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Spectral centrality measures allow to identify influential individuals in social groups, to rank Web pages by
popularity, and even to determine the impact of scientific researches. The centrality score of a node within a
network crucially depends on the entire pattern of connections, so that the usual approach is to compute
node centralities once the network structure is assigned. We face here with the inverse problem, that is, we
study how to modify the centrality scores of the nodes by acting on the structure of a given network. We show
that there exist particular subsets of nodes, called controlling sets, which can assign any prescribed set of
centrality values to all the nodes of a graph, by cooperatively tuning the weights of their out-going links. We
found that many large networks from the real world have surprisingly small controlling sets, containing
even less than 5 – 10% of the nodes.

M
odelling social, biological and information-technology systems as complex networks has proven to be
a successful approach to understand their function1–4. Among the various aspects of networks which
have been investigated so far, the issue of centrality, and the related problem of identifying the central

elements in a network, has remained pivotal since its first introduction. The idea of centrality was initially
proposed in the context of social systems, where it was assumed a relation between the location of an individual
in the network and its influence and power in group processes5,6. Since then, various centrality measures have been
introduced over the years to rank the nodes of a graph according to their topological importance. Centrality has
found many applications in social systems6, in biology7 and in man-made spatial networks8–11.

Among the various measures of centrality, such as those based on counting the first neighbours of a node
(degree centrality), or the number of shortest paths passing through a node (betweenness centrality)12,13, a
particularly important class of measures are those based on the spectral properties of the graph14. Spectral
centrality measures include the eigenvector centrality15,16, the alpha centrality17, Katz’s centrality18, subgraph
centrality19 and PageRank20, and are often associated to simple dynamics taking place over the network, such
as various kinds of random walks21–23. As representative of the class of spectral centralities, we focus here on
eigenvector centrality, which is based on the idea that the importance of a node is recursively related to the
importance of the nodes pointing to it.

Results
Given an unweighted directed graph G 5 (V,E) with N 5 jVj nodes and K 5 jEj links, described by the N 3 N
adjacency matrix A, the eigenvector centrality c0 of G is defined as the eigenvector of At associated to the largest
eigenvalue r0, which in formula reads Atc0 5 r0c0

15–17. If the graph is strongly connected, then the Perron-
Frobenius theorem guarantees that c0 is unique and positive. Therefore, c0 can be normalised such that the sum of
the components equals 1, and the value of the i-th component represents the centrality score of node i, i.e. the
fraction of the total centrality associated to node i. In this Article we show how to change the eigenvector centrality
scores of all the nodes of a graph by performing only local changes at node level. As a first step (see the Methods
Section) we have proved that, given any arbitrary positive vector c [ RN , c . 0, and c ? c0, it is always possible to
assign the weights of all the links of a strongly–connected graph G and to construct a new weighted network Gv,
with the same topology as G and with eigenvector centrality equal to c:

At
vc~rc, ð1Þ

where Av is the weighted adjacency matrix of Gv.
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This is illustrated in Fig. 1 for a graph with N 5 4 nodes and K 5 5
links. In the original unweighted graph G, node 2 is the node with the
highest eigenvector centrality, followed in order by node 3, node 4,
and node 1. Now, if we have the possibility of tuning the weights of

each of the five links, we can set any centrality value to the nodes of
the graph. In figure we show, for instance, how to fix the weights of
the five links in order to construct: i) a weighted network Gv in which
all nodes have the same centrality score, and ii) even a weighted

Figure 1 | An example of how to tune the link weights to change the node centrality scores. The graph G with N 5 4 nodes and K 5 5 links shown in

panel (a) is strongly-connected and has an eigenvector centrality c0 5 {0.18, 0.33, 0.27, 0.22}. By ranking the nodes according to the components of c0, we

obtain that node 2 is the most central one, followed in order by node 3, node 4, and node 1. We can now set the weights of the five links v 5 {v1, v2, v3,

v4, v5} in such a way that equation (1) is satisfied for any given centrality vector c ? c0. For instance, we can get a weighted network Gv in which all nodes

have the same centrality, by solving equation (1) with a centrality vector c 5 {1/4, 1/4, 1/4, 1/4} and r 5 3.0. We obtain a vector of weights: v 5 {a, 3, 3, 3, 3

2 a} which, for 0 , a , 3, guarantees that all the link weights of the graph are positive. The resulting network Gv is shown in panel (b). As expected, we

have K 2 N 5 1 free parameter (namely a) since the graph has N 5 4 nodes and K 5 5 links. Instead, if we want to reverse the original node ranking we can

solve the system At
vc~rc with a centrality vector c 5 {0.5, 0.05, 0.2, 0.25}. Notice that, in this case, the ranking induced by c is exactly the opposite of the

one induced by c0: now node 1 is the most central one, followed in order by node 4, node 3, and node 2. The solution of equation (2) gives v 5 {a, 12, 15/4,

6, (3 – 10a)/5}, corresponding to a weighted network Gv with all positive weights whenever 0 , a , 3/10. The resulting network is shown in panel (c).

Figure 2 | Minimum controlling sets in three real social networks. The graph in panel (a), with N 5 11 vertices and K 5 41 arcs, shows who asks who for

an opinion among the members of the student government of the University of Ljubljana in 199224. The minimum controlling set is made by the two

nodes marked in red, namely node 2 and node 8. These two nodes are linked to each other and point to all the remaining nodes in the graph. Therefore,

nodes 2 and 8, by cooperatively modifying the weights of their red links, can set any arbitrary eigenvector centrality to the entire system. The graph in panel

(b) has N 5 18 nodes and K 5 55 arcs, and describes the social relations between the monks of an isolated contemporary American monastery, as recorded

by Sampson in 196925. Here, the minimum controlling set contains five nodes, shown in red. In this case, the subset of links E9 (red links), does not contain

links pointing to node 5, so that the red nodes can control the centrality of all the network nodes, except node 5. Finally, the Zachary’s karate club network

shown in panel (c) has N 5 34 nodes and K 5 78 undirected edges, and describes the social network of friendships among the members of a US university

karate club in 197026. In this network, the minimum controlling set contains node 1, the instructor Mr. Hi, node 34, the club administrator Mr. John A,

and also nodes 7 and 26. Notice that just two nodes, namely 1 and 34, can control the centrality of 95% of the graph nodes.

www.nature.com/scientificreports
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network Gv in which the centrality ranking is totally reversed with
respect to the ranking in G.

As shown in the example, given a graph G, by controlling the
weights of all the links, it is always possible to set any arbitrary vector
c as the eigenvector centrality of the graph. However, tuning the
weights of all the K links of a given network is practically unfeasible,
especially in large systems. Fortunately, this is not necessary, either.
In fact, in the case of Fig. 1, a weighted graph with all nodes having
the same centrality score can also be obtained by changing the
weights of only four links, while leaving unchanged the weight of
the link from node 1 to node 2. More in general, it can be proved that
the eigenvector centrality of the whole network can be controlled by
appropriately tuning the weights of just N of the K links. The only
constraint is that the N links must belong to a subset E0(E such that,
for every node i g V , there is a link ‘ [ E0 pointing to i (see Methods
Section). This is illustrated in Fig. 2 for three real social networks. In
each of the three cases, it is possible to set any arbitrary eigenvector
centrality by changing only the weights of the red arcs, while keeping

unchanged (and equal to 1) the weights of all remaining arcs, shown
in yellow. The nodes from which the links in E9 originate are also
coloured in red, and are referred to as a controlling set of the network
(see Methods Section). What is striking is that, in each of the three
networks, the set E9 can be chosen in such a way that all the links in E9

originate from a relatively small subset of nodes. For instance, the
controlling set reported for the student government network of the
University of Ljubljana contains only two nodes. This is also a min-
imum controlling set, since the graph does not admit another con-
trolling set with a smaller number of nodes. This finding indicates
that only two members of the student government, namely node 2
and node 8, can in principle set the centrality of all the other members
by concurrently modifying the weights of some of their links. It is in
fact reasonable to assume that the weight of the directed link from
i to j, representing in this case the social credit (in terms of reputa-
tion, esteem or leadership acknowledgement) given by individual
i to individual j, can be strengthen or decreased only by i. Con-
sequently, nodes 2 and 8 can modify at their will the weights of their

Table 1 | Number of nodes N, average degree Ækæ, and the relative size C Gð Þ of the mimimum controlling set found in 35 different real
world networks. The values of C Gð Þ reported are expressed as percentage of the network size N. The algorithms used to find approx-
imations of minimum controlling sets, mark as controllers also nodes not controlling other nodes, simply because, at a certain iteration of
the greedy procedure, they have remained with no out-going links. Therefore, we also report in parenthesis the relative size of the effective
minimum controlling set and the percentage of the controlled nodes. The notation x% R y%, indicates that x% of the nodes is able to
control the centrality of y% of the network. We report also, for each network, the relative size C Grnd

� �
of the controlling set in randomized

versions which preserve the original degree sequence. We have considered averages over 100 different randomizations. In the last two
columns we report, respectively, the ratio a between the total degree of the nodes in the minimum controlling set and the number of nodes
in the network, and the percentage p quantifying how many of the top-100 nodes with the highest degree belong to the minimum
controlling set. From top to bottom, the networks are divided into six classes, respectively World-Wide-Web, collaboration/commun-
ication, citation, spatial, words and socio–economical networks

Network N Ækæ C(G) C(Grnd) a p

Web (Berkley and Stanford)29 654782 22.2 8% (3%R95%) 12% 1.41 17%
Web (Google)29 875713 11.1 15% (9%R94%) 22% 1.74 92%
Web (Notre Dame)30 325729 9.2 13% (8%R95%) 21% 1.57 28%
Web (Stanford)29 281904 16.4 8% (3%R95%) 15% 1.45 21%
Jazz musicians31 198 27.7 8% (5%R97%) 13% 1.63 –
Movie actors32 392340 7.2 11% (8%R97%) 22% 3.63 90%
Cond-Mat coauthorship33 12722 6.3 23%(18%R93%) 29% 1.24 23%
AstroPh coauthorship33 13259 18.7 16% (10%R94%) 27% 1.48 8%
Networks coauthorship34 379 4.8 20% (15%R94%) 29% 1.05 –
URV email35 1133 9.6 23% (16%R91%) 27% 2.40 20%
ENRON email29,36 2351 118.7 7%(4%R97%) 8% 1.11 5%
Email EU-All37 265214 3.5 16% (1%R85%) 26% 1.49 95%
Wiki-talk38 2394385 4.20 2% (1%R99%) 23% 2.48 5%
Hep-Ph citation37 34401 12.25 16% (10%R94%) 22% 2.72 25%
Hep-Th citation37 27400 12.7 17%(8%R91%) 22% 2.27 15%
Patents37 3774768 8.75 50% (16%R60%) 26% 2.21 17%
Internet AS39 11174 4.2 9% (8%R99%) 22% 2.25 70%
US Airports40 500 11.9 14% (12%R97%) 19% 4.31 –
US Power Grid41 4941 5.33 33% (29%R95%) 23% 2.21 9%
roadnet CA29 1965206 5.63 31% (30%R96%) 23% 1.96 1%
roadnet PA29 1088092 5.67 33% (30%R967%) 23% 1.98 1%
roadnet TX29 1379917 5.57 33% (30%R97%) 23% 1.99 1%
Electronic circuit (s208 st)42 123 3.1 29% (26%R96%) 28% 1.01 –
Electronic circuit (s420 st)42 253 3.1 29% (25%R96%) 28% 1.01 –
Electronic circuit (s838 st)42 513 3.2 29% (25%R96%) 28% 1.03 –
Wordnet43 77595 3.44 26% (19%R92%) 26% 1.63 64%
USF Words associations44 10618 13.6 22% (8%R56%) 25% 5.15 22%
PGP45 10680 4.5 22% (18%R77%) 29% 1.84 39%
Amazon46 410236 16.36 17% (9%R91%) 17% 1.70 35%
Epinions47 75879 13.41 22% (19%R95%) 18% 7.45 90%
Gnutella37,48 62586 4.72 19%(11%R62%) 31% 2.60 21%
PolBlogs49 1224 31.2 13% (8%R94%) 18% 5.23 23%
PolBooks50 105 8.4 15% (12%R98%) 22% 1.48 –
Slashdot29 82168 23.08 25% (21%R58%) 27% 1.75 3%
Wiki-vote38 8298 25.00 16% (15%R99%) 20% 11.04 56%

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 218 | DOI: 10.1038/srep00218 3



out-going links and, If these changes are opportunely coordinated,
they can largely alter the actual roles of all the other individuals.
Analogously, only five monks can control the centrality of the
Sampson’s monk network, while only 4 members of the Zachary’s
karate club network can set the eigenvector centrality of the remain-
ing 30 members.

A question of practical interest is to investigate the size C: C�j j of
the minimum controlling set in various complex networks. When C
is small with respect to N, then the centrality of the network is easy to
control. Conversely, when the number of nodes in the minimum
controlling set is large, the network G is more robust with respect
to centrality manipulations. We have used two greedy algorithms to
compute approximations of minimum controlling sets in various
real systems (see Methods Section). In Table 1 we report the best
approximation for C, i.e. the size of the smallest controlling set �C
produced by either of the two algorithms in networks whose sizes
range from hundreds to millions of nodes. In the majority of the cases
we have found unexpectedly small controlling sets, containing only
up to 10 – 20% of the nodes of the network. For instance, in the graph
of Jazz musicians, there exists a controlling set made by just 16 of the
198 musicians. These 16 individuals alone can, in principle, decide to
set the popularity of all the other musicians, enhancing the centrality
of some of the nodes and decreasing the centrality of others, just
by playing more or less often with some of their first neighbours.
Among all the networks we have considered, the one with the smal-
lest controlling set is the Wikipedia talk communication network,
a graph with 2,394,385 nodes in which just 2% of nodes are able to
alter the centrality of the entire system. The quantities in parenthesis
indicate that for this network a set of just 1% of the nodes can control
the centrality of 99% of the nodes.

For each real network G, we have also computed the typical
size C Grnd

� �
of the minimum controlling set in its randomised

counterpart (see the fifth column in Table 1). In particular, we have
considered a randomisation which preserves the degree sequence of
the original graph. In most of the cases C Gð ÞƒC Grnd

� �
, relevant

exceptions being some spatial man-made networks, such as power
grids, road networks and electronic circuits, and also the patents
citation network. This fact suggests that, in the absence of other
limitations, such as strong spatial/geographic constraints11, the struc-
ture of real networks has probably evolved to favour the control of
spectral centrality by a small group of nodes. To better compare the
controllability of networks with different sizes, we report in Fig. 3
the ratio C Gð Þ

C Grndð Þ as a function of the number of graph nodes N. The
smallest values of the ratio C Gð Þ

C Grndð Þ are found for collaboration/com-
munication systems, WWW and socio-economical networks. The five
most controllable networks are respectively Wiki-talk, Internet at the
AS level, movie actors, the Stanford World Wide Web, and the col-
laboration network of researchers in astrophysics. These are all net-
works in which single nodes can tune, at their will, the weights of
their out-going links. A scientist can decide whether to weaken or
strengthen the connections to some of the collaborators. The admin-
istrators of an Internet Autonomous System can control the routing of
traffic through neighbouring ASs, by modifying peering agreements28.
And, similarly, the owner of a Web page can change the weights of
hyperlinks, for instance by assigning them different sizes, colour,
shapes and positions in the Web page.

In order to characterize the properties of the controlling set, we
report in the last two columns of Table 1 the link redundancy a of the
minimum controlling set (see Methods for details), and the percent-
age p, representing how many of the 100 nodes with the highest
degree are contained in the minimum controlling set. In most of
the cases, the value of a found is close to 1, indicating that every node
in the graph is controlled, on average, by a relatively small number of
nodes (generally no more than two or three) or, equivalently, that
there is small overlap among the sets of nodes controlled by two
different controlling nodes. Notice also that the values of p reported

in the rightmost column of Table 1 range from 1% up to 95%.
Although nodes with larger degree have in general a higher prob-
ability to be included in a controlling set, not all the nodes with the
top highest degree always belong to the minimum controlling set. For
instance, in the graph of movie actors, 90 of the top 100 nodes
with the highest degree belong to the minimum controlling set.
Conversely, there are cases, such as that of the collaboration network
of researchers in astrophysics, where only an extremely small num-
ber of nodes with the highest degree actually belong to the minimum
controlling set. We have therefore computed the degree distribution
of the minimum controlling set for each of the real networks in
Table 1, and compared it with the degree distribution of the corres-
ponding network. Four typical cases (movie actors (a), Notre Dame
Web(b), astrophysics coauthorship network (c), and Berkley-
Stanford Web (d)) are shown in the four top panels of Fig. 4, where
we report both the normalized degree distributions of the original
network (red circles) and that of corresponding minimum control-
ling set (greeen squares). As shown in figure, the degree distribution
of the minimum controlling can vary from that of the original net-
work in many respects. For instance, the minimum controlling set of
the networks in panel a) and b) contains a lower percentage of low-
degree nodes, and a relatively higher percentage of intermediate and
high degree nodes than the original network. Conversely, the min-
imum controlling set of networks in panel c) and d) exibit a higher
abundance of low-degree nodes and a lower percentage of nodes with
intermediate degree. These results suggest that it is in general not
possible to predict the composition of the minimum controlling set
from the degree distribution of the original network. Analogously,
we have verified that the presence and nature of degree-degree cor-
relations have no direct influence on the features of the minimum
controlling set. Particularly striking is the case of the networks
reported in panel b) and d). These two networks correspond to the
same kind of technological system, namely World-Wide-Web net-
works. The networks are both scalefree with the same value of the
degree distribution exponent c 5 2.3, and they have the same dis-
assortative degree-degree correlations. As shown in the figure, also

Figure 3 | Relative size of the minimum controlling set in various real
systems. We report, as a function of N, the ratio between the sizes of the

minimum controlling set in real networks and in their respective

randomized versions (we have considered averages over 100 different

realizations). Different symbols and colors refer to the six network classes

considered in Table 1. The observed ratio is lower than 1 in most of the cases,

with the smallest values corresponding to collaboration/communication

systems, WWW and socio-economical networks. The ratio is equal to 1 in

three cases. The networks with ratio larger than 1, with the exception of one

socio-economical system (namely Epinions), are all spatially constrained

systems: three electronic circuits, the US power grid, and three road

networks.

www.nature.com/scientificreports
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the degree distributions of the two corresponding minimum control-
ling set are scale-free. However, while for the Notre Dame Web we
extract an exponent cMCS 5 2.3 equal to that of the original network,
in the case of Berkley-Stanford Web we get an exponent cMCS 5 1.9.
Also the average degree of the nodes in the minimum controlling set is
different in the two cases. In the Notre Dame Web network the
average degree of the controlling set is around 12.89, i.e. much larger

than the average degree of the original network (Ækæ 5 6.85), while in
the case of Berkley-Stanford Web, the opposite happens, i.e. the the
average degree of the controlling set is equal to 15.05 and is smaller
than the average degree of the original network (Ækæ 5 22.2). Finally,
in panel e) of Fig. 4 we report, for each network, the ratio between the
average degree of the minimum controlling set and that of the original
graph, showing that in one third of the cases the ratio is smaller than 1.

Figure 4 | Degree of the nodes in the minimum controlling set. The top four panels report the degree distribution of the graph (red circles) and the

degree distribution of the minimum controlling set (green squares) for the graph of movie actors (a), Notre Dame Web (b), the astrophysics coauthorship

network (c) and Berkley-Stanford Web (d). The degree distribution of the minimum controlling set is, in general, different from that of the original graph.

For instance the minimum controlling sets of the two graphs of the Web (panel b) and d)) have different degree distributions, even if these two networks

correspond to the same kind of system, have the same degree distribution (p(k) , k2c with c . 2.3) and the same disassortative degree-degree correlations

(knn(k) , k2n with n . 0.3). In panel (e) we report for each network the ratio between the average degree of the minimum controlling set and that of the

original graph.

www.nature.com/scientificreports
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Discussion
In this work, we have shown how a small number of entities, working
cooperatively, can set any arbitrary eigenvector centrality for all the
nodes of a real complex network. It is straightforward to extend our
results to other spectral centralities, such as a-centrality and Katz’s
centrality. Similar arguments can also be applied, with some limita-
tions, to PageRank: in this case, the inverse centrality problem has
solutions only for some particular choices of c. Such findings suggest
that rankings obtained from centrality measures can be easily con-
trolled and even distorted by a small group of cooperating nodes. The
high controllability of real networks potentially has large social and
commercial impact, given that centrality measures are nowadays
extensively used to identify key actors, to rank Web pages, and also
to assess the value of a scientific research.

Methods
Solution to the inverse centrality problem. The set of N linear equations with K
variable weights, v1,…, vK, in equation (1) can be rewritten as a system of N linear
equations with K variables:

Bv~rc, ð2Þ

where now B is a N 3 K matrix of real numbers, and v ; {v1,…, vK}. Notice that the
linear system in equation (2) has solutions since the rank of B is N , K (all the
equations are separated and each of the variables, v1,…, vK, appears in one equation
only), and the in-degree of all nodes is positive by definition. Hence, there always
exists v [ RK such that equation (1) is satisfied. It is convenient to rewrite equation
(2) in a form that emphasises the dependence of matrix B from c. We choose to label
the arcs as follows: i, lð Þ,l ~ 1 . . . kin

i denotes the l-th arc entering node i, where kin
i is

the in–degree of node i. Likewise, Si,l is the source of arc (i, l), while vi,l is the
corresponding weight. Using this notation, the i-th component of equation (2) can be
written as: Xkin

i

l~1

vi,lcSi,l ~rci ð3Þ

By direct computation, one positive solution of eqauation (3) is given by

vi,1~vi,2~ � � �~vi,kin
i
~

rciPkin
i

l~1 cSi,l

ð4Þ

where i 5 1…N, and by continuity there are infinite many solutions such that vi,l are
all positive. In particular, if for node i we have kin

i ~1, then the i-th equation of
equation (3) has a unique solution, while if kin

i w1, there are always infinitely many
solutions depending on kin

i {1 parameters. Summing up, eqauation (2) has only one
solution if all the node in-degrees are equal to one, while there are, in general,
infinitely many solutions depending on K – N parameters. Notice that r can be
different from r0, meaning that it is also possible to set the value of the largest
eigenvalue of the weighted graph.

Tuning a subset of the graph links. Here, we show that it is not necessary to fix the
weights of all the graph links in order to get an arbitrary centrality vector c . 0. In fact,
given a subset of links E0(E containing at least one incoming link for each node, it is
sufficient to assign some positive weights ev ‘0ð Þ to each ‘0 [ E0 , while keeping v ‘ð Þ
constant V‘ [ E\E0, for instance all equal to 1, such that the resulting weighted graph
has eigenvector centrality equal to c. Without loss of generality we can assume that the
first kc

i w0 incoming links of each node i belong to E9, so that the components of
equation (3) can be written as:Xkc

i

l~1

vi,l cSi,l ~rci{
Xkin

i

l~kc
i z1

vi,l cSi,l , i~1 . . . N ð5Þ

Therefore, since ci . 0 for each 1 # i # N, then there is a r0 . 0 such that for every
r . r0

rci{
Xkin

i

l~kc
i z1

vi,l cSi,l w0, i~1 . . . N ð6Þ

and hence, by a similar continuity argument as above, we can ensure that there are
infinitely many positive solutions to equation (5).

Finding minimum controlling sets. A controlling set of graph G is any set of nodes
C(V such that:

V~C|
[
i[C

j [ V : eij [ E
� � !

: ð7Þ

This means that, for each node j in the graph, at least one of the two following
conditions holds: a) j g C, or b) j is pointed by at least one node in C. We use jCj to

denote the size of the controlling set, i.e. the number of nodes contained in C. Finding
the minimum controlling set C* of a graph G, i.e. a controlling set having minimal size,
is equivalent to computing the so-called domination number of G. The domination
number problem is a well known NP-hard problem in graph theory27. Therefore, the
size of the minimum controlling set can be determined exactly only for small N graphs
as those in Fig. 2. To investigate larger graphs we have used two greedy algorithms.
The first algorithm, called Top–Down Controller Search (TDCS), works as follows.
We initially set Gt50 5 G. We select the node i0 with the maximum out-degree in
Gt50, and mark it as controlling node (or controller). Then, all the nodes in the out-
neighbourhood of i0 are marked as controlled and are removed from Gt50, together
with i0 itself. In this way, we obtain a new graph Gt51, and we store the controlling
node i0, together with the list of nodes controlled by i0. Notice that, removing a generic
node j from Gt50, also implies that Gt51 does not contain any of the links pointing to j
or originating from it. The same procedure is iteratively applied to Gt51, Gt52 and so
on, until all the nodes of G are either marked as controller or as controlled nodes. The
algorithm produces a set C~ i0,i1,i2, . . .f g, with C

�� ��§ C�j j, which is a controlling set
of G by construction. The second algorithm is called Bottom–Up Controller Search
(BUCS), and it works as follows. We set Gt50 5 G and consider the set M(0)
containing all the nodes in Gt50 with minimum in–degree. For each node i g M(0),
we consider the set of nodes pointing to i and select from this set the node mi with the
maximal out–degree. This node is marked as controller. Then we obtain a new graph
Gt51 by removing from Gt50 all the controlling nodes mi for all i g M(0), together
with all the nodes, marked as controlled, pointed by them. The same procedure is
iteratively applied to Gt51, Gt52 and so on, until all the nodes of G are either marked as
controller or as controlled nodes. If a graph Gt contains isolated nodes, these are
marked as controller and removed from Gt. The algorithm finally produces a set
C~ i0,i1,i2, . . .f gwhich is a controlling set of G by construction. We have verified that
the controlling sets obtained by both TDCS and BUCS for each of the networks
considered are much smaller than those obtained by randomly selecting the
controlling nodes. Moreover, the set of controlling nodes found by TDCS is in general
different from that obtained on the same network by BUCS. Also the sizes of the two
controlling sets obtained by the two algorithms are different.

Link redundancy of a controlling set. Given a controlling set C Gð Þ, we define the
link redundancy a of C as the ratio between the sum of the degrees of the nodes in the
controlling set and the number N of nodes in the network:

a~
1
N

X
i[C

ki

By definition 1 # a # 2K/N. In particular we get the minimal redundancy a 5 1
when every graph node is controlled by just one node of the controlling set, while
a 5 2K/N when the controlling set C contains all nodes in the graph.
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