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Abstract

Here, we demonstrate that subject motion produces substantial changes in the timecourses of
resting state functional connectivity MRI (rs-fcMRI) data despite compensatory spatial registration
and regression of motion estimates from the data. These changes cause systematic but spurious
correlation structures throughout the brain. Specifically, many long-distance correlations are
decreased by subject motion, whereas many short-distance correlations are increased. These
changes in rs-fcMRI correlations do not arise from, nor are they adequately countered by, some
common functional connectivity processing steps. Two indices of data quality are proposed, and a
simple method to reduce motion-related effects in rs-fcMRI analyses is demonstrated that should
be flexibly implementable across a variety of software platforms. We demonstrate how application
of this technique impacts our own data, modifying previous conclusions about brain development.
These results suggest the need for greater care in dealing with subject motion, and the need to
critically revisit previous rs-fcMRI work that may not have adequately controlled for effects of
transient subject movements.
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Introduction

It is well-established that head motion is undesirable in fMRI studies (Friston et al., 1996;
Hutton et al., 2002; Jiang et al., 1995; Johnstone et al., 2006; Oakes et al., 2005; Wu et al.,
1997). Blood oxygen level dependent (BOLD) signal acquisition depends upon precise
spatial and temporal placement of magnetic gradients on scales of millimeters and
milliseconds. Movement of the head during scans not only shifts the position of brain matter
in space, it fundamentally disrupts the establishment of magnetic gradients and subsequent
readout of the BOLD signal. To compensate for these effects, it is common practice to
realign data (here, a part of fMRI preprocessing). Spatial realignment corrects motion-
induced shifts in space but does not correct intensity changes resulting from disruption of
the physical principles underlying MRI. Therefore additional measures are often taken (here,
a part of functional connectivity processing), such as ICA decomposition or regression of
motion estimates, to remove spurious motion-related signal from the data (Beckmann and
Smith, 2005; Erhardt et al., 2010; Fox et al., 2009; Robinson et al., 2009a; Weissenbacher et
al., 2009). In this paper, we demonstrate that at least some of these approaches to motion
correction do not fully remove motion-related signal from the data. Critically, we also find
that the inclusion of motion-contaminated data introduces colored noise into the study of
functional brain organization via resting state functional connectivity MRI (rs-fcMRI).

Subject movement is often measured with summary statistics based upon head realignment
parameters. Since subjects move during scans, it is standard practice to estimate the position
of the head in space at each volume of the data and to realign all volumes using rigid body
transforms. In a rigid body transform, head position is described at each timepoint by six
parameters (translational displacements along X, Y, and Z axes and rotational displacements
of pitch, yaw, and roll). These realignment parameters can be condensed into a single
summary statistic, such as root mean squared head position change (RMS movement).
Summary statistics are often used to describe subject motion and to make decisions about
cohort formation or matching. When forming cohorts, scans with summary statistics above
some threshold (e.g., RMS movement over half a voxel’s width) are considered essentially
unusable, and these scans are discarded from the analysis. When multiple cohorts are
compared, motion matching is often accomplished using means or t-tests of summary
statistics between cohorts.

Summary statistics of motion are quite useful, but they do not always distinguish between
qualitatively different types of subject movement. Consider two subjects: Subject A who is
perfectly still but moves suddenly once to arrive at a very different head position, and
Subject B who has frequent small to moderate movements about the original head position.
It is possible for these two subjects to have similar, or even identical, RMS movement
estimates, despite the substantial qualitative differences in how they moved. Since head
displacement disrupts the spin history assumptions upon which BOLD signal establishment
and readout depend, all other things being equal, Subject A will have data of acceptable
quality throughout the scan except during and immediately after head motion, whereas the
data of Subject B will be somewhat compromised throughout much of the scan. In an effort
to counter such effects, head realignment estimates or other indices of movement are often
regressed from data (for example, within GLMs for task fMRI, or during functional
connectivity processing for rs-fcMRI). Here, we demonstrate that clear artifacts remain in
the data even after such regressions, and that these artifacts have systematic effects upon rs-
fcMRI correlations.

Following a regression-based approach to motion correction (Fox et al., 2009), this report
begins by demonstrating a correspondence between head displacement and large-amplitude
changes in rs-fcMRI BOLD signal. These changes are evident in single rs-fcMRI
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timecourses, and occur throughout the brain and across subjects. Based upon the suspicious
co-occurrence of head movement and changes in rs-fcMRI signal, two indices of data
quality that operate on a frame-by-frame basis to flag suspect frames of MR data are
proposed. In four cohorts, removal of flagged frames produces structured changes in
patterns of correlation, such that some short-distance correlations are weakened, and some
medium- to long-distance correlations are strengthened. Some similar effects related to
motion in functional connectivity data have recently been described (VVan Dijk et al., 2011).
Control analyses demonstrate that the artifact does not arise from (and is not adequately
countered by) regressions performed during functional connectivity processing, nor is it
simply a product of frame removal from data. We conclude by demonstrating how this
artifact has impacted our own data and how removing the artifact modifies our previous
conclusions.

One of the principal attractions of rs-fcMRI is that the minimal burden upon subjects allows
investigators to explore populations (especially pediatric and clinical) that are typically
difficult to study. The present results indicate that systematic but spurious rs-fcMRI
correlation structures are induced by subject motion in ways that are not always detected or
dealt with in common approaches to rs-fcMRI analysis. These effects can obscure patterns
of functional connectivity within single cohorts and create spurious differences between
cohorts. This characterization suggests the need to critically revisit previous work that may
not have adequately controlled for frame-by-frame head displacement, and the need for
greater care when dealing with subject movement.

Before moving to data we wish to clarify the intent of this paper. Although this paper
suggests a method to dampen or remove the influences of movement on rs-fcMRI analyses,
this paper is intended to be descriptive rather than proscriptive. Also note that the basis for
the artifactual effects described herein is not specific to rs-fcMRI, but is a general feature of
fMRI, and should also be present in diffusion imaging or task fMRI studies. The approach
described in this paper may be adapted to these modalities.

Subjects were recruited from the Washington University in St. Louis campus and the
surrounding community. Individuals were excluded if there was a history of metal implants
or other contraindications to the MRI environment, or a history of developmental delay,
neurological or psychiatric illness, including the use of psychotropic medications. All
subjects were native English speakers. All adult subjects gave informed consent, and all
children gave assent with parental consent, in accordance with the guidelines and approval
of the Washington University Human Studies Committee. Subjects were compensated for
their participation.

Datasets and Data Collection

This study utilized multiple datasets, divided into 4 cohorts (see Table 1).

The data for the first 3 cohorts (N=77) were acquired on a Siemens MAGNETOM Tim Trio
3.0T Scanner with a Siemens 12 channel Head Matrix Coil (Erlangen, Germany). A T1-
weighted sagittal MP-RAGE structural image was obtained (TE = 3.06 ms, TR-partition =
2.4's, T1 = 1000 ms, flip angle = 8°, 176 slices with 1x1x1 mm voxels). A T2-weighted
turbo spin echo structural image (TE =84 ms, TR = 6.8 s, 32 slices with 2x1x4 mm voxels)
in the same anatomical plane as the BOLD images was also obtained to improve alignment
to an atlas. Functional images were obtained using a BOLD contrast sensitive gradient echo
echo-planar sequence (TE = 27 ms, flip angle = 90°, in-plane resolution= 4x4 mm; volume
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TR = 2.55). Whole brain coverage for the functional data was obtained using 32 contiguous
interleaved 4 mm axial slices.

The data for the fourth cohort (N=42) were acquired on a Siemens 1.5 Tesla MAGNETOM
Vision MRI scanner (Erlangen, Germany). Structural images were obtained using a sagittal
magnetization-prepared rapid gradient echo (MP-RAGE) three-dimensional T1-weighted
sequence (TE =4 ms, TR =9.7 ms, Tl = 300 ms, flip angle = 12°, 128 slices with 1.25x1x1
mm voxels). Functional images were obtained using an asymmetric gradient echo echo-
planar sequence sensitive to blood oxygen level-dependent (BOLD) contrast (T2* evolution
time = 50 ms, flip angle = 90°, in-plane resolution 3.75x3.75 mm; volume TR = 2.5 s).
Magnetization steady state was assumed after 10 seconds. Whole brain coverage for the
functional data was obtained using 16 contiguous interleaved 8 mm axial slices, acquired
parallel to the plane transecting the anterior and posterior commissure (AC-PC plane).

fMRI preprocessing

Figure S1 provides a complete overview of the workflow for data analysis. Functional
images underwent standard fMRI preprocessing to reduce artifacts (Shulman et al., 2010).
These steps included: (i) removal of a central spike caused by MR signal offset (in 1.5T data
only), (ii) correction of odd versus even slice intensity differences attributable to interleaved
acquisition without gaps (temporal realignment using sinc interpolation of all slices to the
temporal midpoint of the first slice, accounting for differences in the acquisition time of
each individual slice), (iii) correction for head movement within and across runs and (iv)
within run intensity normalization to a whole brain mode value of 1000. Of note, mode 1000
normalization defines 100% signal at every voxel identically as the modal value across all
voxels throughout the entire scan. BOLD values are presented in mode 1000 scale, where 10
units = 1% signal change (see Figures). Atlas transformation of the functional data was
computed for each individual via the MP-RAGE scan. Each run was then resampled in atlas
space on an isotropic 3 mm grid combining movement correction and atlas transformation in
a single interpolation (Shulman et al., 2010).

Head realignment estimate calculations

Head motion estimation involved a series of rigid body transforms, T;, where i indexes
frame (volume) and T; spatially registers frame i to a selected reference frame. Each
transform was computed by minimizing the registration error,

- <(S 1.(1 () - Io (75))2>,

where / (7) is image intensity at locus —2, angle brackets denote the spatial average over the
brain, subscript 0 denotes the reference frame (here, taken as the run midpoint) and s is
scalar factor that compensates for small changes in mean signal intensity. Each transform
can be expressed as a combination of rotation and displacement components. Thus,

R di
T;= ,

where R;j is a 3 x 3 rotation matrix and ; is a 3 x 1 column vector of displacements. R; can
be factored into three elementary rotations about each of the three axes. Thus, R; = Rj,RisRi,,
where
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1 1 0 cosB; 0 sing; cosy; —siny; 0
Rix=| 0 cosa; —sina; |, Ripg= 0 1 0 ,and R;=| siny; cosy; O
0 sina; cosq; —sinB; 0 cosp; 0 0 1

Thus, each rigid body transform is defined by six parameters.

Framewise displacement (FD) calculations

Differentiating head realignment parameters across frames yields a six dimensional
timeseries that represents instantaneous head motion. To express instantaneous head motion
as a scalar quantity we used the empirical formula,

FD;=|Ad; |+|Adiy |+|Ad; |+|Aai |+ ABil+]A,i|, Where Adi,=d(;—1). — di., and similarly for the

other rigid body parameters [di.\' diy di; @i B )’i]. Rotational displacements were
converted from degrees to millimeters by calculating displacement on the surface of a sphere
of radius 50 mm, which is approximately the mean distance from the cerebral cortex to the
center of the head.

Functional connectivity (rs-fcMRI) processing

For rs-fcMRI analyses, standard additional functional connectivity processing steps were
utilized to reduce spurious variance unlikely to reflect neuronal activity (Fox et al., 2006;
Fox et al., 2005; Fox et al., 2009). These steps included: (i) spatial smoothing (6 mm full
width at half maximum), (ii) a temporal band-pass filter (0.009 Hz < f < 0.08 Hz), and (iii) a
multiple regression of nuisance variables from the BOLD data. Nuisance regressions
included ventricular signal averaged from ventricular regions of interest (ROIs), white
matter signal averaged from white matter ROIs, whole brain signal averaged across the
whole brain, six head realignment parameters obtained by rigid body head motion
correction, and the derivatives of each of these signals. Where indicated in the text, data was
reprocessed identically using only the indicated nuisance regressors (e.g. no motion
regressors means that the 12 motion-related regressors were not included, no whole brain
regression means that the two whole-brain-related regressors were withheld, etc.).

DVARS calculations

DVARS (D referring to temporal derivative of timecourses, VARS referring to RMS
variance over voxels) indexes the rate of change of BOLD signal across the entire brain at
each frame of data. To calculate DVARS, the volumetric timeseries is differentiated (by
backwards differences) and RMS signal change is calculated over the whole brain. DVARS
is thus a measure of how much the intensity of a brain image changes in comparison to the
previous timepoint (as opposed to the global signal, which is the average value of a brain
image at a timepoint). The global measure of signal change is

ovaasten= (| G y{lG) -1 )

where, as before, /i (_f) is image intensity at locus —2 on frame i and angle brackets denote
the spatial average over the whole brain. A computationally important detail is to note that
this spatial average should count only voxels that, during acquisition, were within the field
of view at all times, i.e., completely sampled voxels. DVARS was first described and
applied in (Smyser et al., 2010). In this report, DVARS was calculated upon final functional
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connectivity images. Note that DVARS could, in principle, be calculated at other points of
the processing stream (e.g., prior to functional connectivity processing).

ROI definition

All timecourses and correlations presented in this paper were drawn from a set of 264
regions of interest (ROIs) that were defined with our lab (Dosenbach et al., 2010; Power et
al., in press). These ROIs were defined through several meta-analyses of task fMRI data,
and with the fc-Mapping technique (Cohen et al., 2008; Nelson et al., 2010) applied to rs-
fcMRI data (no subjects in the present study were used to define ROIs). All ROIs are
modeled as 10 mm diameter spheres centered upon ROI coordinates.

Correlation calculations and graph formation

Following standard techniques, correlations were calculated as the Pearson product moment
between the timecourses extracted from pairs of ROIs. The 264 x 264 correlation matrix
averaged across a cohort defines a weighted network (nodes = ROIs, edges = correlation
coefficients), and community detection algorithms (Infomap (Fortunato, 2010; Rosvall and
Bergstrom, 2008)) were applied to the graph to detect sub-networks within the brain-wide
network. To avoid effects of smoothing and reslicing, only correlations between ROIls
separated by more than 20 mm were considered. Networks were analyzed at a variety of
thresholds, and a representative analysis performed at 10% edge density is presented in
Figure 10. Normalized mutual information is a measure of shared information between
probability distributions, and is a standard measure of the similarity of community
assignments in networks (Newman, 2010). Values of 1 indicate that two sets of assignments
are identical (knowledge of one distribution gives full information about the other
distribution), whereas values of 0 indicate that an observer gains no information about one
distribution from the other.

Computations and Visualizations

Results

MRI images were processed using in-house software. Network calculations were performed
using MATLAB (2007a, The Mathworks, Natick, MA). Brain surface visualizations were
created using Caret software and the PALS surface (Van Essen, 2005; Van Essen et al.,
2001).

Single timecourses in a single subject demonstrate a relationship between head motion and
changes in the BOLD signal, even after data realignment and regression of realignment
estimates and their derivatives from the data. Figure 1A shows rs-fcMRI timecourses at 3
left occipital regions of interest (ROISs) in a single subject. These data are from a single child
with RMS movement of 0.50 mm (processed data are 3 mm isotropic voxels derived from
3.75 x 3.75 x 4 mm acquisition voxels). The extent of movement in this scan would be
considered low (i.e., of high quality) by many investigators. The timecourses are all quite
similar, and there are several major peaks and troughs in the data. Figure 1B displays the six
head realignment estimates for this subject. Figure 1C shows the absolute values of the
differentials of the timecourses, identifying the periods in which the rs-fcMRI signal was
most rapidly changing. These periods correspond to the peaks and troughs of Figure 1A, and
Figure 1D compresses the six realignment parameters into a single index of framewise
displacement (FD) by summing the absolute values of the differentials of the six parameters.
There is evident correspondence between plots in Figures 1C and 1D. As Figure S2 shows,
such relationships between timecourses and head displacement are not unique to occipital
cortex, and can be seen throughout the brain. The pattern is quite similar across ROIs, but
there are differences in the sensitivity of particular timecourses to particular movements,
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which might result from the proximity of ROIs to gray/white matter or gray matter/CSF
interfaces in particular directions.

A general relationship between head motion and changes in BOLD signal across the brain
can be seen in every subject examined in this paper (N=119 in four cohorts). A brain-wide
collection of 264 ROIs based upon meta-analytic fMRI data and resting state functional
connectivity data (independent of the present data) (Power et al., in press) was used to
produce rs-fcMRI timecourses in each subject (see Methods, Table S1 for coordinates,
Figure S3 for locations on a brain surface). Figure 2A plots the absolute values of the
derivatives of the 264 timecourses as a function of framewise displacement for the same
subject shown in Figure 1. A loess curve using a quadratic fit over the adjacent 5000 data
points is shown in black. The data are scattered, but there is an unmistakable trend for
frames with high movement to be frames with large changes in many timecourses. Figure
2B plots such loess curves for all 22 children in Cohort 1, demonstrating that this trend is a
general feature of the data, and is not particular to any subject. As the inset shows, there is a
strong relationship of motion and rs-fcMRI signal change down to a framewise displacement
of 0, suggesting that any and all movement tends to increase the amplitude of rs-fcMRI
signal changes.

It is now clear that across subjects, periods of head movement tend to contain rs-fcMRI data
in which BOLD signal is rapidly and substantially changing. Neural activity representing
movement planning and execution is surely present at such times, but the signal changes
observed during movement do not correspond to the neuroanatomical patterns one would
predict for motor-related neural activity. For example, as Figure S4 shows, during head
motion, signal changes are not confined to primary motor, pre-motor, or supplementary
motor regions, but are instead found throughout the entire brain. Moreover, the amplitude of
these signal excursions are often very large - far greater than the signal changes produced by
typical motor tasks (e.g., button-pushing or speaking). It is therefore unlikely that these
signal changes reflect motor-related neural activity to any great extent. Instead, it is far more
likely that movement disrupts magnetic gradient establishment or BOLD signal readout
(Hutton et al., 2002), that many slices or entire volumes of data have been contaminated
with artifact during periods of movement, and that this contamination has not been
completely removed by fMRI preprocessing and functional connectivity processing. In
fMRI studies, such noise in single subjects is dampened through trial averaging. This
averaging is impossible in rs-fcMRI studies, which depend upon covariance estimated in
long timecourses. If large-amplitude changes contaminate rs-fcMRI timecourses, they will
alter patterns of covariance according to their prevalence, magnitude, and spatial
distribution, and could lead to distorted estimates of rs-fcMRI correlation between brain
regions.

Given the presence of motion-related artifact in the data, how might one detect and/or
minimize its impact? All functional connectivity processing streams involve some method of
“artifact removal” that is aimed to reduce such artifacts. One approach to removing or
minimizing motion-related effects has been to use head realignment parameters or other
motion estimates as nuisance regressors, and to attempt to regress movement effects from
the data (e.g., (Fox et al., 2006; Fox et al., 2005; Fox et al., 2009; Weissenbacher et al.,
2009)). However, the data presented thus far have already undergone such a procedure, and
subsequent figures will show how regression neither causes the effects shown here, nor is it
capable of completely removing the effects shown here. This may be because there is not a
strong, simple, linear relationship between movement estimates and changes in the BOLD
signal throughout the brain, or because the regressions used here were not tailored to every
voxel’s displacement. Another approach is to use covariance-based approaches such as
component analysis (e.g. ICA, implemented in software packages such as MELODIC or
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GIFT) to identify and remove “artifactual” components in the data (e.g., (Beckmann and
Smith, 2004; Erhardt et al., 2010; Robinson et al., 2009a)). Although some artifactual
signals (e.g. “ringing”) are easily identified and removed using such procedures, other
artifactual signals may be more ambiguous, and decisions about retaining or discarding such
components are somewhat subjective. Since regressions do not fully remove motion-related
signal, and because component removal entails subjective decisions about what constitutes
artifact, we adopt a different approach, described below.

Head motion tends to occur sporadically in cooperative subjects. Thus, motion-induced
signal changes tend to behave as burst noise. Rather than attempting to parse “true” from
“artifactual” signal within all frames, we propose to identify and entirely eliminate frames of
suspect quality from our rs-fcMRI analyses to detect and characterize motion-related
artifact. Previous studies that have examined the concatenation of discontinuous rs-fcMRI
data have found no deleterious effects upon functional connectivity (Fair et al., 2007; Van
Dijk et al., 2010), and similar “temporal masking” approaches have been used in other rs-
fcMRI studies (e.g. (Barnes et al., 2011; Fransson et al., 2007; Jones et al., 2010; Kennedy
and Courchesne, 2008; Smyser et al., 2010; Smyser et al., 2011)) and in task fMRI (e.g.,
(Birn et al., 2004)). Generally, we propose two indices of data quality that can be used to
flag frames of suspect quality, creating temporal masks of the data. These temporal masks
can be augmented and combined in various ways to produce a final temporal mask, which
specifies frames to ignore when performing calculations upon the data (similar approaches
using frame elimination or weighting could be implemented in AFNI or SPM’s ArtRepair).
We refer to this process as “scrubbing”.

Specifically, we begin our procedure after functional connectivity processing has finished,
because bandpassing, often an integral part of functional connectivity processing, cannot be
performed properly upon temporally discontinuous data. The first framewise data quality
index is framewise displacement (e.g., Figure 1D), calculated as the sum of the absolute
values of the derivatives of the six realignment parameters. Framewise displacement thus
measures how much the head changed position from one frame to the next. Figure 3A and
3D show framewise displacement values for two subjects (see Figure S5 for further
examples). The second framewise data quality index is called DVARS, which is calculated
in each volume as the RMS of the derivatives of the timecourses of all within-brain voxels.
DVARS thus measures how much image intensity has changed from one frame to the next.
This measure was conceived of as a logical extension of the trends shown in Figures 1 and
2, where epochs of head movement coincide with epochs of high-amplitude BOLD signal
changes. Such plots are shown in Figure 3B and 3E for two subjects (see also Figure S5).
Note that the plots of framewise displacement and DVARS are similar but not identical. In
particular, framewise displacement measures tend to be temporally focused (sharp peaks) in
contrast to the broader peaks of the DVARS measure. Additionally, the signal-to-noise ratio
is larger for framewise displacement than for DVARS (Figures S5, S6). For moderate to
large movements, both indices identify very similar portions of the data (big peaks occur at
nearly identical timepoints). If one also wishes to identify small movements, framewise
displacement may more sensitive due to the lower “floor” in the signal (see Figures S5, S6).
Note that framewise displacement arises from realignment parameters calculated in fMRI
preprocessing steps, whereas the DVARS measure reflects image intensity, which (if no
realignment parameters are regressed) has no explicit relation to the movement measures
other than the alignment process itself. It is presently unclear whether one index captures
data quality better than the other, but the ease of producing either measure and the similarity
of frame indexing that each measure produces render the issue moot in operational terms
when only large movements are sought. After studying the plots of dozens of healthy adults,
values of 0.5 for framewise displacement and 0.5% ABOLD for DVARS were chosen to
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represent values well above the norm found in still subjects (see Figure S5 for examples of
still subjects).

A temporal mask was generated from each index, marking frames whose framewise
displacement or DVARS exceeded the cutoffs set above. Figures 3C and 3F show the
temporal masks generated from each index in two subjects, and the cutoffs themselves are
shown as dotted lines in the plots above. These temporal masks were augmented by also
marking the frames 1 back and 2 forward from any marked frames to accommodate
temporal smoothing of BOLD data in functional connectivity processing and re-
establishment of steady-state spins. Since reasonable arguments underlie each measure as an
index of data quality, we conservatively chose to use an intersection of the two temporal
masks to generate a final temporal mask. All removed frames must thus 1) be high-motion
frames, and 2) display evidence of widespread and/or large amplitude changes in BOLD
signal. When any operations were performed upon a subject’s data, the temporal mask was
applied to eliminate marked frames from the analysis. Importantly, the current analysis is
designed to identify only the most egregiously suspect frames of data in order to explore
how a relatively small number of “bad” frames impact the data, rather than to completely
excise movement-related artifact.

Even with this conservative approach to identifying periods of motion in a relatively still
cohort of children, the temporal masks indicated that approximately 25% of the data from
Cohort 1 was severely contaminated with motion artifact (Table 1). The subject inclusion
criteria for this study were identical to the traditional criteria employed in our laboratory,
with the added requirement that at least 125 frames (~5 min) of data must remain after
scrubbing. No limitations were placed on the percentage of data that scrubbing could
remove as long as this minimum amount of data remained. These inclusion criteria were
employed because our aim was a) to describe what happened if (any amount of) motion-
contaminated data was removed from a scan and b) to recover as much data from
compromised scans as possible. Figure S7 shows the proportion of data removed from each
subject in this study. Importantly, periods of motion could be brief or extended: although
many motion epochs last only one or two TRs, many epochs lasting 5, 10, or even dozens of
TRs were also identified (see Figure S8). The varying extents of periods of movement
suggest that the induced BOLD signal changes may have varying durations, some of which
may be within the low-frequency window that characterizes rs-fcMRI data.

To test the effects of high-motion frames on rs-fcMRI correlations, this scrubbing procedure
was applied to four cohorts of healthy subjects to produce four unscrubbed and four
scrubbed datasets. Within each cohort (for N subjects), the 264 ROIs described previously
were applied to the scrubbed and the unscrubbed data to produce timecourses and seed
correlation maps. Pearson correlations between seed timecourses were calculated to produce
264x264xN matrices of scrubbed and unscrubbed data in each subject. The unscrubbed
matrices were subtracted from the scrubbed matrices to produce Ar matrices.

The effects of scrubbing high-motion frames from the data are readily visible on inspection.
Figure 4A and 4B display seed correlation maps from a seed in medial parietal cortex (=7
—55 27) in unscrubbed (top) and scrubbed (bottom) data from two subjects in Cohort 1.
Scrubbing removed 35% and 39% of the data from these subjects, respectively. The seed
ROI is a member of the default mode network, and the correlation maps in scrubbed data
demonstrate more characteristic topography (see the differences in medial prefrontal cortex,
for example) than the maps from unscrubbed data. Prior to scrubbing, one is struck by the
incompleteness of correlations within the default mode network, whereas after scrubbing, it
is clear that the seed is correlated with the canonical regions of the entire default mode
network. Such changes in correlation patterns can be found in many subjects. Figure 4C
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displays changes in correlation values between medial parietal and medial prefrontal cortex
seeds for the 22 subjects in Cohort 1 in unscrubbed and scrubbed data. Correlations between
these two ROIs, which are both members of the default mode network, are substantially
increased in most subjects. A natural reaction is to ask whether such changes are significant
and to demand direct comparisons or t-tests before taking these results seriously. As we will
demonstrate shortly, the changes in correlations depend (naturally) upon the amount of data
that is removed by scrubbing, which is in turn dependent upon framewise displacement and
DVARS measures. For a given threshold, greater amounts of movement will produce greater
(and more often significant) changes. Likewise, for a given amount of movement, more
stringent scrubbing settings will remove more data and produce greater effects.

More comprehensive investigations of motion scrubbing reveal systematic effects
throughout the brain. Figure 5 plots the mean Ar matrix from Cohort 1 against the Euclidean
distance between the ROIs that produced the correlations. Motion scrubbing tends to
decrease many short-range correlations, and to increase many medium- to long-range
correlations. To check that these changes did not arise simply as a result of removing
frames, the temporal masks within each subject were randomized to remove an identical
amount of data, in identical-sized chunks, but at random. This “random scrubbing” was
performed 10 times, always with the result shown in Figure 5B, which shows no systematic
effects of distance upon Ar. The difference in the amplitudes of Ar effects is highly
significant (paired two-tail t-test, t = 251; p=0). A linear fit of Ar in motion scrubbed data to
Euclidean distance has a slope of 4.5 + 0.01 x 1074 Ar/mm with an r2 of 0.18, whereas a fit
to random scrubbing data has a much shallower slope of 0.74 + 0.04 x 10~* Ar/mm and an
r2 of 0.03, explaining almost no variance in the data.

The spatial distribution of these changes is shown in Figure 6, which plots changes in
correlation on a brain. Blue vectors decrease with scrubbing, red vectors increase with
scrubbing, and black spheres identify ROl locations. As indexed by absolute value of the
change, the top 0.5%, 1%, and 2% of Ar are shown. Short blue vectors pepper the cortex,
and long red lines connect distant ROIs. Figure 7 plots Ar in terms of the projection of
pairwise correlations onto the X, Y, and Z axes of the brain. Here, again, the dependence of
Ar upon distance is clear. Additionally, these plots show that lateral relationships (along the
X axis) tend to be decreased by scrubbing, whereas vertical or anterior-posterior
relationships tend to be increased by scrubbing. This set of observations is consonant with
the effects shown in Figure S4, in which head motion produced symmetric effects about the
X axis, but produced strong BOLD signal changes of opposite sign in the anterior-posterior
and dorsal-ventral directions. Changes in pitch (e.g., head nodding) are a predominant form
of motion in many scans, and could produce such effects.

Similar results are found in three additional cohorts (Cohorts 2-4). Figures 8A, 8D, and 8G
all show the trend for scrubbing to decrease short-distance correlations and to augment
medium- to long-distance correlations. It is clear that the effect is strongest in children,
intermediate in adolescents, and weakest in adults. The magnitude of the Ar effect is
significantly different between cohorts (one-factor ANOVA, main effect of cohort: p = 0;
post-hoc two-sample two-tail t-tests demonstrate that 55.3% of child-adult, 8.5% of child-
adolescent, and 2.1% of adolescent-adult comparisons of Ar were significant beyond p <
0.05, FDR corrected), and is related to how much data was scrubbed from the dataset, which
in turn is related to the amount of movement the cohorts possessed (see Table 1). Although
the effects are weaker in adolescents and adults, they are certainly present, as the plots of
motion scrubbing and random scrubbing in Figure S9 make clear. The brain surfaces in
Figure 8 present the spatial distribution of the top 2% of Ar changes in each cohort. No
particular spatial patterning is clear across cohorts, other than the tendency for blue vectors
to be shorter than the red vectors.
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A question of particular interest to the neuroimaging community is whether these findings
generalize beyond particular scanners, institutions, study populations, and acquisition
sequences. The datasets reported in this paper represent a single institution, two scanners
with two field strengths and two acquisition sequences, and three age ranges (see Methods).
Scrubbing methods have also been applied to several datasets other than the ones reported
here, and the effects are present in every dataset from every site examined thus far (at
present, four sites). This represents data acquired in several scanners (Philips and Siemens)
at multiple field strengths (1.5T and 3T) using multiple acquisition sequences. The effects
do not appear to be particular to any study population (they are present in clinical adult
cohorts, in neonatal cohorts, etc.). As such, this artifact appears to be a general feature of
functional connectivity MRI. It is probable that particular aspects of acquisition (e.g.
gradient sequence, spatial or temporal resolution, etc) may render data more or less sensitive
to motion-related effects, though we are unable to offer any specific observations or
recommendations at this point. It is worth noting that framewise displacement estimates
should be relatively uniform across sites, scanners, and sequences, but that the DVARS
measure may vary across these parameters, since it indexes changes in signal intensity.

A related question is whether this artifact is produced and/or countered by particular aspects
of data processing. For any analysis it is standard practice to realign fMRI data across scans.
After fMRI preprocessing, a variety of functional connectivity processing strategies may be
used to form rs-fcMRI data. These approaches typically include spatial blurring, temporal
bandpassing, and some version of “artifact removal”, whether by regression of nuisance
variables or component removal or other methods. The data presented in this paper follows a
functional connectivity processing stream that uses a multiple regression of nuisance
variables as a method to reduce noise and artifact in functional connectivity data (Fox et al.,
2009). Typical regressors include signals from white matter, ventricles, and the whole brain,
the derivatives of those 3 signals, the 6 head realignment estimates, and the derivatives of
each of those estimates (18 regressors total). An important concern is that motion-related
artifacts might actually have been introduced to the data in the regression process. Figure 9
plots Ar against Euclidean distance for Cohort 1 beginning with the standard functional
connectivity processing stream, then progressively removing elements of the regression, and
finally removing the regression altogether (so that the data have only been realigned,
registered, blurred, and bandpassed). In each case the artifact is present, excluding these
regressions as a source of this effect. This indicates that the motion-related dependence of
correlation strength upon distance is either inherent in the data (presumably, due to motion),
or that it is produced by the widely used processes of data realignment, blurring, or
bandpassing. In terms of countering the motion-induced correlations, the regressions in this
processing stream have a partial but incomplete effect: the spread of the histogram of Ar
values is clearly reduced by the regressions, but the artifact persists through all aspects of
functional connectivity processing. It is possible that other approaches to functional
connectivity processing (e.g., ICA) may fare better in removing this motion-related artifact,
and we encourage users of other approaches to test their data for similar effects.

We now demonstrate how scrubbing can alter fundamental conclusions about patterns of
functional connectivity. Across typical development, several groups, including our own,
have reported a reorganization of functional connectivity, such that short-distance
correlations tend to decrease with age, whereas long-distance relationships between
functionally related brain regions tend to increase with age (for a review of the
developmental literature, see (Power et al., 2010)). This pattern is, unfortunately, also what
one would predict from a motion-related artifact (Table 1). Figure 10 presents the
community assignments of child and adult datasets (Cohorts 1 and 3, see Table 1) before
and after scrubbing. Here, colors in each panel indicate sub-networks within the brain-wide
network of 264 ROIs. Scrubbing produced little change in the community structure of adult
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functional networks, but it produced substantial changes in the child functional networks.
What began as largely local, non-distributed communities in children (e.g. the orange
community in children) became distributed modules with closer resemblance to adult
modules (e.g. the yellow or red modules) upon scrubbing. This reflects a fundamental
reorganization of the child network into a more adult-like distributed architecture that
includes intact default and fronto-parietal sub-networks. These changes in network
architecture can be quantified by normalized mutual information, which indicates that
community assignments between children and adults before scrubbing (NMI = 0.56) become
more similar after scrubbing (NMI = 0.70). This increase is not seen upon random scrubbing
(over 10 repetitions, NMI = 0.58 + 0.01). Another way to quantify this set of observations is
to note that scrubbing reduces the number of significant differences in pairwise correlations
between children and adults by over 30% (from 608 to 401, p < 0.05 FDR corrected, two-tail
two-sample t-test). These findings suggest that at least some of the developmental
differences previously reported can be accounted for by motion-related artifact.

These analyses employed the standard scrubbing regime used throughout this manuscript,
and are intended as proof-of-principle that even a modest amount of data removal can alter
patterns of functional connectivity. A more definitive and comprehensive investigation of
developmental functional connectivity is in preparation, utilizing more stringent scrubbing
criteria (see Figure S10 for an example of how scrubbing affects statistical power).
Additionally, we are exploring the incorporation of temporal masks in the multiple
regression stage, since large-amplitude motion-related changes are likely to decrease the
beta weights of regressors, which could differentially impact subject data across
development.

Discussion

We have demonstrated that small movements produce colored noise in rs-fcMRI networks.
Evidence for this artifact was first observed in timecourses, where movement of the head
visibly coincided with large changes in the rs-fcMRI signal. This relationship was found in
ROIs throughout the brain, and in all subjects studied. To explore the effects of this motion-
containing data on rs-fcMRI analyses, two semi-independent indices of data quality were
proposed that operate on a frame-by-frame basis to flag frames of suspect quality. In four
independent cohorts, removal of frames with high values on each index reduced many short-
distance rs-fcMRI correlations and increased many long-distance rs-fcMRI correlations.
This effect was not due to frame removal, and the artifact did not arise from regressions in
functional connectivity processing. On-line scanner corrections for head motion also did not
ameliorate this effect (Thesen et al., 2000) (data not shown).

The presence of this artifact has substantial implications. All subjects analyzed in this article
are healthy control subjects and would meet inclusion criteria for analysis in most MRI
laboratories. The motion-induced artifacts occur with movements on the order of a few
tenths of a millimeter or less (subjects for this study were selected with our former standard
inclusion criteria— RMS movement under 1.5 mm). Within single cohorts, motion scrubbing
can substantially alter seed correlation maps, and commonly studied rs-fcMRI correlations
such as those between medial prefrontal and medial parietal cortex are among the
correlations that are affected by this artifact. A clear implication is that many rs-fcMRI
results (both negative and positive) in clinical populations and across the lifespan may need
to be critically revisited. In our own developmental data, some of our previous conclusions
must be modified, though definitive analyses are not yet complete.

The analyses presented in this paper were crafted to demonstrate the effects of small
movements upon rs-fcMRI correlations, not to completely remove motion-induced artifact
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from the data. An important topic for further study will be how such artifacts should be dealt
with. There are two fundamental approaches to artifact removal: excision of entire
contaminated frames of data, and parsing “artifactual” from “real” signal within frames. If
one adopts the former approach, the news is both encouraging and discouraging. The
discouraging news is that, as Figure 2 shows, any and all movement tends to increase
changes in BOLD signal, which suggests that there is no threshold below which movement
creates no artifactual changes in signal. However, as the still subjects in Figure S5
demonstrate, there does appear to be a floor in framewise displacement and DVARS values,
and if one wished to excise motion-contaminated signal as thoroughly as possible,
thresholds close to those floors would seem appropriate. Additionally, unions of the flagged
frames from framewise displacement and DVARS, rather than intersections, could be used
to generate more liberal temporal masks. If the latter approach is favored, several
possibilities exist. Linear regression of head realignment estimates showed some utility in
reducing the effects of motion-related artifact on rs-fcMRI correlations (see Figure 8). We
currently perform these regressions using single parameters applied over the entire brain.
However, one could craft voxel-specific regressors that more precisely account for the
direction and amplitude of displacement at every voxel in the brain. Such regressions may
prove more effective than the current, blunter regressions. Alternatively, covariance-based
methods may prove to be effective in countering such artifacts (e.g., (Beckmann and Smith,
2004; Erhardt et al., 2010; Robinson et al., 2009a)). We hope that groups with functional
connectivity processing strategies that differ from the one used in this report will examine
their data to see whether motion-induced correlations reside in their analyses.

A variety of artifacts are present in fMRI data, including susceptibility artifact, cardiac
artifact, respiratory artifact, etc. It is useful to distinguish between static vs. dynamic
artifacts. Susceptibility inhomogeneity leads to image distortions and signal voids that are
especially problematic in particular brain regions, such as orbitofrontal cortex and temporal
cortex above the petrous bone (Ojemann et al., 1997; Robinson et al., 2009b; Simmons et
al., 2009). Susceptibility artifacts shift in space approximately with the rest of the brain as
the head moves, and their effects should be mitigated by conventional realignment
procedures. However, head movement can alter magnetization gradients in the Z-direction,
resulting in head position-dependent image warping and signal dropout. Head motion could
thus potentially interact with artifacts of all types in spatially inhomogeneous ways. It is
therefore important to note that no consistent spatial patterning over the brain was evident in
our data (Figures 6 and 8). Since our collection of ROIs only sparsely populates the ventral
surface of the brain, it is possible that future investigations may reveal that ventral regions
are particularly sensitive to motion-induced changes in correlations. Recently, temporal
SNR has been used to measure the quality of functional connectivity data in relation to head
motion (Van Dijk et al., 2011). Similar approaches may shed light on specific spatial
locations of interest for the motion-related changes in correlation we describe here. Other
avenues for future inquiry will include determining whether particular acquisition sequences
are less susceptible to this artifact, or whether particular processing choices (e.g., voxel size,
region size and placement, smoothing, etc.) render analyses less susceptible to this artifact.

How does a systematic artifact arise from head movement? Figure S4 demonstrates that a
single movement can produce changes in BOLD signal throughout the brain in a regionally
specific manner, such that one portion of the brain displays increased signal, whereas other
portions display decreased signal. This effect introduces an element of anti-correlation
between such different portions, and causes the timecourses of nearby voxels within a
portion to resemble one another more closely, providing a natural explanation for the
increased short-distance and decreased long-distance correlations seen when high-motion
frames are retained. In our experience, the predominant head motion is a change in pitch
(e.g., head nodding). This motion, which is symmetric about the X (lateral) axis, could lead
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to artifactual signal changes of opposite sign in the anterior and posterior parts of the head,
and in dorsal and ventral parts of the head (a clear example of this is shown in Figure S4).
The data of Figure 7 are in accord with such an interpretation, because the greatest increases
in correlation upon scrubbing are predominantly in relationships oriented in anterior-
posterior and dorsal-ventral directions, whereas laterally-oriented correlations tend to
decrease upon scrubbing. Also note that head movements tend to produce large amplitude
changes in BOLD signal. Since correlation calculations are based upon differences of
individual measures from means, these large displacements in BOLD signal carry
substantial weight in such computations.

In conclusion, subject head motion-induced artifacts contribute substantially to the rs-fcMRI
signal, and produce systematic but spurious patterns in correlation. This effect is present in
healthy control subjects, and is likely to be larger in developing, aging, or clinical
populations that, as groups, have more movement of all forms. Optimal handling of rs-
fcMRI data will need to take into account the consequence of motion artifact that is only
incompletely addressed with standard realignment and motion regression analysis strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Frame-by-frame changes in rs-fcMRI signal are related to frame-by-frame changes in
head position even after motion regression

(A) rs-fcMRI timecourses from 3 ROIs in a single subject. Each ROl is a 10 mm diameter
sphere centered on the coordinates listed at the right, which are all left occipital locations
(see Figure S2 for further examples elsewhere in the brain). (B) The six parameters
calculated for frame-by-frame realignment of the subject’s data, which indicate the
translational (solid line) and rotational (dotted line) displacements of the head from a fixed
position in space. Rotational displacements were calculated at a 50 mm radius. (C) The
absolute values of the differential of each of the timecourses in (A). (D) The framewise
displacement (FD) of head position, calculated as the sum of the absolute values of the
differential of the realignment estimates in (B). Note the correspondence of high values in
(C) and (D) indicating that large changes in BOLD signal co-occur with large changes in
head position. RMS movement for this subject is 0.50 mm, which is well within traditionally
acceptable limits of subject motion (e.g. 1.5 mm RMS movement with 3 mm isotropic
voxels). Coordinates are in MNI space, and ROIs are shown on a PALS fiducial surface
(\Van Essen, 2005).
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Figure 2. Frame-by-frame head displacement is related to frame-by-frame changes in rs-fcMRI
signal throughout the brain and across subjects

(A) For each frame of data in the same subject used in Figure 1, the framewise displacement
(FD) of a frame of data is plotted against the absolute values of the differentials of rs-fcMRI
timecourses of 264 ROIs (locations listed and shown in Table S1 and Figure S3). These data
are fitted with a loess curve (black line) sampling the nearest 5000 data points. (B)
Identically produced loess curves from all 22 subjects in Cohort 1 are plotted against
framewise displacement. There is a clear trend for larger frame-by-frame head displacement
to co-occur with larger changes in rs-fcMRI signal. The inset magnifies the plot between
framewise displacements of 0 and 1, demonstrating that this relationship exists even for very
small movements.
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Figure 3. Two framewise indices of data quality, and a method for flagging frames of suspect
quality

(A) The framewise displacement (FD) of head position, calculated as the sum of the absolute
values of the 6 translational and rotational realignment parameters (see Figure 1C,D). (B)
The DVARS measure, calculated as the RMS of the differential of all timecourses of all
voxels within a spatial brain mask at each frame. (C) Two temporal masks, indicating
frames of suspect quality in red. Here, the upper row indicates frames that were flagged as
having FD over 0.5 (see the dotted red line in (A)), and the bottom row indicates frames that
were flagged as having DVARS over 5 (dotted red line in (B)). These temporal masks are
quite similar, but not identical, just as the plots in (A) and (B) are quite similar, but not
identical. (A-C) show data for the same subject examined in Figure 1 (RMS movement =
0.50 mm), and (D-F) show data from another subject, whose RMS movement is 0.82 mm.
Here, thresholds are chosen to simply identify the most egregiously suspect frames.
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Figure 4. Examples of how motion scrubbing impacts rs-fcMRI data

(A,B) Seed correlation maps in unscrubbed and scrubbed data in two subjects using a medial
parietal seed (—7 —55 27). Scrubbing removed 35% of the data in (A) and 39% of the data in
(B), leaving 265 and 151 frames for analysis, respectively. The red ovals indicate locations
where correlations are clearly altered. Seed maps produced from scrubbed data demonstrate
much greater resemblance to the canonical default mode network. (C) Changes in the
strength of rs-fcMRI correlations between medial parietal (—7 —55 27, red sphere) and
medial prefrontal cortex (=7 50 —1, green sphere) across all 22 subjects in Cohort 1. Ar is
produced by subtracting unscrubbed correlation values from scrubbed correlation values.
Note that scrubbing increases this long-distance correlation in most subjects, does not
substantially alter it in others, and reduces it in a small number of subjects.
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Figure 5. Scrubbing high-motion frames from rs-fcMRI data decreases short-distance
correlations and augments long-distance correlations

(A) Within the 22 subjects of Cohort 1, 264 ROIs were applied to scrubbed and unscrubbed
data to produce two 264x264x22 correlation matrices. The unscrubbed matrix was
subtracted from the scrubbed matrix and then averaged over subjects to produce a difference
matrix (Ar). The values of this matrix are plotted as a function of the Euclidean distance
between ROIs. Scrubbing high-motion frames from the data substantially decreases short-
distance correlations and increases medium- to long-distance correlations. (B) To
demonstrate that these effects arise from the removal of high-motion frames and not frame
removal in general, the number of frames and the size of contiguous chunks of removed data
were calculated for each subject, and identical sized chunks of data and numbers of frames
were removed at random from each subject’s data. Difference matrices were calculated as in
(A), and data are presented after (A). This process was repeated 10 times with similar
results. Motion scrubbing has a much greater impact upon Ar values than random scrubbing
(paired two-tail t-test: t = 305; p = 0). Linear fits are plotted over each dataset,
demonstrating a relationship between distance and Ar when motion-targeted scrubbing is
performed (r2 = 0.18), but not when random scrubbing is performed (r2 = 0.03).
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Figure 6. The spatial distribution of scrubbing effects upon correlations

The top 0.5% (A) and 1% (B), and 2% (C) of Ar changes, as indexed by the absolute value
of the change. Blue vectors represent correlations that decrease with scrubbing, and red
vectors are correlations that increase with scrubbing. Most blue vectors are short- to
medium-range, while most red vectors are medium- to long-range. The locations of the 264
ROlIs are shown as small black spheres. Data are shown on a transparent PALS fiducial
surface (Van Essen, 2005), and cerebellar ROIs are shown without a cerebellar surface.
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Figure 7. Scrubbing produces direction- and distance-dependent changes in correlations
Z For Cohort 1, the top 1%, 3%, and 10% of changes in correlation are plotted as a function of
+ the projection of each pairwise correlation vector onto the X, Y, and Z axes of Tailarach
g space. Here, X is the lateral axis, Y is the anterior-posterior axis, and Z is the vertical axis.
> In addition to the dependence of Ar upon distance, it appears that strongly lateral
=1 correlations tend to be mainly weakened by scrubbing, whereas more vertical or anterior-
g posterior correlations tend to be strengthened by scrubbing.
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Figure 8. Similar effects of scrubbing are found in 3 additional cohorts

(A-C): Cohort 2, (D-F): Cohort 3, (G-I): Cohort 4. (A) The Ar values plotted against the
Euclidean distance between ROIs. (B,C) Dorsal and lateral views of the top 1% of Ar
changes, indexed by the absolute value of the change. Blue vectors represent correlations
that decrease with scrubbing, and red vectors are correlations that increase with scrubbing.
(D-F) and (G-1) are after (A-C) in different cohorts. The trend for scrubbing to augment
long-distance correlations and to decrease short-distance correlations is present in each
cohort (A,D,G), but the precise distribution of maximal change in correlation varies between
cohorts. The magnitude of scrubbing effects reflects the average RMS movement of the
cohort, and by extension the amount of data that is removed in the scrubbing process (see
Table 1). An ANOVA comparing the magnitude of Ar across all cohorts was significant for
a main effect of cohort (p = 0), and post-hoc two-sample two-tail t-tests demonstrated that
55.3% of child-adult, 8.5% of child-adolescent, and 2.1% of adolescent-adult comparisons
of Ar were significant beyond p < 0.05, FDR corrected (children are Cohort 1 for these t-
tests).
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Figure 9. Motion-induced colored noise does not arise from standard regressions in functional
connectivity processing

Each row presents analyses performed on Cohort 1 using functional connectivity data
processing streams that differed only in the nuisance variables included in the multiple
regression performed as the final step of functional connectivity processing. Each row plots
the changes in correlation produced by motion scrubbing as a function of distance between
ROls, and also shows a histogram of these correlations. Nuisance variables in the top row
included movement estimates at each frame (the 6 head realignment parameters and their
temporal derivatives), as well as whole-brain signal and its derivative, white matter signal
and its derivative, and ventricular signal and its derivative. Progressive analyses removed
regressors (including derivatives) as indicated, and the bottom panels use no regression at
all. Motion regression does not produce (or completely eliminate) the artifact in question,
though it does produce a modest reduction in the changes in correlation produced by motion
scrubbing.
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Figure 10. The modular organization of brain-wide networks is fundamentally altered by head
motion

Top and bottom rows depict data from children and adults, respectively. Left and right
columns depict unscrubbed and scrubbed data, respectively. Each panel shows the sub-
network (community) organization within the appropriate dataset of a network composed of
the 264 ROIs studied in this report. Colors indicate sub-networks, and are independent in
each panel, though congruent colors have been chosen across panels for ease of visual
comparison. Only right hemispheres are shown, but results are generally symmetric across
hemispheres. The numbers between panels indicate the normalized mutual information of
community assignments between panels, a standard measure of how similar two sets of
community assignments are (values of 1 indicate identical assignments). Scrubbing adult
data produced little change in community assignments (NMI = 0.94), whereas scrubbing
child data produced substantial changes in community assignments (NMI = 0.69).
Moreover, though network organization in children and adults was initially quite dissimilar
(NMI = 0.56), it became more similar with scrubbing (NMI = 0.70). This increase in
similarity is not observed with random scrubbing (NMI = 0.58 £ 0.01 over 10 repetitions of
random scrubbing in children and adults). The reorganization of functional network in
children can be seen in the large contiguous patches of color (e.g. orange) in unscrubbed
data, which become parts of distributed communities in scrubbed data (see red circles for an
example). All graphs are thresholded at 10% edge density (r > 0.16, 0.15, 0.15, and 0.15
clockwise from upper left). For ease of visualization, nodes in communities with fewer than
4 members are colored white, and thus white nodes are explicitly not a single community.
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