

as mean and standard deviation.
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formed cells was 2.5–3 lm, with no statistical difference

between sampling heights (ANOVA, F¼0.74, P >0.05) and

no clear trend along the stem (Fig. 2).

A significant relationship was found (r2¼0.78 P¼0.003)

between the weighted average of the hydraulic diameters

and the distance from the tree top, which allowed the degree

of conduits tapering to be estimated (Fig. 3) (i.e. the

exponent of the regression which equals 0.23).

Relationship between anatomy and differentiation
phases

A close relationship was found between the cell lumen area

(lm2) of the measured cells and duration of the expansion

phase (r2¼0.73, P <0.01). The significant and positive

regression showed that larger cells required longer duration

of cell expansion, indicating that the period in which a cell

remains in post-cambial growth plays an essential role in
determining its final size (Fig. 4). The estimated rate of cell

expansion is c. 32 lm2 d�1: this means that an expanding

cell with lumen of 300 lm2 would need about 10 d more

to reach 600 lm2. However, no significant relationship

was found between cell wall thickness and duration of cell

wall thickening and lignification phase (r2¼0.14, P >0.05)

(Fig. 4).

Due to the relationship between cell diameter and

distance from the tree top, a strong correlation appeared

even when the duration of expansion phase was plotted
versus the distance from the tree top (Fig. 5) (r2¼0.88,

P <0.001).

Stem temperature and sap flux density

Although above-zero daily temperatures occurred in the

stem steadily at the beginning of March (Fig. 6), conditions

of water thawing in the xylem during the day can occur

from mid-February. Sap flow density, which is correlated

with leaf gas exchange, was about 50% of the annual

maximum during mid-March (Fig. 6), much earlier than

the observed onset of cambial activity.

Discussion

Xylem phenology

The onset of cambial activity did not appear to be synchro-

nized either with bud reactivation or with onset of photosyn-

thesis. In the middle crown, budburst occurred more than

2 weeks before the onset of cambial activity. Different

relationships are found between bud development and
cambial activity and these seem species dependent (Rossi

et al., 2009). The independence of onset of cambial activity

from leaf expansion is a phenomenon often reported in ring-

porous species, in which cambium can reactivate up to 5–6

weeks before leaf expansion and, as discussed below, it is

believed to be the main cause of the formation of very large

vessels (up to 500 lm in diameter) (Aloni, 2004).

However, in broadleaves such as Fagus sylvatica, leaf
unfolding and cambium reactivation at the stem base

occurred almost at the same time (Čufar et al., 2008). At

the top of hybrid poplars, the onset of cell differentiation

occurred a week earlier than or at the same time as

Fig. 4. Relationship between cell lumen area (lm2) and duration of expansion phase (d) (left) and between cell wall thickness (lm) and

duration of cell wall thickening and lignification phase (d) (right). **P <0.01, ns, P >0.05.

Fig. 3. Variation of the cell diameter (lm) versus the distance from

the treetop (m) expressed in a log–log scale. Because of the well-

known phenomenon of decreasing lumen area near the root collar

due to mechanical stresses (Spicer and Gartner, 2001), the

sampling position at 1 m was excluded from the analysis.

** P <0.01.
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complete leaf opening, showing high variability depending

on the position in the tree (Deslauriers et al., 2009).

Moreover, the behaviour of the sap flow density con-

firmed that cambial reactivation was not correlated with the

beginning of photosynthetic activity after the winter season

(Fig. 6). Indeed, in conifers, relevant photosynthetic rates

are commonly observed in early spring, if soil is not frozen

and the xylem water is above the freezing threshold during
the thermally favourable periods (Wieser, 1997; Goodine

et al., 2008).

Our data supported the hypothesis that wood formation

is a process controlled by specific thermal thresholds (Rossi

et al., 2007). Although daily temperatures below 4�5 �C are

still favourable for photosynthesis, thermal conditions even

above these values could inhibit the allocation of assimi-

lated carbon to structural investment, i.e. xylem growth
(Rossi et al., 2007). In high altitude Picea abies trees, the

thermal threshold that induces a probability of 0.5 of

cambial reactivation, considered as the daily mean of stem

temperature, is between 7.2 �C and 9 �C (Rossi et al., 2007).

This threshold also seems rather to be predictive for low-

altitude spruce trees since the onset of xylogenesis occurred

just after mean stem temperature reached 9.5 �C (Fig. 6).

The strict dependence of cambial activity on temperature

would imply that the onset of wood formation is well
synchronized in all sampling heights, given that no signifi-

cant variations of daily mean stem temperature might be

expected at different tree height in a closed forest. Indeed,

no clear trend was found in the onset of cambial activity

along the stem: cambium reactivated within a week at all

sampling heights. These results for Picea abies are in

contrast with those found in young hybrid poplars, where

the onset of vessel enlargement proceeded down the stem at
about 0.5 m d�1 (Deslauriers et al., 2009), which suggests

the occurrence of species-specific mechanisms of cambial

resumption or phenology.

Tapering and duration of expansion phase

Despite the synchronous starting of cambial activity, the

duration of the expansion phase was highly variable and

well correlated with the position in the stem: at the tree

top, cell expansion was significantly shorter than at the

bottom, where the first cell completed expansion more than

10 d later. This led to a tapered chain of conduit elements

(along the direction of the sap flow into the xylem) that

efficiently compensates for the possible increase in total
hydraulic resistance within the transport system during the

growth in height of trees (Petit et al., 2010). The so-called

degree of tapering, represented by the exponent of the power

function relating tracheid diameter with the distance from the

tree top, was relatively large (0.23), as expected in young and

fast height-growing individuals (Anfodillo et al., 2006). The

different duration of cell expansion seems to be one key step

in controlling the rate of progressive lumen widening from the
stem apex to base, which is the typical axial conduit pattern

commonly referred to as conduit tapering.

Fig. 6. Variation of the daily mean stem temperature during March–May 2003 (left). The grey window highlights the time span of

the onset of cambial activity along the stem axis and the line at 9 �C shows the thermal threshold for the onset of xylogenesis

(Rossi et al., 2007). Variation of the daily average of sap flow density (dm3 dm�2 h�1) during the beginning of the growing season

(right).

Fig. 5. Relationship between the duration of cell expansion phase

(d) and the distance from the tree top (m) of the different sampling

points expressed in a log–log scale. Similarly to Fig. 1 the sampling

position at 1 m was excluded. ***P <0.001.
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This pattern might be consistent with the simple mecha-

nisms proposed by Aloni (1989, 2004) in which a key role is

played by the longitudinal gradient of auxin in the cambial

zone: the lower concentration of auxin in the bottom part of

the plant (farther away from the most active production

sites) would induce a longer expansion phase due to the fact

that cell differentiation is slowed down. The linear relation-

ship between cell lumen area and number of days in which
the expansion phase occurs would suggest that the rate of

cell expansion per se (i.e. variation per day) is not affected

by the level of auxin. Moreover, the power relationship

between number of days of the expansion phase at different

distances from the tree top allows it to be supposed that the

concentration of auxin down the stem should follow a

similar power law. Thus, auxin would act as a morphogen-

like substance with a dose-dependent effect only on the
‘duration’ of the cell expansion phase, but not on the

expansion ‘rate’ which should be driven by the cell turgor

and cell wall exstensibility.

Is this simple differentiation behaviour consistent with

the available observations? Critical points are the effective

longitudinal auxin gradient in trees and cell responsiveness

to auxin signal. It is agreed that auxin is distributed dif-

ferentially within plant tissues (Vanneste and Friml, 2009),
but the pattern of longitudinal gradients of auxin in large

trees has rarely been measured. Uggla et al. (1998) reported

the auxin concentration in three points along the stem in

Pinus sylvestris. They found a relevant gradient of auxin

concentration in fast-growing trees but not in slow-growing

individuals. However, looking at the reported data of total

auxin, in spite of the fact that fitting only three points might

be considered speculative, the behaviour of the gradient in
relation to distance from the tree top seemed to follow a

power function pattern in three out of six trees measured,

including a slow-growing tree. When auxin gradients were

generated by experimental manipulation, coherent results

were found, showing that vessel lumen dimensions were

smaller where auxin accumulation was higher (i.e. in down-

ward oriented shoots) (Lovisolo et al., 2002).

A different pattern of duration of the differentiation
phases along the stem was reported for hybrid poplars: the

time of vessel formation was estimated at 10–14 d for both

top and bottom and, as vessel formation started earlier at

the top, mature vessels were observed earlier at the top of

the stem (Deslauriers et al., 2009), suggesting a possible

difference (or control) between broadleaves with indefinite

growth (e.g. Populus spp.) and conifers, which are charac-

terized by a pre-determinate growth.
Overall, it could be speculated that the role of other

possibly involved processes, namely variations in turgor

pressure within the cell and/or in metabolic rate of cell wall

formation should not be highly relevant in determining the

final cell size. This leads, in addition, to the duration of the

expansion phase and distance from the tree top being

related to a power function (Fig. 5).

Our knowledge is still fragmentary about how a tree can
perceive and regulate the concentration along the stem

given that the active polar movement of auxin is too slow

(10 mm per hour) for suitably detecting the signal success-

fully, especially in large trees (Friml, 2003). Probably a

multiple and redundant mechanism such as biosynthesis,

conjugation, deconjugation, degradation, and intercellular

transport act in regulating the gradients within the whole

plant (Vanneste and Friml, 2009).

A simple passive response based on a specific physiolog-

ical response (e.g. cell enlargement) related to a given
concentration of auxin was recently questioned when

important results on cell responsiveness to similar auxin

concentration became available. Nilsson et al. (2008) clearly

demonstrated, for example, that, in the older cells experi-

encing lower auxin concentrations than those found in the

developing zone (Uggla et al., 1996), a large proportion of

auxin-responsive genes were expressed at higher levels than

in cambium, thus proving that all physiological processes
promoted by auxin might not simply be related to auxin

concentration but to the specific sensitivity of the cells.

Moreover, after having transgenically altered auxin metab-

olism in some hybrid aspen plants, Nilsson et al. (2008)

reported that the less sensitive plants to auxin signals showed

smaller xylem conduits compared to wild type, thus demon-

strating that cell expansion appears to be a process that is

sensitive to alteration in auxin responsiveness.

Conclusions

The dynamics of xylem formation assessed along the stem

of P. abies at a very short time-scale have demonstrated

that (i) the phase of the cell expansion differs downwards in

the stem, thus it could be one key factor in controlling the
rate of progressive lumen widening from the stem apex

to the base, which is the typical axial conduit pattern

commonly referred to as ‘conduit tapering’; (ii) the rate of

cell expansion proceeds steadily, thus leading to a strict

relationship between the final size of the first earlywood

cells and the time spent in expansion.

The data presented here did not test the physiological role

of auxin in regulating plant development and vascular
differentiation. However, our findings revealed the existence

of a pattern of cell expansion along the stem axis that

supports the simple hypothesis of an auxin concentration

gradient along the stem and could clarify the mechanisms

used by trees to control their tapered vascular structure

(Aloni and Zimmermann, 1983).
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