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Immediately following the 2010 annual American Society of
Hematology (ASH) meeting, the 5th International Post-ASH
Symposium on Chronic Myelogenous Leukemia and BCR-
ABL1-Negative Myeloproliferative Neoplasms (MPNs) took
place on 7–8 December 2010 in Orlando, Florida, USA. During
this meeting, the most recent advances in laboratory research
and clinical practice, including those that were presented at the
2010 ASH meeting, were discussed among recognized autho-
rities in the field. The current paper summarizes the proceed-
ings of this meeting in BCR-ABL1-negative MPN. We provide a
detailed overview of new mutations with putative epigenetic
effects (TET oncogene family member 2 (TET2), additional sex
comb-like 1 (ASXL1), isocitrate dehydrogenase (IDH) and
enhancer of zeste homolog 2 (EZH2)) and an update on
treatment with Janus kinase (JAK) inhibitors, pomalidomide,
everolimus, interferon-a, midostaurin and cladribine. In addi-
tion, the new ‘Dynamic International Prognostic Scoring
System (DIPSS)-plus’ prognostic model for primary myelofi-
brosis (PMF) and the clinical relevance of distinguishing
essential thrombocythemia from prefibrotic PMF are discussed.
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Introduction

The World Health Organization (WHO) classification system for
myeloid malignancies uses morphology, in combination with
cytochemical, immunophenotypic, cytogenetic and molecular
data, to classify myeloid malignancies into five major categories:
acute myeloid leukemia (AML), myelodysplastic syndromes
(MDSs), myeloproliferative neoplasms (MPNs), MDS/MPN, and
PDGFR- or FGFR1-rearranged myeloid/lymphoid neoplasms
associated with eosinophilia.1 The WHO MPN category
includes chronic myelogenous leukemia (CML), polycythemia
vera (PV), essential thrombocythemia (ET), primary myelofibrosis

(PMF), mastocytosis, chronic eosinophilic leukemiaFnot other-
wise specified, chronic neutrophilic leukemia and MPN,
unclassifiable.2 CML, PV, ET and PMF are referred to as ‘classic’
MPN because they were included in the original description of
‘myeloproliferative disorders’ by William Dameshek.3

Early seminal work by Fialkow and colleagues4–7 had
established MPN as clonal stem-cell diseases, with lymphoid
lineage involvement in some instances.8,9 More recent studies
have confirmed these observations10–12 and further suggest the
possibility of independently emerging multiple abnormal
clones, which might lead to oligoclonal rather than monoclonal
myeloproliferation.13 Although there is evidence for genetic
predisposition in MPN,14–19 the link is not strong enough to
warrant family screening, and Janus kinase 2 (JAK2) 46/1
haplotype analysis studies have shown similar frequency
between familial and sporadic cases of MPN.20

To date, the disease-initiating event(s) in BCR-ABL1-negative
MPN has not been identified. However, beginning in 2005, a
number of stem-cell-derived21–26 mutations involving JAK2 (exon
14 (refs 27–30) and exon 12 (ref. 31)), MPL (exon 10 (refs 32,33)),
TET2 (ref. 25), additional sex comb-like 1 (ASXL1; exon 12 (ref.
26)), CBL (exons 8 and 9 (ref. 34)), isocitrate dehydrogenase 1
(IDH1; exon 4 (refs 35–38)), IDH2 (exon 4 (refs 35–37,39)),
IKAROS family zinc finger 1 (IKZF1) (ref. 40) and enhancer of zeste
homolog 2 (EZH2 (refs 39,41)) have been described in chronic or
blast-phase MPN. All of these mutations are currently believed to
represent secondary events and are known to coexist. In this
regard, any claim of mutual exclusivity is undermined by the very
low mutational frequency displayed by the majority of the
mutations. Activating JAK2 and MPL mutations and LNK loss-of-
function result in constitutive JAK–signal transduction and activator
of transcription (STAT) activation and induce MPN-like disease in
mice.27,32,42,43 TET2, ASXL1, IDH and EZH2 mutations might
contribute to epigenetic dysregulation of transcription and are
further discussed in the current review (Table 1). However, it
should be noted that some mutations might possess more than one
mechanism of action, for example, JAK2V617F results in
dysregulation of kinase signaling but might also have an epigenetic
effect.44,45 The current review will also highlight recent clinical
advances in MPN including the development of JAK–STAT-
targeted therapy and application of new prognostic models.Received 3 January 2011; accepted 6 January 2011
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New mutations in MPNs with putative epigenetic effect

TET2 mutations
TET2 (TET oncogene family member 2) maps to chromosome
4q24. TET2 mutations were first discovered in MPN by Bernard’s
team from France and occur across several of the gene’s 12
exons.25 Subsequently, Mayo Clinic (Rochester, MN, USA)
investigators in collaboration with colleagues from Memorial
Sloan-Kettering (New York) and Dana-Farber (Boston) Cancer
Centers described TET2 mutational frequencies of B16% in PV,
5% in ET, 17% in PMF and 17% in blast-phase MPN.46 Out of
total 32 TET2 mutations in the latter study,46 19 were frameshift,
10 nonsense and 3 missense, and involved mostly exons 4 or 12.
TET2 mutational frequency was B23% in patients 60 years of age
or older versus 4% in younger patients, and this accounted for the
difference in mutational frequency between JAK2V617F-positive
(17%) and -negative (7%) cases; JAK2V617F is associated with
older age at diagnosis.47 In this particular study,46 the presence of
mutant TET2 was not prognostically relevant. TET2 mutation
acquisition can antedate or follow JAK2V617F, and can also
coexist with various cytogenetic abnormalities48,49 or mutations
in MPL, RARA, KIT, ASXL1 or IDH.38,39,50–55

TET2 mutations also occur in other myeloid malignancies,
including mastocytosis (B29%),52 chronic myelomonocytic
leukemia (CMML; B51%),56 AML (B20%),57 MDS (26%),58

refractory anemia with ring sideroblasts (B26%)59 and
idic(X)(q13)-positive myeloid malignancies.60 In a recent

study,61 TET2 mutations were reported in 39 (12%) of 320
MDS cases and 16 (46%) of 35 CMML cases.61 As was the case
in MPN,46 older age was associated with a higher incidence of
TET2 mutations, which did not otherwise affect prognosis in
either MDS or CMML.61 These results are different from another
MDS study where TET2 mutational frequency was reported at
23% and the mutation had an independent favorable impact
on survival.62 Discrepant results on the prognostic effect of
mutant TET2 have also been reported in AML, secondary acute
myeloid leukemia (sAML) and CMML.38,46,50,56,57,61,63 At the
American Society of Hematology (ASH) 2010, a study on the
prognostic impact of TET2 mutations in 783 uniformly treated
young AML patients was presented and showed no effect on
survival, including in subgroups with normal karyotype or
NPM1þFLT3/ITD� molecular profile.64 In another ASH ab-
stract, however, the presence of mutant TET2 was associated
with poor prognosis in the context of favorable but not
intermediate-risk cytogenetically normal AML.65

TET proteins belong to a family of a-oxaloglutarate-dependent
enzymes and catalyze conversion of 5-methylcytosine to 5-
hydroxymethylcytosine, which favors demethylated DNA. Both
TET166 and TET267 display this catalytic activity, and bone
marrow-derived DNA from TET2-mutated patients display low
levels of 5-hydroxymethylcytosine.67 In a recent study in AML,68

TET2 and IDH mutations were mutually exclusive but shared
similar epigenetic defects, including extensive DNA promoter
hypermethylation and hypermethylation of a specific set of gene

Table 1 Epigenetically implicated mutations in myeloid malignancies

Mutations Chromosome
location

Mutational frequency Pathogenetic relevance

TET2 mutations
involve several
exons25,146

4q24 PV B16%146

ET B5%146

PMF B17%146

BP-MPN B17%146

AML B20%57

MDS B26%58

CMML B51%56

SM B29%52

RARS-T B26%59

TET proteins catalyze conversion of 5mC to 5hmC, which
favors demethylated DNA. Both TET166 and TET267 display this
catalytic activity. IDH and TET2 mutations might share a
common pathogenetic effect, which might include abnormal
DNA hypermethylation and impaired myelopoiesis.

ASXL1 exon 12
mutations26

20q11.1 ET B3%72

PMF B13%39

BP-MPN B18%39

AML B11%76

MDS B11%26

CMML B43%26

Wild-type ASXL1 is needed for normal hematopoiesis69 and
might be involved in coactivation of transcription factors and
transcriptional repression.70,71

IDH1/IDH2 exon 4
mutations35

2q33.3/
15q26.1

PV B2%35

ETB1%35

PMF B4%35

BP-MPN B20%35

AML B14%87

MDS B5%55

IDH mutations induce loss of activity for the conversion of
isocitrate to 2-KG and gain-of-function in the conversion of 2-
KG to 2-HG.81,82 2-HG might be the mediator of impaired TET2
function in cells with mutant IDH expression.68

EZH2 mutations
involve several
exons41

7q36.1 PV B3%41

PMF B7%39

MDS B6%41,97

CMML B13%41

aCML B13%41

HES/CEL B3%41

Wild-type EZH2 is part of a histone methyltransferase
(polycomb-repressive complex 2 associated with H3 Lys-27
trimethylation). MPN-associated EZH2 mutations might have a
tumor-suppressor activity,41 which contrasts with the gain-of-
function activity for lymphoma-associated EZH2 mutations.93

Abbreviations: aCML, atypical chronic myeloid leukemia, BCR-ABL1-negative; AML, acute myeloid leukemia; ASXL1, additional sex comb-like 1;
BP-MPN, blast phase myeloproliferative neoplasm; CMML, chronic myelomonocytic leukemia; CP-MPN, chronic phase MPN; ET, essential
thrombocythemia; EZH2, enhancer of zeste homolog 2; HES/CEL, hypereosinophilic syndrome/chronic eosinophilic leukemia; IDH, isocitrate
dehydrogenase; MDS, myelodysplastic syndrome; PMF, primary myelofibrosis; PV, polycythemia vera; RARS-T, refractory anemia with ring
sideroblasts; SM, systemic mastocytosis; TET2, TET oncogene family member 2; 2-HG, 2-hydroxyglutarate; 2-KG, 2-ketoglutarate; 5hmC,
5-hydroxymethylcytosine; 5mC, 5-methylcytosine.
MF includes both PMF and post-ET/PV myelofibrosis.
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promoters (that is, displayed a similarly specific epigenetic
signature). Furthermore, in vitro induction of mutant but not
wild-type IDH expression in cells impaired TET2 catalytic
activity, presumably because of generation of 2-hydroxygluta-
rate, which can interfere with TET2 function.68 Similarly,
depletion of TET in mouse hematopoietic precursors skewed
their differentiation toward monocyte/macrophage lineages.67

Taken together, these data suggest a common pathogenetic
effect for IDH and TET2 mutations, which might include
abnormal DNA hypermethylation and impaired myelopoiesis.
On the other hand, it is difficult to explain the inconsistent
finding from another study where low 5-hydroxymethylcytosine
level was associated with DNA hypomethylation.67

ASXL1 mutations
ASXL1 maps to chromosome 20q11.1. ASXL1 mutations involve
exon 12 and truncate the pleckstrin homology domain of
ASXL1. Wild-type ASXL1 is needed for normal hematopoiesis69

and might be involved in coactivation of transcription factors
and transcriptional repression.70,71 A recent study showed that
ASXL1 is expressed in most hematopoietic cells, and ASXL1
knockout mice did not show MDS phenotype or stem-cell
defects, although they displayed impaired differentiation of
lymphoid and myeloid progenitors.69

ASXL1 mutations were first described by Gelsi-Boyer et al.26

who studied 40 cases of MDS or AML and found ASXL1 exon 12
mutations in 4 (11%) of 35 MDS cases and in 17 (43%) of 39
CMML cases. The same group of investigators subsequently
studied 64 patients with chronic or blast-phase MPN and detected
heterozygous frameshift mutations of ASXL1 in 5 (B8%) cases
including 1 (3%) of 35 ET, 3 (30%) of 10 PMF and 1 post-ET
AML.72 In this particular study, ASXL1 mutations were exclusive
of JAK2V617F, whereas one PMF case was also mutated for TET2.
In yet another study,73 the same authors studied 63 AML cases
including 46 with normal karyotype; they reported 12 (19%) cases
with ASXL1 mutations that were mutually exclusive of NPM1
mutations. ASXL1 mutational frequency in another study of 63
post-MPN cases was also 19%.38

Among 300 patients with MDS, AML or CMML, ASXL1
mutations were reported in 62 patients, including 5 (B6%) of
79 patients with refractory anemia, 17 (B31%) of 55 patients with
refractory anemia with excess blasts and 17 (25%) of 67 patients
with AML.74 The same group of investigators subsequently
reported 6 ASXL1 mutations among 41 cases with chronic or
blast-phase CML.75 In a more recent study of 501 adults with de
novo AML, ASXL1 mutations were detected in 54 patients
(B11%) and were associated with presence of isolated trisomy
8 and RUNX1 mutation, and absence of complex karyotype,
FLT3/ITD or NPM1 mutations;76 the presence of ASXL1 mutations
did not carry an independent prognostic value in terms of
survival. In another study involving patients with CMML, the
mutation was reportedly associated with poor prognosis.77

The results of the above studies are clouded by the possibility
that the most frequent mutation (c.1934dupG;
p.Gly646TrpfsX12) in virtually all the studies might be an
artifact of PCR amplification.78 In a recent study that took this
possibility into account, ASXL1 mutational frequencies were
13% in PMF, 23% in post-PV/ET MF, 18% in blast-phase MPN
and 20% in CMML.39 The same study demonstrated co-
occurrence of mutant ASXL1 with TET2, JAK2, EZH2, IDH and
MPL mutations. ASXL1-mutated PMF patients were cytogeneti-
cally normal and none underwent leukemic transformation
during follow-up; the presence of mutant ASXL1 in PMF did not
have an independent prognostic effect.39 Similarly, the three

ASXL1-mutated CMML cases were alive after 40, 34 and 12
months from the time of mutation analysis and none of them had
progressed to acute leukemia.39 Other ASXL1-related abstracts
that were presented at ASH 2010 included c.1934dupG;p.-
Gly646TrpfsX12 as a true mutation and reported much higher
mutation prevalence in PMF and post-MDS/CMML AML.79,80

IDH mutations
IDH1 and IDH2 map to chromosomes 2q33.3 and 15q26.1,
respectively. IDH mutations involve exon 4, are heterozygous
and affect three specific arginine residues: R132 (IDH1), R172
(the IDH1 R132 analogous residue on IDH2) and R140
(IDH2).35 IDH mutations induce loss-of-activity for the conver-
sion of isocitrate to 2-ketoglutarate and gain-of-function in the
conversion of 2-ketoglutarate to 2-hydroxyglutarate.81,82 Con-
sistent with these observations, heterozygous germ-line muta-
tions in IDH2R140 occur in patients with neurometabolic
disease and 2-hydroxyglutarate aciduria.83 The 2-hydroxygluta-
rate might be the mediator of impaired TET2 function in cells
with mutant IDH expression.68

IDH1 and IDH2 mutations were first described in gliomas.84

Several studies have since reported on the occurrence of IDH
mutations in both primary and secondary AML. In one of the
most recent studies involving 446 adult Chinese patients with
non-M3 primary AML,85 B9% harbored IDH2R140, B6%
IDH1R132 and B3% IDH2R172 mutations. Mutant IDH2
clustered with intermediate-risk or normal karyotype and
isolated trisomy 8, but not with WT1 mutations or core-binding
factor AML;85 the presence of IDH2 mutations was prognos-
tically favorable and IDH2R172 was mutually exclusive of
NPM1 mutations.85 The association of IDH mutations with
trisomy 8 was formally examined in 157 patients with myeloid
malignancies associated with isolated trisomy 8;86 18 IDH
mutations were identified, including 15 IDH2 (14 R140Q) and 3
IDH1 mutations. IDH1/IDH2 mutational frequencies in the
particular study were 27% for post-MDS AML, 25% for therapy-
related MDS/AML, 15% for de novo MDS, 13% for de novo
AML and 3% for MPN. By comparison, IDH mutational
frequencies were significantly lower among patients with AML
or MDS without isolated trisomy 8.86

At ASH 2010, an Eastern Cooperative Oncology Group
(ECOG) Study of 398 young (o60 years old) patients with
de novo AML reported 8% IDH2 and 6% IDH1 mutations;87

10% had TET2 and 4% ASXL1 mutations. In this ECOG Study,
mutual exclusivity was demonstrated for IDH and either TET2 or
WT1 mutations and FLT3 and ASXL1 mutations;87 survival was
favorably affected by the presence of IDH2R140Q or CEBPA
and absence of FLT3 or ASXL1 mutations. Another study had
suggested an association between IDH1 and NPM1 mutations
and a negative prognostic effect from IDH1 mutations for
relapse in FLT3/ITD�patients and a favorable effect in FLT3/
ITDþ cases.88 In yet another study, IDH mutations were
significantly associated with normal karyotype and IDH1
mutations clustered with NPM1 but not CEBPA mutations and
predicted inferior prognosis, in the absence of FLT3/ITD
mutations; IDH2-mutated patients with normal karyotype also
had poor prognosis.89 Other studies have also found the adverse
prognostic impact of IDH mutations in NPM1þFLT3/ITD� AML
with normal karyotype.90

The largest study of IDH mutation analysis in MPN involved
1473 patients and reported IDH mutational frequencies of B2%
in PV, 1% in ET, 4% in PMF and 22% in blast-phase MPN.35 In
this study, a total of 38 IDH mutations were detected: 18
IDH1R132, 19 IDH2R140 and 1 IDH2R172. Mutant IDH was
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documented in the presence or absence of JAK2, MPL and TET2
mutations. IDH-mutated patients were more likely to be
nullizygous for JAK2 46/1 haplotype and less likely to display
complex karyotype.35 In blast-phase MPN, but not chronic-
phase PMF, IDH mutational status predicted poor survival. The
relatively high incidence of IDH mutations in post-MPN/MDS
AML has also been noted in other studies.37–39 In most of these
studies, paired sample analysis did not suggest acquisition of
IDH mutations during leukemic transformation. The frequency
of IDH mutations was also relatively high (B22%) in high-risk
as opposed to low-risk MDS/AML (0%) associated with isolated
del(5q).91,92 In another study of 100 MDS, 90 MDS/MPN
(including 88 CMML) and 41 post-MDS/MPN cases, IDH1
(n¼ 4) or IDH2 (n¼ 13) mutational frequencies were 5% in
MDS, 9% in MDS/MPN and 10% in post-MDS/MPN AML.55

EZH2 mutations
EZH2 maps to chromosome 7q36.1. Wild-type EZH2 is part of a
histone methyltransferase (polycomb repressive complex 2
associated with H3 Lys-27 trimethylation) and is overexpressed
in solid tumors.93 Morin et al. were the first to report on somatic
EZH2 mutations involving exon 15 (EZH2Y641F/N/H/S), with
mutational frequencies of B22% in germinal center B-cell
diffuse large B-cell lymphomas and 7% in follicular lympho-
mas.94 It was subsequently shown that EZH2Y641F/N represents
a dominant gain-of-function mutation and promotes H3 Lys-27
trimethylation.95,96

Initial reports of EZH2 mutations in myeloid malignancies
involved patients with MDS,97 MPN or MDS/MPN. The MDS
Study97 involved 126 patients and showed EZH2 missense,
donor splice-site or frameshift mutations, involving exons 7, 8,
10, 17 and 18 and intron 19 in 8 (6%) patients. Three patients
had biallelic mutations. In addition, the EZH2 locus at 7q36.1
was deleted at one allele in 22 patients, raising the frequency of
point mutations or deletions to 23%, of which 40% also
displayed TET2 mutations.97 In another primarily non-MPN
Study,98 a total of 344 patients were studied: 131 MDS, 89
primary AML, 83 MDS/MPN, including 25 CMML, 24 second-
ary AML and 17 MPN. Exon 18/19 mutations were detected in
three MDS/MPN, including two (8%) CMML, two (1.5%) MDS
and one (1%) primary AML cases.98 Mutational frequencies
were 20% in patients with 7q UPD (uniparental disomy) and 7%
in those with del(7q).98

Ernst et al.41 were the first to report on the occurrence of
EZH2 mutations in MPN and MDS/MPN41 They studied a total
of 624 patients: 154 MDS including 2 post-MDS AML, 219
MDS/MPN including 118 with CMML, 90 with classic MPN
including 30 each with PV, ET or MF, 67 with other MPN
including 30 each with systemic mastocytosis (SM) or hyper-
eosinophilic syndrome/chronic eosinophilic leukemia, 54 AML
with �7/del(7q) and 40 blast-phase CML. They found 49
mutations in 42 patients, including 9 among 12 patients with
7q UPD. Mutational frequencies were 13% in CMML, 13% in
atypical CML, 13% in MF (PMF or post-PV/ET MF), 10% in
MDS/MPN-U, 6% in MDS, 3% in PV and 3% in hypereosino-
philic syndrome/chronic eosinophilic leukemia.41 Also in this
study, co-occurrence of EZH2 and TET2 mutations was
documented with mutant EZH2 being the first to appear. All
patients with �7 or 7q UPD were homozygous or hemizygous
for EZH2 mutations, whereas 9 of 12 7q UPD-negative patients
were heterozygous. EZH2 variants in this study included
missense, frameshift or stop mutations expected to result in
premature chain termination or truncation of critical domains;41

protein blotting revealed absent trimethylated H3 Lys-27

(H3K27me3) in cell lines with mutant EZH2 and decreased
EZH2 catalytic activity in insect cells infected with mutant
EZH2.41 Taken together, the observations from the study
by Ernst et al.41 suggest a tumor suppressor activity for
MPN-associated EZH2 mutations, which contrasts with
the gain-of-function activity for the lymphoma-associated
EZH2Y641F/N/H/S.93

At ASH 2010, several studies of EZH2 mutations in myeloid
malignancies were presented by other investigators. Abdel-
Wahab et al.39 studied 94 patients, including 46 with PMF, 22
post-PV/ET MF, 11 blast-phase MPN and 15 CMML, for EZH2,
ASXL1, TET2, IDH, JAK2 and MPL mutations. EZH2 mutations
were seen in three (7%) patients with PMF and coexisted with
mutant ASXL1 in one patient. All EZH2-mutated PMF patients
had normal karyotype and none underwent leukemic transfor-
mation during follow-up. Steglemann et al.99 studied 62 patients
with PMF, 21 with post-ET/PV MF and 6 post-MPN AML with
chromosome 7q abnormality. They found 10 EZH2 mutations in
eight patients: six (B10%) PMF and one each with post/PV/ET
MPN and post-MPN AML. Two of their PMF cases displayed
double EZH2 mutations, and co-occurrence of EZH2 and JAK2
mutations was also documented. It is premature at the present
time to comment on clinical correlates or the prognostic effect
of EZH2 mutations in myeloid malignancies.

UTX, located on chromosome Xp11.2, is a H3K27me3
demethylase, also belonging to the polycomb group of
proteins.100 UTX mutations were first described by van Haaften
et al.101 in multiple cancer types, including multiple myeloma,
gastrointestinal cancers and myeloid leukemias. These muta-
tions were described as being inactivating, homozygous,
heterozygous or hemizygous, and constituting frameshift,
missense or stop codon mutations. UTX mutations have recently
been reported also in MDS/MPN, including CMML, MDS
(refractory anemia with excess blasts-1) and secondary
AML.26,102,103 There occurrence in MPN and precise pathoge-
netic contribution in general remain to be further elucidated.

Prognostic studies

ET
The WHO classification system underscores the difference
between ET and prefibrotic PMF.1 The two are distinguished
based on bone marrow morphology; in ET, megakaryocytes are
large, hyperlobulated and mature –appearing, whereas in
prefibrotic PMF, they are immature appearing with hyperchro-
matic and irregularly folded bulky nuclei.104,105 Furthermore,
megakaryocyte changes in prefibrotic PMF are accompanied by
left-shifted granulocyte proliferation, which is usually not the
case in ET.106

Barbui et al.107 looked into the prognostic relevance of the
distinction between ET and prefibrotic PMF in an international
study of 1104 patients previously diagnosed and treated as ET.
Central review of the bone marrow biopsies according to the
WHO morphological criteria confirmed ET in 81% of the
patients, and diagnosis was revised to early, prefibrotic PMF in
16%. Early PMF, as opposed to ET, was characterized by
significantly higher leukocyte and platelet counts, lower
hemoglobin level, higher serum lactate dehydrogenase level,
higher circulating CD34þ cell count and a higher incidence of
palpable splenomegaly. Patients with early PMF, as compared
with those with ET, were more likely to develop overt
myelofibrosis and acute leukemia. Cumulative leukemic trans-
formation rate at 10 and 15 years was 0.7 and 2.1% in ET versus
5.8 and 11.7% in early/prefibrotic PMF, respectively. The

Post-ASH Meeting Symposium on MPN
A Tefferi et al

4

Blood Cancer Journal



10- and 15-year overall survival rates were 89 and 80% in ET
versus 76 and 59% in early/prefibrotic PMF, respectively. This
study validates the clinical relevance of strict adherence to
WHO criteria in the diagnosis of ET.108 The study also confirms
the clinically indolent nature of ET with near-normal life
expectancy and a less than 1% risk of leukemic or fibrotic
transformation in the first 10 years of disease.

PMF
The International Prognostic Scoring System (IPSS) for PMF uses
five predictors of inferior survival: age 465 years, hemoglobin
o10 g/dl, leukocytes 425� 109/l, circulating blasts X1% and
constitutional symptoms.109 The Dynamic IPSS (DIPSS) utilizes
the same prognostic variables but can be applied at any time
during the disease course.110 At the 2010 ASH meeting, Gangat
et al.111 presented a new prognostic model for PMF that is now
published in full. The new model is called DIPSS-plus and
incorporates DIPSS-independent prognostic factors, including
unfavorable karyotype,112 red cell transfusion need113,114 and
platelets o100� 109/l.115 In another paper presented at the
ASH 2010, Caramazza et al.112 described the following
cytogenetic abnormalities as being unfavorable to both overall
and leukemia-free survival in PMF: complex karyotype or sole or
two abnormalities that include þ 8, �7/7q-, i(17q), inv(3),
�5/5q-, 12p- or 11q23 rearrangement.

The DIPSS-plus prognostic model was developed using 793
PMF patients seen at the Mayo Clinic and uses eight instead of
five risk factors to define low- (no risk factors), intermediate-1-
(one risk factor), intermediate-2- (two or three risk factors) and
high (four or more risk factors)-risk disease;111 the corresponding
median survivals were 185, 78, 35 and 16 months (po0.0001).
Multivariable analysis identified platelet count and karyotype as
independent predictors of leukemia-free survival. Other risk
factors that are worthy of further investigation in PMF include
nullizygosity for JAK2 46/1 haplotype,18,35 low JAK2V617F
allele burden116,117 and increased plasma levels of interleukin
(IL)-8, IL-10, IL-15 or IL-2R.112 The latter work was also
presented at ASH 2010.118 The study used a multiplex biometric
sandwich immunoassay to measure plasma levels of 30
cytokines in 127 patients with PMF and showed DIPSS-
independent inferior survival in patients, with increased levels
of IL-2R, IL-8, IL-15 and CXCL10.

Clinical trials in MPNs

JAK inhibitor treatment trials
The two noteworthy JAK inhibitor clinical trials presented were
those of Pardanani et al.119 where CYT387, a JAK1/2 inhibitor,
was used in MF and Verstovsek et al.120 where INCB018424
(JAK1/2 inhibitor) was used in hydroxyurea-refractory or
intolerant PV or ET. In the former study, 36 MF patients received
CYT387 in a phase-1/2 study and were followed for a median of
15 weeks. Dose-limiting toxicity was established at 400 mg/day
and included asymptomatic grade 3 hyperlipasemia or grade 3
headache. Maximum tolerated dose for CYT387 was declared at
300 mg/day. Grade 3/4 non-hematologic adverse events were
infrequent and included asymptomatic elevations of liver
function tests and pancreatic enzymes. A unique side effect of
the drug, characterized by lightheadedness and hypotension,
occurring only with the first dose was documented in 36% of
patients. Grade 3/4 thrombocytopenia was seen in 22% of
patients and grade 3 anemia in 3%.

Anemia response to CYT387, according to the International
Working Group for MPN Research and Treatment (IWG-MRT)
criteria, was documented in 41% of MF patients. The drug
induced transfusion independency in an even higher percentage
of patients. Almost all (97%) patients experienced reduction in
spleen size, which was 450% in 11 (37%) patients. The drug
was also effective in controlling constitutional symptoms,
including pruritus, in the majority of patients. Of note, treatment
responses were also seen in patients who previously failed
treatment with pomalidomide121 or other JAK inhibitors, such as
INCB018424122 or TG101348.123 Anemia response was not
affected by the presence of JAK2V617F. It is important to note
that CYT387 is the first JAK inhibitor demonstrating substantial
activity against MF-associated anemia and that anemia is the
chief determinant of quality of life in MF and is also the most
important prognostic factor for survival.109–111,113

Verstovsek et al. presented longer-term follow-up of an
ongoing trial of INCB018424 in hydroxyurea-refractory or
intolerant PV or ET. Starting doses were 10 and 25 mg b.i.d.
The study included 34 PV patients followed up for a median of
15 months. Almost all (97%) patients became phlebotomy
independent. A greater than 50% reduction in spleen size was
achieved in 59% of patients. Leukocytosis or thrombocytosis
resolved in 63 and 69% of patients, respectively. Six (18%)
patients discontinued therapy. Seven grade 3 adverse events
were reported and included thrombocytopenia and neutropenia.
Similarly, a total of 39 ET patients were enrolled and followed
for a median of 15 months. Normalization of platelet count
occurred in 49% of these patients after a median of 2 weeks.
Nine (23%) patients discontinued therapy. Grade 3 adverse
events included leukopenia in two patients and peripheral
neuropathy in one. As expected, the drug controlled pruritus
and other constitutional symptoms in the majority of patients.
Only 6% of PV and 12% of ET patients experienced a 450%
decrease in JAK2V617F allele burden.

PV or ET patients who are either intolerant or
resistant to hydroxyurea are effectively managed by
interferon-a,124,125 busulfan126,127 or pipobroman (not available
in the United States).128–131 Among these second-line drugs,
interferon-a is usually used for patients younger than 65 years of
age and busulfan in the older age group. All three second-line
drugs induce phlebotomy independence in almost all patients
with PV, and response rates for thrombocytosis or leukocytosis
often exceed 80%, which is superior to what was mentioned
above for INCB018424. The suggestion that busulfan or
pipobroman might be leukemogenic in PV or ET is completely
unfounded and is often used as a scare tactic to promote the use
of new drugs.124–126,132–135

Other treatment trials in myelofibrosis
Begna et al.136 presented results from a phase-2 study using
single-agent low-dose (0.5 mg/day) pomalidomide in anemic
patients with MF. The main eligibility criterion was transfusion
dependence or hemoglobin o10 g/dl; subjects failing previous
treatment with lenalidomide or thalidomide were eligible. A
total of 58 patients were included in the study, among whom 46
(79%) were transfusion dependent and 42 (72%) were
JAK2V617F positive. Treatment was well tolerated, with no
instances of thrombosis. There was grade1 neuropathy possibly
related to drug in one subject. Grade 3 thrombocytopenia/
neutropenia occurred in two subjects. Anemia response, per
IWG-MRT criteria, was seen in 10 (17%) subjects including 9
who became transfusion independent. In addition, 14 of 24
patients (58%) with platelets o100� 109/l had a 450%
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increment in their platelet count. There were no spleen
responses. Anemia response occurred only in the presence of
JAK2V617F (24 versus 0%; P¼ 0.03), and was predicted by the
presence of pomalidomide-induced basophilia in the first month
of therapy. Accordingly, pomalidomide should be a valuable
treatment option for anemia in JAK2V617F-positive patients
with MF in the absence of marked splenomegaly.121,136

Vannucchi et al.137 presented results from a phase-1/2 study
of RAD001, an oral inhibitor of mammalian target of rapamy-
cine in PMF and post-PV/ET MF. A total of 30 patients were
treated with 10 mg daily, which was considered as the
maximum tolerated dose. Non-hematologic toxicity included
frequent grade 2 mouth ulcers and grade 1/2 hypertriglycer-
idemia. Grade 3/4 hematological toxicities included anemia in
four patients and thrombocytopenia in one patient. According to
IWG-MRT criteria, six (23%) patients experienced clinical
improvement, which includes 450% spleen size reduction or
anemia response. In addition, 11 (52%) of 21 patients had
complete resolution of systemic symptoms and 14 (74%) of 19
patients reported disappearance of pruritus. The drug did not
affect JAK2V617F allele burden. A set of 46 inflammatory
protein markers and cytokines were quantified and some,
including IL-10 and MIP-1b, showed significant decrease,
whereas others, including factor VII, IL-8 and matrix metallo-
proteinase-2, showed an increase in post-treatment samples.
JAK2V617F activates STAT3/5, RAS/MAPK and PI3/AKT
pathways. It is therefore rationale to target the PI3/AKT and
mammalian target of rapamycine pathways, and in vitro studies
have demonstrated the therapeutic potential of such a
strategy.138,139 The study by Vannucchi et al.,137 serves as
proof-of-concept in this regard.

Treatment for mastocytosis
Gotlib et al.140 presented results of a phase-2 study in SM using
midostaurin (PKC412), an inhibitor of wild-type and D816V KIT.
PKC412 was orally administered to 26 patients at 100 mg
b.i.d.140 Major response rate per conventional criteria was 38%
and benefits included normalization of hypoalbu-
minemia, improvement of hemoglobin and platelet counts,
resolution of liver function abnormalities, improvement of
pleural effusion and ascites, and reversion of weight loss. Some
of these responses were accompanied by improvement in
hepatosplenomegaly, a 450% decrease in serum tryptase level
and/or marrow mast cell burden, and improvement in mediator
symptoms. One patient with mast cell leukemia had achieved a
near-complete remission, with a decrease of serum tryptase from
763 to o20 ng/ml and decrease of marrow mast cell burden
from 60–70% to 5%. The most common drug side effects were
nausea, vomiting, diarrhea and fatigue. Asymptomatic hyperli-
pasemia occurred in five patients.

Hermine et al.141 presented results on 44 patients with
mastocytosis treated with cladribine. Cladribine was given at
0.15 mg/kg/day in a 2-h infusion or subcutaneously for 5 days,
repeated every 1–2 months, for a median of four cycles. After a
median follow-up of 35 months, no opportunistic infections
were seen, with the exception of zoster infections in two
patients. Responses occurred in 24/31 patients with urticaria
pigmentosa, 17/35 with fatigue, 14/24 with flushing, 9/24 with
pruritus, 9/21 with abdominal pain, 1/9 with ascites, 11/23
with diarrhea, 8/16 with weight loss, 4/14 with headache, 5/10
with cough, 7/20 with splenomegaly, 2/6 with lymphadeno-
pathy, 0/2 with pleural effusions and 5/19 with neuropsycho-
logical symptoms. In addition, eosinophil count normalized in
7/10 cases and a substantial decrease in tryptase levels was also
noted. Overall, major and partial responses were observed in

7/12 patients with aggressive SM, 3/3 smoldering SM, 17/19
indolent SM, 2/3 cutaneous mastocytosis but in none of the
patients with SM associated with another myeloid malignancy.

The above study by Hermine et al.141 validates the value of
cladribine in SM142 and provides clinically useful information
on where the drug works best in terms of SM variant and specific
symptom. However, the results look different than those recently
published from the Mayo Clinic.143 The Hermine study suggests
that cladribine might not be effective in SM associated with
another myeloid malignancy, whereas the response rate in this
SM variant was reported at 46% in the Mayo Clinic study.
Similarly, the response rates for the other SM variants were
substantially higher than those reported by the Mayo investiga-
tors. Regardless, in the Mayo Clinic study,143 presence of
leukocytosis, monocytosis or circulating immature myeloid cells
was significantly associated with inferior response to cladribine.

As was well demonstrated by Gotlib et al.,140 midostaurin
therapy has the potential to produce substantial reduction in
mast cell burden in some patients with SM. However, it is
currently not clear which patients with SM stand to benefit from
such treatment, and more studies are needed to clarify the
advantage of midostaurin over treatment with cladribine.143 Of
note, cladribine has also been successfully used in mast cell
leukemia.144 Interferon (IFN)-a is another useful drug for the
treatment of SM. In a recent Mayo Clinic study, IFN-a induced a
response rate that was 41% and more likely to occur in the
absence of anemia or elevated erythrocyte sedimentation
rate.143 Taken together, midostaurin therapy might be most
useful in the treatment of aggressive SM or mast cell leukemia,
especially if combined with either cladribine or IFN-a.

IFN-a therapy in PV or ET
Quintas-Cardama et al.145 presented a phase-2 study of
subcutaneous pegasys (peginterferon-a-2a) in 84 patients with
PV or ET. Initial dose was 450 mcg/week, which was subse-
quently modified to 90 mcg/week. After a median follow-up of
40 months, complete remission rate was 75%. Of five patients
with abnormal karyotype at study entry, two reverted to diploid
cytogenetics. Overall, 28% of patients had a 450% reduction in
JAK2V617F allele burden and 19% had complete molecular
response. TET2 or ASXL1 mutational status did not appear to
impact the likelihood of achievement of molecular response. In
all, 25 (30%) patients were taken off study after a median of 9
months and the reason in half of them was drug toxicity,
including anorexia, depression, fatigue, ischemic retinopathy,
dyspnea and neuropathy. The results of this study support the
use of pegasys in hydroxyurea-refractory PV or ET. However,
controlled studies are needed to assess the value of the drug as
first-line therapy. IFN-a can induce molecular remissions in
10–20% of patients with PV, but what exactly this means in
terms of overall outcome is not clear.

Conclusions

There is no doubt that more mutations in MPN will be described
in the coming years. However, it is difficult to say at this point
that we are that much more enlightened about disease
pathogenesis. Similarly, the concept of targeted therapy in
MPN is proving to be more complicated than expected, and
whether or not the recent description of several epigenetically-
implicated mutations supports continued evaluation of DNA
methyltransferase or histone deacetylase inhibitors is not clear.
Nevertheless, one cannot deny the benefit of new drugs such as
pomalidomide and JAK inhibitors, even though we are uncertain

Post-ASH Meeting Symposium on MPN
A Tefferi et al

6

Blood Cancer Journal



about their precise mechanism of action. In the near future, we
foresee the incorporation of molecular or biological markers in
disease prognostication and monitoring of treatment response,
whereas ongoing phase-3 studies will better define the
therapeutic role of JAK inhibitors, pomalidomide and IFN-a.
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