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Abstract
Parkinson’s disease (PD), the most common movement disorder, is characterized by age-
dependent degeneration of dopaminergic neurons in the substantia nigra of the mid-brain. Non-
motor symptoms of PD, however, precede the motor features caused by dysfunction of the
dopaminergic system, suggesting that PD is a systemic disorder. Mitochondrial dysfunction has
long been observed in PD patients and animal models, but the mechanistic link between
mitochondrial dysfunction and PD pathogenesis is not well understood. Recent studies have
revealed that genes associated with autosomal recessive forms of PD such as PINK1 and Parkin
are directly involved in regulating mitochondrial morphology and maintenance, abnormality of
which is also observed in the more common, sporadic forms of PD, although the autosomal
recessive PDs lack Lewy-body pathology that is characteristic of sporadic PD. These latest
findings suggest that at least some forms of PD can be characterized as a mitochondrial disorder.
Whether mitochondrial dysfunction represents a unifying pathogenic mechanism of all PD cases
remains a major unresolved question.

Introduction
Mitochondrial dysfunction has long been implicated in the etiology of PD. The discovery of
the Parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine
(MPTP), which is a selective inhibitor of mitochondrial complex I, directed researchers’
attention to pathological roles of mitochondria in PD and raised the possibility that
environmental toxins affecting mitochondria might cause PD. Other mitochondrial toxins
characterized as parkinsonism-inducing reagents include 6-Hydroxy-Dopamine (6-OHDA),
rotenone and paraquat. Studies of animal models of PD induced with these toxins suggest
that mitochondrial dysfunction and oxidative stress are important pathogenic mechanisms
[1]. In humans, reduced complex I activity has been reported in both post-mortem brain
samples and platelets of sporadic PD cases [2-4], and mutations or polymorphisms in
mitochondrial DNA can confer genetic risk for PD [5]. Genetic evidence has also come from
studies of familial forms of PD (FPD). The identification and characterization of FPD genes
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have provided an unprecedented opportunity to understand pathogenic mechanisms
underlying dopaminergic neurodegeneration. Studies of FPD have revealed two distinct but
potentially inter-connected disease pathways: the autosomal dominant genes represented by
α-Synuclein that lead to Lewy-body pathology, and the autosomal recessive genes Parkin,
PINK1, DJ-1, and HtrA2/Omi that have been linked to regulation of mitochondria. In this
review, we focus on recent findings from molecular genetic and cell biological studies that
reveal the roles of the autosomal recessive FPD genes in governing mitochondrial functions
and discuss how loss of function of these genes may lead to neurodegeneration. It is
anticipated that studies of these autosomal recessive FPD genes will also help understand the
pathogenesis of sporadic and the autosomal dominant FPD cases, which also feature
mitochondrial pathology.

Regulation of mitochondrial dynamics by PINK1 and Parkin
Mutations of the Parkin gene cause an autosomal recessive juvenile form of PD (AR-JP).
The gene product contains a ubiquitin-like (Ubl) domain at the N-terminus and two RING
fingers flanking a cysteine-rich domain, termed In Between RING fingers (IBR), which
confer E3 ubiquitin-ligase activity. To study Parkin function, several Parkin-deficient mice
have been generated. However, most of them do not fully recapitulate dopaminergic
neurodegeneration, which has hindered elucidation of the pathological mechanisms of AR-
JP. The discovery of a genetic interaction between Parkin and PINK1 in Drosophila has
shed light on Parkin function in vivo [6-8]. The PINK1 gene, mutations of which also cause
juvenile PD, encodes a serine-threonine kinase with a mitochondria-targeting signal at the
N-terminus. Loss of PINK1 or Parkin genes in Drosophila results in mitochondrial
aggregation and cellular degeneration in dopaminergic neurons muscle and sperm, leading
to motor impairment and decreased fertility [6-8]. Overexpression of wild-type Parkin can
rescue the phenotypes caused by PINK1 deficiency, but not the other way around [6-8].
These studies suggest that Parkin is epistatic to PINK1 and that it affects mitochondrial
function. Parkin protein is mainly localized to the cytosol, and the molecular mechanism by
which it regulates mitochondrial function is an open question.

In contrast to the textbook view of kidney bean-shaped organelles, mitochondria exhibit
dynamic morphological changes in vivo associated with changes in distribution and
function. These morphological changes are regulated by a delicate balance between the
opposing processes of mitochondrial fusion and fission. Increased fission leads to
mitochondrial fragmentation, while increased fusion leads to mitochondrial elongation or
aggregation. One remarkable feature of the PINK1-deficient fly is the presence of highly
aggregated mitochondria in dopaminergic neurons [8,9]. A similar mitochondrial
morphological abnormality is observed in the flight muscle of PINK1- and Parkin-deficient
flies, in which swollen mitochondria, often with disintegrated cristae, are observed [10,11].
Interestingly, PINK1 and Parkin mutant phenotypes are partly rescued by increased activity
of Drp1, which is a major component of the mitochondrial fission machinery, or by reduced
activity of Mitofusin (Mfn) or OPA1, which together control mitochondrial fusion [9,11,12].
Abnormal mitochondrial morphology and dynamics are also observed in mammalian
cultured cells and hippocampal and dopaminergic neurons [9,13]. These findings suggest
that PINK1 and Parkin may have conserved roles in the regulation of neuronal
mitochondrial morphology and function. This represents a breakthrough in PD research.

Regulation of mitophagy by PINK1 and Parkin
Another breakthrough in our understanding of PINK1/Parkin function came from a series of
elegant cell biological studies. When the mitochondrial membrane potential is disrupted by
mitochondria-damaging reagents such as carbonyl cyanide m-chlorophenylhydrazone
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(CCCP) in mammalian [14-18] or Drosophila cultured cells [19], Parkin translocates to
mitochondria with low membrane potential, where it promotes LC3-mediated autophagic
elimination of the damaged mitochondria in a process called mitophagy (Figure 1) [20].
After Parkin translocation, mitochondrial accumulation of poly-ubiquitinated proteins,
consisting mainly of Lys63-linked poly-ubiquitin and a small portion of Lys48-linkages
[21,22], recruits the ubiquitin- and LC3-binding adaptor protein p62/SQSTM1 [16,23,24]
and the ubiquitin-binding deacetylase HDAC6 [21]. Although important details are still
unresolved, Lys63-linked poly-ubiquitination may contribute to proteasomal degradation of
mitochondrial proteins [25] and HDAC6- and/or p62-mediated sequestration of
mitochondria [21,22]. Mitochondria depolarized by CCCP or paraquat accumulate in the
perinuclear compartment in a p62/SQSTM1-dependent manner [16,23,24]. This is followed
by engulfment of the damaged mitochondria by autophagosomes and subsequent lysosomal
degradation [20]. The clustering of ubiquitinated mitochondria by p62 and HDAC6 is
reminiscent of their sequestration of ubiquitinated proteins into aggresomes [26,27].

The translocation of Parkin from the cytosol to the mitochondria, which requires intact
PINK1 with kinase activity, is an essential step for mitophagy [17,18]. Through the
ubiquitin-proteasome pathway, Parkin ubiquitinates and degrades several proteins localized
at the mitochondrial outer membrane, including Mfn [28-30], Drp1 [31], voltage-dependent
anion channel 1 (VDAC1) [16,30] and Bcl-2 [32]. The degradation of the mitochondrial
fusion factor Mfn by Parkin was also observed in Drosophila cultured cells [19,33]. This
may contribute to the fragmentation of mitochondria and facilitate mitophagy. This finding
is consistent with the in vivo observations that loss of PINK1 or Parkin leads to
mitochondrial elongation, which is rescued by a reduction of Mfn activity. However, the
elimination of Mfn by Parkin and the perinuclear aggregation of mitochondria by p62/
SQSTM1 appear to be dispensable for mitophagy in mammalian cells [23,24,30], although
the requirement of p62 is controversial [16]. Mfn degradation and mitochondrial perinuclear
clustering may prevent the re-fusion of depolarized mitochondria with healthy ones, or
compromise the axonal transport of damaged mitochondria [23,28]. In addition, these events
may facilitate the isolation of mitochondria by the autophagosomes [28].

How is the autophagy machinery targeted to mitochondria? In yeast, an outer mitochondrial
protein ATG32 is reported to recruit the autophagy machinery [34,35]. Although there is no
homologue of ATG32 in higher animals, mammalian BNIP3 (BCL2 and adenovirus E1B 19
kDa-interacting protein 3) and NIX/BNIP3-like (BNIP3L), which belong to the BH3-only
mitochondrial protein family, induce both cell death and mitophagy. NIX is involved in the
programmed mitochondrial clearance by mitophagy during reticulocyte maturation [36,37],
and is reported to be required for Parkin translocation to depolarized mitochondria treated
with CCCP [38]. But it is unclear whether NIX functions to prime the recruitment of the
autophagy machinery in this context as ATG32 does in yeast, or whether it acts as a
regulator of PINK1.

Regulation of PINK1 and Parkin
Although endogenous PINK1 is difficult to detect under normal conditions, PINK1 rapidly
accumulates in depolarized mitochondria [14,17,18]. This suggests that PINK1 protein is
regulated by a post-translational degradation mechanism (Figure 2). Several studies indicate
that the rhomboid family protease presenilin-associated rhomboid-like protein (PARL),
which is localized to the mitochondrial inner membrane, processes PINK1 in a
mitochondrial membrane potential-dependent manner [39-43]. Newly synthesized PINK1 in
the cytosol is imported and inserted into the mitochondrial inner membrane (IM), and is
cleaved in its putative transmembrane domain by PARL to generate the 52-kD form of
PINK1, which is rapidly removed by a proteasome-dependent pathway, likely after its
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release into the cytosol from the mitochondrial intermembrane space (IMS) [40-42]. Upon
depolarization of the mitochondrial membrane potential, the IM insertion and the subsequent
processing of PINK1 by PARL may be inhibited, leading to full-length PINK1 accumulating
in the mitochondrial outer membrane (OM), probably facing the cytosol [41,42,44].
However, there is discrepancy as to whether the processing of PINK1 by PARL is required
for Parkin recruitment upon mitochondria depolarization, and further studies are necessary
to completely resolve the changes in topology of the processed forms of PINK1 [41,43]. The
accumulation of PINK1 with kinase activity is sufficient for Parkin recruitment to the
mitochondrial surface, where Parkin’s E3 activity appears to be stimulated, although the
phosphorylation target(s) of PINK1 remains unknown [17]. Conformational change of
Parkin on the mitochondria may serve to activate its E3 activity, as the Ubl domain of Parkin
normally inhibits its E3 activity intramolecularly [45]. Parkin is also upregulated by ATF4, a
transcription factor of the unfolded protein response (UPR) [46]. Mitochondrial damage may
induce the activation of the UPR, leading to the upregulation of Parkin expression [46].

Loss of mitochondrial control and possible disease relevance
Although the relevance of mitophagy observed with mitochondria-damaging reagents to PD
etiology remains debatable, accumulating evidence of mitochondrial abnormality in animal
models and PD patients has increased our understanding of disease pathogenesis. The
ubiquitination and elimination of Mfn following oxidative stress induction as well as
mitochondrial depolarization are reproduced in human fibroblasts derived from PINK1- or
Parkin patients [47]. Recent studies of Parkin- or PINK1-deficient mice have reported
morphological and functional alterations of mitochondria in both neurons [48,49] and
astrocytes [50]. A missense mutation in PARL found in PD cases abolishes its PINK1-
processing activity and the ensuing Parkin-mediated mitophagy [43]. Like the muscle
degeneration in Drosophila, the function of cardiac muscle, in which mitochondria are
abundant, is also impaired by increased oxidative stress in PINK1-null mice [51]. Ischemic
preconditioning has cardioprotective effects in heart failure models, where the mitochondrial
translocation of Parkin is induced. Parkin deletion abolishes this effect [52]. Although the
roles of PINK1 and Parkin in human cardiac function are unknown, it is worth noting that
the prevalence of heart failure in elderly PD patients is double that of non-PD controls [53].

Contribution of DJ-1 and HtrA2 to mitochondrial regulation
DJ-1, which can exert neuroprotective effect by scavenging hydrogen peroxide through self-
oxidation, has been reported to be involved in mitochondrial maintenance. Recent data
suggest that DJ-1 acts in parallel to the PINK1-Parkin pathway to control mitochondrial
polarization and morphology in cultured cells [54,55] and mitochondrial coupling and ATP
production in Drosophila [56] in certain contexts, but surprisingly DJ-1/PINK1/Parkin triple
knockout mice do not exhibit degeneration in the nigrostriatal system [57]. Although the
linkage of the HtrA2 gene to PD pathogenesis is under debate [58], loss of the HtrA2 gene,
which encodes a mitochondrial serine protease, leads to selective loss of striatal neurons in
mice [59]. Genetic studies in Drosophila showed that HtrA2 mutants do not exhibit
mitochondrial morphological defects and there is no genetic interaction that supports HtrA2
functioning in the same genetic pathway as Pink1 in terms of regulation of mitochondrial
integrity and dynamics [60]. Furthermore, HtrA2-associated neurodegeneration was not
rescued by a Parkin transgene in mice [61]. Together, these results suggest that HtrA2 may
not be functioning in the PINK1-Parkin pathway.

Concluding remarks
Prominent pathological features of PD include mitochondrial dysfunction and the
accumulation of protein inclusions into Lewy-bodies. These disease phenotypes could arise
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from impairments in the cellular quality control systems for mitochondria and cytoplasmic
proteins involving mitochondrial fission/fusion dynamics, the ubiquitin-proteasome system,
and the autophagy pathway. These cellular quality control systems do not work in isolation
but rather are inter-connected. This could explain why mutations in the autosomal recessive
and autosomal dominant FPD genes, which impair the mitochondrial quality control and
cytoplasmic protein quality control, respectively, lead to distinct pathological hallmarks but
similar clinical outcomes. Impairment of the ubiquitin-proteasome pathway can induce the
accumulation of reactive oxygen species in mitochondria [62], with the affected
mitochondria later removed by the autophagy pathway [62]. In addition to impaired
mitophagy, decreased mitochondrial biogenesis, which may be closely linked to the TOR-
mediated protein translation pathway [64], is also implicated in PD pathogenesis [63,65,66].
Thus, pathways for protein synthesis, quality control, mitochondrial maintenance, and
mitochondrial dynamics are mechanistically inter-connected in the pathogenesis of PD, and
represent novel targets for disease prevention and treatment.
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Box 1

Physiological meaning of mitophagy

The elimination of damaged mitochondria by the PINK1-Parkin pathway appears to be
divided into two phases. The first step may be characterized as Parkin- and proteasome-
dependent protein degradation of a broad range of the mitochondrial OM proteins,
including Mfn1, Mfn2, Tom70 and Tom20 [30,67]. The second step involves Parkin-
dependent mitophagy, with which the proteasomal activity may be functionally coupled
[30]. Alternatively, proteasomal activity in the second step may be required only for
destruction of the mitochondrial OM [67]. The degradation of a wide range of OM
proteins by a proteasome- and a AAA+ family ATPase p97-dependent pathway raises the
possibility that Parkin performs quality control of the OM proteins even under steady
state, which bears some resemblance to ER-associated degradation (ERAD). ERAD is an
important cellular event needed to eliminate aberrant membrane and secretory proteins at
the ER, which also involves the proteasome and p97 activities.
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Highlights

• PINK1 and Parkin are involved in regulating mitochondrial fission and fusion
dynamics.

• PINK1 and Parkin are implicated in a process of autophagic removal of
dysfunctional mitochondria called mitophagy.

• Mitochondrial dynamics and Mitophagy are thought to be required for the
maintenance of a healthy mitochondrial network.

• The pathological relevance of mitophagy in PD etiology awaits further
investigation.
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Figure 1.
Mitochondrial fusion and fission events are required for the maintenance of a healthy
mitochondrial population (beige). Mitochondrial fusion is thought to facilitate the
interchange of internal components such as copies of the mitochondrial genome, respiratory
proteins and metabolic products. Mitochondrial fission may play a role in the removal of
dysfunctional mitochondria (dark red) with reduced mitochondrial membrane potential
(Δψm), through an autophagy-lysosomal pathway named “mitophagy”. PINK1 and Parkin
are likely to be involved in this process. PINK1 normally has a short half-life in healthy
mitochondria. Upon reduction of the Δψm, PINK1 is stabilized on the OM. Accumulation of
PINK1 induces the translocation of Parkin from the cytosol to the mitochondria, leading to
Parkin-dependent ubiquitination and degradation of the mitochondrial proteins, and
subsequent activation of the autophagy machinery. Ubiquitnated proteins of the
mitochondria are shown as ovals with small orange circles.
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Figure 2.
Proposed model of post-translational processing of PINK1. (Upper) Newly synthesized
PINK1 (p63) is targeted to the IM via the Tom and Tim complexes. PINK1 p63 may be
processed by mitochondrial processing protease (MPP), which cleaves the mitochondrial
targeting sequence to generate a 60-kD PINK1. PINK1 is then cleaved to a 52-kD form
within the IM by PARL. The 52-kD PINK1 is released into the cytosol and is degraded by
proteasome activity. (Lower) Upon reduction of the Δψm, PINK1 is accumulated at the OM,
probably due to inhibition of the translocation through the Tim complex.
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