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Abstract
Multiple sclerosis (MS) is the most common immune-mediated disabling neurological disease of
the central nervous system. The pathogenesis of MS is not fully understood. Histopathology
implicates both demyelination and axonal degeneration as the major contributors to the
accumulation of disability. The application of several in vivo quantitative magnetic resonance
imaging (MRI) methods to both lesioned and normal-appearing brain tissue has not yet provided a
solid conclusive support of the hypothesis that MS might be a diffuse disease.

In this work, we adopted FreeSurfer to provide standardized macrostructure or volumetry of lesion
free normal-appearing brain tissue in combination with multiple quantitative MRI metrics (T2
relaxation time, diffusion tensor anisotropy and diffusivities) that characterize tissue
microstructural integrity. By incorporating a large number of healthy controls, we have attempted
to separate the natural age-related change from the disease-induced effects. Our work shows
elevation in diffusivity and relaxation times and reduction in volume in a number of normal-
appearing white matter and gray matter structures in relapsing-remitting multiple sclerosis
patients. These changes were related in part with the spatial distribution of lesions. The whole
brain lesion load and age-adjusted expanded disability status score showed strongest correlations
in regions such as corpus callosum with qMRI metrics that are believed to be specific markers of
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axonal dysfunction, consistent with histologic data of others indicating axonal loss that is
independent of focal lesions. Our results support that MS at least in part has a neurodegenerative
component.
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brain atlas; FreeSurfer; qMRI; RRMS; DTI; T2 relaxation; natural aging; neurodegeneration;
axonal loss; demyelination; lesion maps

1. Introduction
The hallmarks of multiple sclerosis (MS) pathology include inflammation [1], demyelination
[2], axonal loss [3], vascular abnormalities [4, 5], iron accumulation [6], mitochondrial
dysfunction [7] and changes in cellular membrane permeability and sodium channels [8].
Histopathology has provided evidence for both lesion-centered inflammatory and neuronal-
axonal injury in normal-appearing brain tissue (NABT) that appears independent from focal
lesions [9].

In the past 30 years [10, 11], in vivo quantitative magnetic resonance imaging (qMRI) has
provided important surrogate markers of MS disease progression [12], but no single MRI
modality can provide specific information about the pathological hallmarks of MS [13]. Due
to the adoption of different analysis approaches such as whole brain histogram, region-of-
interest [14, 15, 16], fiber tractography [17], voxel-based [18], tensor-based morphometry
[19], volume-based [20, 21] and the focus on certain tissue types such as gray or white
matter in most previous studies, it is not clear how one can consolidate the published qMRI
literature on MS.

Taken together qMRI studies provide a somewhat scattered evidence of a widespread
generalized or diffuse pathology in different MS phenotypes [12, 22-24]. To the best of our
knowledge, there has been no single consolidating in vivo MRI work in MS that adopted a
comprehensive brain atlas of subcortical and cortical gray matter (GM) and white matter
(WM) have been analyzed using macrostructure (e.g. volume) and corresponding
microstructural or integrity attributes such as proton density, relaxation time, diffusion
tensor-based measures such as anisotropy, mean, axial and radial diffusivities.

We sought to generalize our past multi-modal qMRI approach on the manually-delineated
caudate nuclei in controls and MS patients [20] by obtaining subcortical or deep gray matter
(DGM), cortex, deep WM (e.g. corpus callosum, periventricular WM), and lobar WM
volumes automatically using FreeSurfer [25] which was validated [26] and used previously
in MS [21, 27, 28].

The primary goal of this work was to test the hypothesis that MS pathology in normal-
appearing cerebral tissue may be widespread [12, 22-24] using a host of qMRI metrics
derived from multimodal methods and accounting for natural aging [20, 29] and pathology-
driven neurodegenerative changes [20, 30]. We also investigated the interplay between
qMRI metrics, whole brain lesions and disability to examine the possibility of separating
direct lesion-related injury from age-independent neurodegenerative neuronal or axonal loss.
This was realized by fusing T2 relaxation time, proton density, lesion and diffusion tensor
imaging (DTI) derived maps with FreeSurfer atlas-based volumetry.
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2. Subjects and Methods
2.1 Study Population

The MRI protocol was approved by our Institutional Review Board (IRB). Written informed
consent was obtained from each subject. Fifty four (15 men and 39 women) relapsing-
remitting MS patients aged = 41.7 ± 9.6 years (mean ± standard deviation; see Table 1). At
the time of their imaging session, 47% of RRMS patients were using glatiramer acetate, ~
22% an interferon beta preparation (73.7% a subcutaneous product), as their disease
modifying therapy (DMT) and ~ 25% were not receiving any DMT. In addition, 88 healthy
adult controls (41 men and 47 women) aged = 37.9 ± 10.1 years (see Table 1) were recruited
from the local community and university staff. All control subjects were screened for history
of trauma, surgery, chronic illness, alcohol and/or drug abuse, neurological illness, and
current pregnancy. None of the controls in this study reported any neurological conditions
and their fluid-attenuated inversion recovery (FLAIR) conventional MRI data were judged
to be normal

2.2 MRI Data Acquisition
All MRI studies were performed on a 3.0 T Philips Intera scanner with a dual quasar
gradient system with maximum gradient amplitude of 80 mT/m and an eight channel
SENSE-compatible head coil (Philips Medical Systems, Best, Netherlands).

2.2.1 Conventional MRI—The MRI protocol included a whole brain high resolution axial
3D T1-weighted volume (voxel size = 0.9375 mm × 0.9375 mm × 0.9375 mm) for
automatic brain atlas-based volumetry [31, 32]. In addition, dual fast spin-echo (FSE)
images were acquired with echo (TE) and repetition times of (TR) of TE1/TE2/TR =
8.2/90/6800 msec to compute the proton density (PD) and T2 relaxation time (T2). A FLAIR
sequence with (TE/TI/TR = 80/2500/8000 msec) was used for lesion localization. The slice
thickness for both FSE and FLAIR data was 3.0 mm with 44 contiguous axial slices
covering the same inferior-to-superior prescription of the 3D T1-weighted sequence and a
square field-of-view (FOV) of 240 mm × 240 mm.

2.2.2 Diffusion Tensor Imaging Data Acquisition—DTI data were acquired using a
single-shot spin-echo diffusion sensitized echo-planar imaging sequence with balanced
Icosa21 tensor encoding scheme with twenty-one uniformly-distributed orientations over the
unit hemisphere at b-factor = 1000 sec mm−2, TR/TE = 7100/65 msec. The slice thickness,
FOV and spatial coverage matched the FSE and FLAIR.

2.3 Conventional MRI and DTI Data Processing
All MRI data sets were masked using the brain extraction tool [33] to remove non-brain
tissues and estimate the intracranial volume (ICV) for each subject [20, 29]. A detailed
account of these procedures is described elsewhere [31, 32].

2.3.1 FreeSurfer Anatomical Labels and Regional Volumetry Masks—The 3D
T1-weighted volumes were prepared for subsequent processing, segmentation and
anatomical labeling using FreeSurfer [25] software
(http://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki). FreeSurfer provided volume
masks on ~ 180 regions that included cerebrum, cerebellum, brain stem, and cerebrospinal
fluid (CSF). The FreeSurfer anatomical labels and their cortical classification are described
elsewhere [34]. Only the cerebral cortical, deep gray matter, deep and lobar white matter
structures are presented here [31, 32].
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Labeled regional volume masks were always obtained in each subject’s native space to
allow fusion with all other data sets (e.g. lesion, T2, PD, FA, mean, axial and radial
diffusivity maps). Figure 1 illustrates the majority of deep brain subcortical, cortical gray
matter and deep and lobar white matter structures generated by FreeSurfer. To simplify the
analyses and reduce the number of comparisons we pooled some structures based on their
laterality and proximity. First, all structures were analyzed and visualized without pooling.
Second, all right and left structures such as caudate (CN) and putamen (PUT) were volume-
weighted and averaged. The corpus callosum (CC) midsagittal subdivisions [37] or anterior
(aCC), middle anterior (maCC), middle (mCC), isthmus iCC and splenium (sCC) were
volume-averaged. Third, the cortical and lobar subdivisions were averaged to obtain single
metrics that characterize the frontal, temporal, parietal, occipital, cingulate and insular
cortices and the corresponding WM lobes (e.g. frontal lobe WM). The periventricular white
matter (PVw) did not belong to any lobar WM territory and may be referred to along with
the CC as deep white matter [32, 33].

2.3.2 T2 Relaxation Time and Proton Density Estimation—The T2 relaxation time
and proton density (PD) values were estimated from the early (TE1) and late echo (TE2)
volumes, according to standard spin-echo procedures assuming a single compartment model
[20, 36, 37]. The regional PD values were scaled by the PD values in the left accumbens
(Ac) obtained from each subject to normalize data and data scaling variation.

2.3.3 Lesion Load Segmentation using Conventional MRI—Whole brain lesion
load was quantified in the RRMS group using the coregistered multi-spectral dual FSE and
the FLAIR volumes as described elsewhere [38, 39]. The lesion volumes were saved as
binary masks to enable fusion with other multimodal volumes acquired from the same
subject.

2.3.4 Lesion Probability Map Estimation—Lesion probability maps (LPM) were
obtained as described previously [40, 41]. In brief, the T1-weighted volume for each subject
was transformed or spatially normalized into the Montreal Neurological Institute (MNI)
space, which is commonly used in statistical parametric mapping and adopted by the
International Consortium for Brain Mapping (ICBM). The transformation parameters were
carried to the lesion mask for each subject [42]. The transformed masks for all RRMS
patients were summed on a voxel-by-voxel basis to estimate the regional frequency or lesion
occurrence probability or percentage (number divided by total number of patients × 100%)
in a certain voxel. The lesion probability masks were visualized in MRIcroN
(http://www.nitrc.org/projects/mricron/) and were fused as described below with all qMRI
metric data and their correlations with age, expanded disability status scale (EDSS) score,
disease duration (DD) in the RRMS group.

2.4 DTI Data Processing
Diffusion-weighted images were intra-registered to the baseline “b0” images (without
diffusion weighting) to correct for the eddy-current-induced image distortions using the
software on the Philips PRIDE workstation (Philips Medical Systems, Best, Netherlands).
The results of DTI pipeline included b0, FA, mean or average diffusivity (MD = Dav), radial
diffusivity (RD) and axial diffusivity (AD) maps.

2.5 Multimodal MRI Data Fusion
All conventional MRI-derived volumes (T2, PD, lesion masks) and DTI-derived data
volumes (FA, mean, axial and radial diffusivities) were coregistered to the T1-weighted
volume where the FreeSurfer atlas-based volume labels are available in each subject native
space. Lesion masks were used to null out the atlas-based volume results [17]. The last step
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assured that all cerebral parenchyma tissue used is normal-appearing and lesion free. The
qMRI data corresponding to lesions are not analyzed here and only normal-appearing
cerebral parenchymal tissue are included. The T2, PD, FA mean, axial, and radial diffusivity
maps were used to estimate the regional atlas-based and volume-wise estimates. The data on
all subjects were saved in the analyze file format for further volume-based statistical
analyses and visualization.

2.6 Validation and Data Quality
Conventional and DT-MRI data quality and scanner stability were monitored over the 5 year
span of data collection. We collected serial data on RRMS patients and healthy controls to
assure reproducibility and monitor age-related changes in qMRI metrics (date not shown).
All data outputs were inspected at all processing steps to assure the accuracy of volume
estimation, alignment of multi-modal MRI and fusion with lesion maps. Lesions were
manually checked by a trained rater. Reproducibility and quality control measures are
described elsewhere [20, 31, 32, 43].

2.7 Statistical Analysis
Correlations between age, volume-to-ICV percentage, lesion load, disease duration, PD, T2
values and DTI-derived metrics were computed using the Pearson correlation coefficient.
Age-covaried correlations between EDSS score and all other qMRI variables were computed
using the Spearman coefficient. For EDSS covariance with lesion load and age multivariate
or generalized linear models was used as described elsewhere [44]. Slopes and rates of
change of MRI metrics with age were compared using the r to z-Fisher transform.
Comparisons between group means and medians were performed using ANOVA (t-test) and
the Mann-Whitney U-test. All group comparison differences, significance, rate of change
and correlations with age, EDSS, lesion load were computed volume-wise in native data
space and were presented in standard space for visual inspection and fusion with the lesion
probability maps. All statistical analyses used MATLAB R12.1 Statistical Toolbox v 3.0
(The Mathworks Inc, Natick, MA).

3. Results
3.1 Population Demographics and Clinical Information

Table 1 compares the demographics and MRI whole brain volumetry on the 54 RRMS
patients and 88 healthy controls. There were no significant age differences between healthy
men and healthy women (p=0.40), nor between RRMS men and RRMS women (p=0.77).
Both men and women matched for age range and mean between the two groups (p=0.17).
We had disproportionately more women in the RRMS population than in the healthy group
consistent with the reported preponderance of RRMS in females [45]. There were no
significant differences in the mean values of EDSS (p=0.72), DD (p=0.08) or lesion load
(p=0.78) between men and women in the RRMS groups (p>0.15). In RRMS patients EDSS
correlated significantly with whole brain lesion load (r=0.372; p=0.006) and DD (r=0.30;
p=0.028). Lesion load correlated weakly with DD (r=0.228; p=0.097), but not with age
(r=0.182; p=0.187). These cross-sectional correlations are generally consistent with well-
documented longitudinal and cross-sectional age-related trends in large MS populations
[46].

3.2 Normal-Appearing and Healthy Cerebral Volumetry Comparisons
There were significant differences between ICV, total cerebral cortex GM and lobar WM
volumes between men and women in the healthy control (p < 0.0001) and RRMS groups (p
< 0.0005). These gender-based skull size related differences were not significant in the two
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groups upon scaling or covarying the volumetry values with the ICV (p > 0.14; see Table 1).
Therefore, for all subsequent analyses men and women were pooled in each group and all
regional volumes were scaled by the each subject’s ICV value.

3.3 Regional Quantitative MRI Differences between Healthy Controls and RRMS
Figure 2 summarizes the group mean values and their significance between RRMS patients
and controls for the corpus striatum, hippocampus/amygdala, entire CC, periventricular
WM, cerebral cortex parcellations and corresponding lobar WM using several qMRI
metrics: (A) absolute volume in mL, (B) volume percentage, (C) relative proton density, and
(D) T2 relaxation time. Figure 3 shows (A) fractional anisotropy, (B) mean, (C) axial, and
(D) radial diffusivities. The mean values for qMRI metrics in RRMS patients are
significantly different from controls. Note that all cortical and subcortical structures in the
RRMS cerebrum have elevated mean diffusivity compared to the control group (p<0.005).
With the exception of the NAGM in the occipital and cingulate cortices, all cerebral regions
are atrophic (e.g. have reduced volume-to-ICV percentage = VOLp). All these structures
have elevated T2 except for the corpus striatum which has lower T2 values in the RRMS
group. Note that both FA and VOLp did not exhibit the widespread sensitivity to injury
mechanisms in RRMS as captured by the T2, mean, radial or axial diffusivity average
values.

3.4 Age correlations with regional qMRI values in RRMS and Healthy Controls
It is well-documented that whole brain gray matter [29, 37, 47, 48], cortical [47] and
subcortical [20, 30, 37, 49] undergo age-related volume loss. Therefore, it is important to
attempt to decouple natural age-related changes from MS pathology effects [20, 30]. As an
illustration of these age effects and demonstration of data quality, Figure 4 shows
representative scatter plots of the total frontal (Fig. 4a) and cingulate (Fig. 4b) cortices
VOLp and their corresponding mean diffusivity. Note the rapid decrease of VOLp with age
in both MS and controls (atrophy rate or slopes did not differ p > 0.2). The mean diffusivity
average value in the frontal (Fig. 4c) and cingulate (Fig. 4d) cortices while significantly
higher in RRMS (p < 1 × 10−9) also increased with age more rapidly in RRMS compared to
controls (p < 1 × 10−13). Note that while the total VOLp of the NAGM of the cingulate
cortex is not different in RRMS compared to controls (p=0.30; Fig. 4a see also Fig. 2 and
Fig. 3), the mean diffusivity of the cingulate cortex (Fig. 4d) is greater in RRMS (p = 3.2 ×
10−10). Moreover, the difference between RRMS and controls in mean diffusivity seems to
increase with age due to increasing disease duration..

3.5 Visualization of Lesions and Regional qMRI Differences between Controls and RRMS
Figure 5 illustrates the interplay between spatial locations of lesions and regional volume-
averaged qMRI metrics of normal-appearing WM and GM. The figure fuses lesion
occurrence probability with the percentage difference in VOLp between controls and
RRMS. The percentage VOLp difference between RRMS and controls was largest in the
periventricular white matter and the isthmus of the corpus callosum. Lesions were most
frequent in the periventricular and occipital lobe WM where the atrophy is greatest. Lesions
were least frequent in the putamen, thalamus proper and amygdalae.

3.6 Age-covaried regional qMRI in normal-appearing Tissue with Clinical Scores in RRMS
The age-adjusted regional correlations and corresponding significance of all qMRI metrics
in normal-appearing tissue with the global lesion load and disease duration are summarized
in Table 2 and Table 3, respectively. Table 4 provides the correlations of normal-appearing
qMRI metrics with EDSS adjusting for both age and total lesion load. This analysis was
done to attempt to decouple the contributions from both natural aging and the cumulative or
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residual effects of MRI-defined lesions on the regional qMRI metrics or normal-appearing
tissue. Note that a few lobar, periventricular and deep WM structures such as corpus
callosum remained significant (p ≤ 0.05; not accounting for multiple comparisons) and in
particular the axial diffusivity. Note that regional white matter metrics (e.g. CC) provide
more significant correlations than global metrics.

4. Discussion
This is likely the first comprehensive report relaxation time, proton density, diffusion
anisotropy, mean, axial and radial diffusivity measurements of the cerebral subcortical and
cortical white and gray matter subdivisions in relatively large cohorts of controls and RRMS
patients. We have presented both global and regional macrostructural and atrophy measures
in addition to microstructural attributes of normal-appearing tissue using volume-based
methods. We have fused FreeSurfer volumetry with lesion maps, proton density, T2
relaxation, and DTI-derived volumes in each subject’s native space.

In this work, the mean diffusivity and relaxation time have been shown to be quite abnormal
in MS whereas regional tissue volume was only slightly reduced. The dissociation between
macrostructual metrics and microstructural attributes has been reported in development and
natural aging and MS [20]. Consistent with a previous report in MS [50], we also found that
FA was a less sensitive measure than mean diffusivity. This particular finding is not
surprising as FA is a ratio measure of two variables (axial and radial diffusivities) that could
be affected equally by factors such as edema which would have increased both axial and
radial diffusivities [51].

4.1 Consistency of findings with literature in MS
Our findings of abnormal and widespread injury in MS are consistent with previous
histopathological [2, 52, 53, 54] and in vivo hypoperfusion [16, 55, 56, 57] and reduced
glucose metabolism [55, 58, 59] when investigating MS patients with different stages or
with different phenotypes. Our observations of significant tissue volume loss in MS patients
are consistent with previous report [12] using voxel-based [18, 19], tract-based [17],
volume-based methods [20, 21]. These studies collectively showed atrophic corpus callosum
[59], hippocampus [60], caudate [20, 28, 30, 61], putamen [19, 21, 28], thalamus [19, 21,
28], and cortical GM [27, 28].

The present findings of reduced T2 in normal-appearing deep corpus striatum structures such
as caudate and putamen are consistent with previous intensity-based [6], quantitative
relaxometry reports [20], and iron mapping methods [62, 63]. Our finding of decreased T2 in
the caudate and putamen supports the accuracy of the processing procedures adopted in this
study as any contamination with neighboring CSF would have elevated basal ganglia T2
values due to CSF ventricular expansion in MS patients. The widespread elevation in T2
values in cortical GM, deep and lobar white matter confirms previous [64] and recent reports
[36].

The widespread and significant increase in mean, axial and radial diffusivities in deep and
cortical gray and lobar white matter is consistent with several reports [12, 65]. The elevated
diffusivity in MS normal-appearing tissue such as corpus callosum [66], hippocampus [67],
thalamus [68, 69], and compact WM fiber tracks [17, 70] may be attributed to demyelination
and axonal injury [2].

Our qMRI findings of widespread injury in RRMS are also in line with previous reports
using different MRI approaches [12] that include volumetry (e.g. anatomical length or
distance, area, thickness) [27], T1-relaxation time [71, 72], magnetization transfer ratio [12],
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myelin water fraction [73], MR spectroscopy [56, 66], functional MRI [74], perfusion [16,
75], brain tissue sodium concentration [76], and cerebral MR elastography [77],

4.2 Lesion Distribution and Clinical Correlations
The spatial distribution of lesions on our RRMS cohort is similar to previous reports [40, 41,
78, 79] in which lesions were shown to most frequent in periventricular white matter as has
also been reported postmortem [80]. The lesion frequency in our RRMS cohort was least
frequent in the putamen and thalamus as has been also reported in previous imaging [57, 59,
68] and postmortem reports [80]. The predilection or vulnerability of deep white matter to
lesion formation and relative sparing of deep gray matter from lesion formation has been
attributed by Brownell and Hughes [80] to vascular perfusion which is highest in normal
adult deep GM compared to white matter [4, 75, 82]. A detailed analysis of the qMRI
correlates of lesion distribution is beyond the scope of this work, but will be the subject of
future endeavors.

4.3 Correlations of of RRMS Disability Scores and qMRI Correlations
An important finding of this work is the elevated normal-appearing cortical mean diffusivity
which correlated strongly with EDSS adjusted for age and whole brain lesion load. Cortical
volumetry did not show this relationship, likely because these structures also undergo age-
related changes [47]. Decoupling age-related degeneration is important to separate the
confounding effect of natural aging on the lesion-driven pathology. The frontal, parietal,
cingulate, insular lobes, corpus callosum, and periventricular white matter zones showed
significant correlation with EDSS adjusted for age and lesion load. The EDSS correlation of
the periventricular WM with transverse diffusivity did not reach significance (p=0.07), but
this may indicate that demyelination as indexed by radial diffusivity in this lesion-dense
zone may be operative and contributing to connected tissue loss.

Another important finding in this work is that the corpus callosum volume reduction,
callosal elevation in T2, increased mean and axial diffusivities was decoupled from lesion
load and age-related degeneration. The observation in RRMS that the axial diffusivity is
elevated in the atrophic corpora callosa (Fig. 2, Fig. 3) and that the age and lesion load
adjusted axial diffusivity in callosal subregions (Table 4) was significantly correlated with
EDSS indicates that this metric is sensitive to chronic axonal injury or degeneration as has
been reported on the CC using combined spectroscopy [66] and DTI tractography studies
[17, 70], histopathology [52] and using animal models of tissue injury [82, 83, 84].

5. Limitations, Conclusions and Future Plans
Using standardized multimodal qMRI data and analyses that accounted for lesion
distribution and natural aging we were able to demonstrate that pathology is widespread
over the cerebrum in RRMS. Moreover, we were able to identify in vivo MRI markers of
demyelination and axonal injury in white matter.. Limitations of this work include the
inherent limitations MRI to small lesions that could not be detected with our protocol and
the need for larger populations with serial data to test the cross-sectional findings further.
Nevertheless, our study included a large healthy adult control population and we accounted
for the confounding effects of natural aging. Our approach warrants further application to
serial data and the extension to other MS phenotypes.
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Figure 1.
Illustration of the FreeSurfer generated deep and cortical brain regions. The cortical (e.g.
frontal cortex subdivisions) or deep (e.g. corpus callosum subdivisions) were pooled or
volume-averaged as needed to reduce the number of comparisons.
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Figure 2.
Group mean comparisons of regional normal-appearing qMRI values between controls and
RRMS (subcortical, cortical and lobar white and gray matter) (a) absolute volume in mL, (b)
volume-to-ICV percentage or VOLp (c) relative proton density, and (d) T2 relaxation time
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Figure 3.
Group mean comparisons of regional normal-appearing qMRI values between controls and
RRMS (subcortical, cortical and lobar white and gray matter) (a) fractional anisotropy, (b)
mean diffusivity, (c) axial diffusivity, and (d) radial diffusivity.
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Figure 4.
Representative illustration of age-dependence of qMRI metrics in both RRMS and controls
using scatter plots and linear regression (a) volume percentage of the frontal cortex (b)
volume percentage of the cingulate cortex (c) mean diffusivity of the frontal cortex and (d)
mean diffusivity of the cingulate cortex. Note the rapid decrease in cortical gray matter
volume with age in both controls and RRMS patients.
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Figure 5.
Visual illustration of regional qMRI and fusion with lesion probability maps in RRMS. The
upper multi-plane view shows the percentage ICV-normalized normal-appearing volume
difference (significant atrophy RRMS < Controls) fused with the lesion map (lower multi-
view). Note that largest normal-appearing tissue atrophy is in deep white matter where
lesion probability map is largest. Note that lesions in our RRMS cohort were least frequent
in the thalamus yet the volume difference is significant. The color map (minimum dark
blow) in the upper views corresponds to the percentage (maximum ~ 28% (bright red) in
periventricular white matter and corpus callosum isthmus; see Fig 2b for the corresponding
group difference p values. The color map in the middle lower view corresponds to the
percentage of patients with lesions.
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Table 1

Main demographic, clinical and MRI derived characteristics of the healthy RRMS patients and healthy
controls. The MRI derived metrics include the intracranial volume (ICV), normal-appearing cortical gray
matter (NACGM), normal-appearing lobar white matter NALWM and lateral ventricular CSF volume –to-
ICV percentage.

RRMS
Patients

Healthy
Controls

% Difference
(RRMS-HC)/
HC (x100)

P value

Number 54 88

F:M (F/M Ratio) 39:15 (2.6) 47:41 (1.15) 0.0004

Age (years) 41.7 ± 9.6
[22.0-60.8]

37.9 ± 10.0
[22.7-61.8]

10.1 0.03

Disease Duration
(years)

9.3 ± 8.7
[0.2-35.4]

N. A N. A N. A

EDSS 1.6 ± 1.5
[0.0-6.5]

N. A N. A N. A

T2 LL (mL) 13.2 ± 12.3
[0.2-44.8]

N. A N. A N. A

Icv 1478.1 ± 132.6
[1196.3 - 1921.4]

1494.2 ± 143.5
[1220.9 - 1792.6]

−1.0 0.50

Lateral Ventricle
CSFp

1.35 ± 0.82
[0.41 – 4.48]

0.82 ± 0.41
[0.23 - 2.47]

65.3 8.×10−7

NACGMp 29.15 ± 2.16
[23.47 - 33.06]

29.78 ± 1.64
[26.13 - 34.20]

−2.2 0.052

F = Females, M=Males; RRMS = relapsing-remitting multiple sclerosis

EDSS= expanded disability status score

T2LL = total or whole brain T2 lesion load or lesion volume

ICV = Intracranial volume

CSF = cerebrospinal fluid

NACGMp = Normal-appearing cortical gray matter percentage

NALWMp = Normal-appearing lobar white matter percentage
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