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Abstract: In this paper we discuss results based on using instrumental 
motion as a signal rather than treating it as noise in Near Infra-Red (NIR) 
imaging. As a practical application to demonstrate this approach we show 
the design of a novel NIR hematoma detection device. The proposed device 
is based on a simplified single source configuration with a dual separation 
detector array and uses motion as a signal for detecting changes in blood 
volume in the dural regions of the head. The rapid triage of hematomas in 
the emergency room will lead to improved use of more 
sophisticated/expensive imaging facilities such as CT/MRI units. We 
present simulation results demonstrating the viability of such a device and 
initial phantom results from a proof of principle device. The results 
demonstrate excellent localization of inclusions as well as good quantitative 
comparisons. 
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1. Introduction 

Over the past decade Near Infra-Red (NIR) imaging has demonstrated increasing utility as a 
neuro-imaging modality [1–7]. It is commonplace as a spectroscopic [6] and tomographic [3] 
model for functional imaging. In the area of structural imaging it is also making progress, 
particularly for neo-natal [8–10] and stroke monitoring [11]. NIR has also been used 
spectroscopically to monitor (though not as a detection tool) for cerebrovascular reactivity in 
traumatic brain injury subjects [12,13]. 

A challenge of NIR imaging is avoiding motion at the detectors when acquiring data. 
Typically, the positions of optodes need to be known and constant and detectors must be kept 
perpendicular (fiber)/parallel (CCD) to the surface, since a moving detector results in visible 
motion artifacts, which mask the data. Some work has been done [14] to model (and hence 
remove) this motion as a form of noise. Other approaches have been to eliminate noise by 
using techniques such as independent component analysis [15]. Here, we consider the idea 
that detector fiber motion is a useful signal, and not just noise. This concept is not the same as 
Laser Doppler Imaging, nor is it a scanning technology where a light is passed across the 
object (e.g., [16]). 

The usefulness of a “motion signal” can be demonstrated in a structural imaging 
application for NIR in intracranial hematoma detection. For NIR imaging, absolute imaging is 
normally used at a superficial depth, and differential imaging for all other depths. The 
problem then with hematoma imaging is how to create a difference image on what is 
essentially a static hematological event (as we are not considering imaging the process of 
hematoma formation here). Some simplified devices have already been discussed in the 
literature, e.g., [17–19], which utilize an approach based on comparing to a contra-lateral 
measurement to create a difference image. Therefore they examine sparse non-symmetrical 
effects which, as we shall discuss, may prevent correct clinical diagnosis. Some authors have 
suggested diffuse optical tomography for hematoma detection; however, this approach is 
costly, requires large instrumentation, and is not as available as a handheld, real-time solution 
on the full adult head. Another recent approach uses 3D localization to register multiple 
images collected with a handheld device [20]; this is a similar idea to that presented here, but 
is still effectively concerned with using static imaging. Other, so called moving, devices do 
exist (such as [21]), but they are also designed to make static measurements at discrete 
locations, as opposed to taking measurements as the device itself tracks. 

It is clear from clinical discussions that one primary use of any such device will be the 
rapid screening (triage) of traumatic brain injury (TBI) patients before the use of more 
expensive and intensively used imaging techniques, i.e., CT and MRI. Often the queue for 
such imaging is long and currently patients without focal neurological signs are prioritized by 
common measures of overall neurological function, such as the Glasgow Coma Scale (GCS). 
In the case where CT and MRI imaging facilities are not readily available (e.g., battlefield), 
NIR imaging could help determine the relative urgency of patient transport. NIR could also be 
used to monitor known hematomas at the bedside or outpatient clinic. 

There are many types of intracranial and extracranial hematomas. In addition to extra-
calvarial (outside the skull) hemorrhage, the most important collections of blood are 
intracranial. Extra-axial (outside the brain) hemorrhage is usually either “epidural hematoma” 
(EDH) [22] or “subdural hematoma” (SDH) [23]. Epidural hematomas are usually unilateral. 
In contrast, blood in the subdural space may be unilateral or bilateral. Figure 1 illustrates 
typical examples of unilateral and bilateral hematomas. Existing NIR technology may not 
detect the presence of symmetrical bilateral hematomas. A new NIR device will only be 
useful in clinical application if it can reliably diagnose all types of hematoma. 
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Fig. 1. Typical hematomas: (a) unilateral and (b) bilateral. 

In this work we consider moving a device across the head to detect a hematoma, using the 
changing signal as a differential measure. A single depth, or source detector separation, (such 
as used in previous studies [18]) will clearly vary with the heterogeneity of the head; 
however, if we use two detectors—one to probe the skin and skull and one to probe the dural 
region—we should be able to normalize for changes due to superficial heterogeneity. This 
assumption is based on the fact that we are not, as is usual in NIR imaging, looking for 
hemodynamic changes, but actually detecting the presence of a large inclusion of blood in the 
dural region. The presence of whole blood should provide a larger than normal change in 
absorption due to the concentrations of blood involved. Normally in NIR imaging we are 
looking at changes in blood volume/oxygenation at a blood volume of around 3% in brain 
[2,24]; here we are looking at a volume swing from around this 3% level to 100% in a 
significantly sized region. Thus, a detection threshold should exist for hematomas. 

Here we will demonstrate using the accepted theory for diffuse optical imaging (the 
diffusion approximation) that such a device is viable. We include to this end a brief 
description of the theoretical model used. We note that many models are available, but we 
have opted for the familiar finite element model of the diffusion approximation and have 
implemented our simulations on a mathematician’s head (a sphere). 

We will go on to describe the instrument used as a proof of concept device. To enable a 
thorough assessment of the potential of the imaging technique, the instrument used in this 
study is much more sophisticated than required for the final device. We have used a fiber 
based system, more familiar to functional imaging (based on [3]). The system also has an 
integrated high resolution motion tracking device derived from the latest gaming mouse 
hardware to allow us to monitor position; this tracking method has been validated by 
including a computer controlled rotating stage where the phantoms are mounted for study. 
Solid resin phantoms with tissue-like optical properties, on loan from University College 
London (see below for details), were used in this study. 

We will demonstrate that, as expected, the theoretical model suggests that we can detect 
inclusions based on the appropriate selection of the two source detector separations and that 
the method will have limitations based on the optical contrast of the anomaly. The 
experimental data goes on to validate the numerical results, showing excellent localization of 
inclusions and quantitative measures that are in good agreement with the optical contrast of 
the different inclusions. As such we demonstrate a novel approach to NIR imaging that would 
be applicable to the case of imaging hematomas in traumatic brain injury patients and which 
would alleviate one of the current limitations to sensitivity of existing devices. 
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2. Theoretical model 

The theoretical model is based on the diffusion approximation (DA) [25]. There is some 
debate over whether a more sophisticated model should be used to handle light transport in 
certain regions of the head (particularly near the cerebrospinal fluid (CSF) [26,27]). However, 
it is also clear in [27], that when using a difference image, any change in the size of a 
hematoma would be apparent in a normalized difference image. As the instrumental design 
relies on a ratio of signals, or normalized difference, the DA is sufficient in this case. 

The diffusion approximation is given by 

 ( ) ( ) ( ) ( ) ( )ar r r r q rκ µ−∇ ⋅ ∇Φ + Φ =   

where κ(r) is the diffusion coefficient at point r (κ(r) = 1/3 (μa(r) + μs'(r))), Φ(r) is the intensity 
at point r, q(r) is the source function, μa(r) is the absorption coefficient at point r, and μs'(r) is 
the reduced scattering coefficient at point r (μs'(r) = (1 – cos(Θ))μs(r), where cos(Θ) is the 
average scattering angle). A selection of boundary conditions are offered in the literature, 
including those of Dirichlet, Neumann, and Robin [28]. For this work we have used the Robin 
condition and a finite element model similar to that proposed in [29] for numerical solutions. 
The finite element solution, not derived here, for the forward problem is given as [29] 
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and Kij, Cij, Aij, Φij and Qi are the matrix/vector components; ui and uj are the basis functions 
associated with the nodes; and φi and qi are the intensity and source terms at the nodes of the 
mesh. We also define m as a point on the boundary of the domain and α as a term defined by 
the refractive index mismatch at the boundary; further details are given in [28], but for the 
purposes of this paper the boundary is matched giving α = 2. 

3. Instrumental design 

The design of this instrument is based on changing the imaging paradigm compared to most 
state-of-the-art diffuse optical imaging, which emphasizes creating stable (or static) sources 
and detectors. These approaches aim to image small changes in the hemodynamics present in 
a medium or, in the case of structural imaging, to create an image of the absolute or steady 
state structure of an object. Given the difficulties of absolute imaging, such as uncertainties in 
whether non-scattering or anisotropic regions will be detectable or effect images, these 
approaches are far from being ready to use for the development of a hematoma imaging 
device. Similarly, a hematoma does not represent a “changing” medium in the sense of 
hemodynamic changes over time, as there is no metabolic event causing oxygenation or 
volume change on a physiological level. 
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It has been shown [17] that some hematomas can be detected by using a contra-lateral 
difference image. However, in the case of a symmetric bilateral hematoma this method can 
result in a false negative diagnosis, i.e., missing the trauma. Further, as this approach uses 
sub-sampling, it can miss potentially localized events, again causing a false negative 
indication. In this work we present a model, which is based on using a moving optical head 
imaging system such as that illustrated in Fig. 2, to create the difference signal and detect the 
hematoma at its boundaries. Additionally, since the device can move over the whole patient 
head (see the final envisaged design in Fig. 2); there is no risk of missing hematomas. 

 
Fig. 2.(a) The design of the device and its use scanning over the head in (b) the absence and (c) 
presence of a hematoma in the field of view—where the green light on the device indicates 
presence of a hematoma (Media 1). 

Our hypothesis is that by moving the imaging probe across the head and probing at one 
depth sensitive to the superficial layers and comparing to a probe sensitive to the dural layer, 
we should see a marked contrast shift in the presence of blood in the dural layer (i.e., a 
subdural or epidural hematoma). 

To test our hypothesis we have developed a specialized holder for a functional brain 
imaging instrument. An array of fibers from the instrument, mounted on a phantom, enables 
tracking of the holder. The instrument has also been modified to accept additional input from 
a motion tracker mounted on the holder to determine the location of the instrument 
simultaneously with the data collection. The holder has many detector separations to select 
the correct separation distances and will allow us to characterize, at a later date, the depth 
sensitivity and specificity of the device with further phantom studies. 

The fiber-based system developed is based on the instrument described in [3]. It uses 10 
mW LED sources and the sampling rate at the detectors is set at ~100Hz. Our minor 
modifications to the design are catalogued here. The modified instrument uses trifurcated 
instead of bifurcated fibers for the source positions to allow us to use three instead of two 
wavelengths. The device uses 750/800 and 850 nm sources; we selected the 750 source for 
this study. This change from bifurcated to trifurcated fibers will allow us (in future) to use  
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Fig. 3. (a) An overall block diagram of the programmable ten-channel amplifier box showing 
computer control configuration and (b) a block diagram of a single channel amplifier unit with 
five control lines to set gain and minimize amplifier offset. 

three wavelengths to discriminate the three types of hemoglobin expected in hematomas (oxy, 
deoxy, and, in the case of chronic hematoma, met). Three diode wavelengths will be used: the 
first two will be chosen based on work in submission on wavelength optimization [30] to 
discriminate for oxy- and deoxy- hemoglobin and a third will be added to assess for 
methemoglobin to allow the imaging of chronic rather than acute hematomas. The second 
change to the system is the introduction of in-house amplifiers after the avalanche 
photodiodes for increased dynamic range. The amplifier box can be used to amplify up to ten 
inputs. Each channel consists of a single board that contains a unity gain amplifier, followed 
by a low-pass filter, and an instrumentation amplifier with programmable gain inputs. A 
digitally-controlled potentiometer is connected to the offset adjust pins of the amplifier to 
minimize any DC offset associated with the amplifier. The gain of the instrumentation 
amplifier and the value of the digital potentiometer are controlled by inputs from a National 
Instruments USB-6501 Digital I/O board. Two digital lines set the gain of the amplifier (with 
gain options of 1X, 10X, 100X, and 1000X) and three digital lines are used as a serial 
interface to the digital potentiometer to set its value. For each gain setting, the offset adjust 
has a specific value that would minimize the DC offset at the output of the amplifier. There 
are two USB-6501 boards in the instrument, each controlling five of the amplifier boards. The 
design schematic for this box is given in Fig. 3. 

The fibers from this instrument are coupled to a holder built using a 3D printer designed to 
hold one source and six detector fibers arranged in an array as (S, D1, D2, D3, D4, D5, D6). 
These are set to minimum separation based on the fiber diameter and the mechanics of 
attachment to the device, giving an inter fiber spacing of 8.816 mm. The component is 
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designed to fit 70 mm diameter cylindrical phantoms and is illustrated in Fig. 4, below, with 
fibers and mounting unit for the phantom. The scanning head is fixed to a height-adjustable 
stem allowing us to probe the phantom at different layers with a computer-controlled 
rotational stage for validating the motion detection. 

The final component of the system is the built-in motion tracker/position sensor. The 
position sensor is a Philips PLN2020 twin-eye laser sensor extracted from a computer mouse. 
This sensor has a resolution of 5600 dpi (~4.5 µm per count) in both the X and Y directions 
and is effective at rates up to 500 mm/s. The USB interface of the mouse was used to connect 
the sensor to the computer. A driver was created for the mouse (NI-VISA driver developed by 
National Instruments) and the position data was read directly into the test software. In this 
manner, a regular mouse can still be used with the computer while reading data from the 
position sensor. The current position is updated every 10 ms to ensure an accurate position is 
available each time an optical measurement takes place. 

 
Fig. 4. The instrument imaging head’s seven fibers (one source and six detectors) and a high 
resolution mouse sensor for positioning. Also present is a computer-controlled motorized stage 
to check positioning data. 

4. Phantoms 

4.1. Numerical phantoms 

The basic numerical phantom is a sphere of radius 70 mm, constructed as a tetrahedral mesh 
with 34049 nodes. It has optical properties of µs’ = 1.0 mm−1 and µa = 0.01 mm−1. It contains 
a 5X absorption contrast inclusion (radius 10 mm) centered at 25 mm below the surface. The 
model is not congruent with a human head or hematoma, but is sufficient to demonstrate the 
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principle. It is also not congruent with the experimental phantom as we are not providing 
validation of the numerical model— this was previously done in the literature—but are 
demonstrating the underlying principles of the technique. 

Four other numerical phantoms are used. Based on the same mesh, we created a smaller 
inclusion phantom (radius 5mm) and a larger inclusion phantom (two touching 10mm radius 
inclusions). Finally, we created depth variation phantoms moving the 10 mm radius inclusion 
to a depth of 30 mm and then 35 mm. The phantoms, while not comprehensive in nature, are 
designed to test the method in the presence of typical potential variations in hematoma 
behavior. 

4.2. Experimental phantoms 

Many types of optical phantoms for NIR studies have been considered over the years. Good 
review papers have been written on the subject, for example [31]. In this work we have 
chosen to use resin phantoms, which allow us flexibility of shape for later studies in head 
models while maintaining experimental consistency. They will further allow us to create 
“dynamic” (blob in/blob out) phantoms without the potential confounding issues of refractive 
index mismatches, as were noted when using mixed material phantoms in [27]. We have used 
two phantoms in this work, a homogenous “null” phantom and a phantom with three blobs 
situated at different heights in the phantom; both phantoms are cylindrical with a diameter of 
70 mm. The blobs are at heights of 50, 75, and 100 mm and are distributed at 120 degrees to 
each other, centered at a radius of 17.5 mm. The blobs are 10 mm in height and 8 mm in 
diameter. The geometry of this phantom is illustrated in Fig. 5 below. 

 

Fig. 5. The geometrical layout of the blobs in the cylindrical phantom. The blobs are located at 
120 degrees to each other, centered at 17.5 mm from the center of the phantom at planes of 50, 
75, and 100 mm. 

The optical properties of the phantoms are the following: 

1. Homogenous phantom 

a. µa = 0.01 ± 0.002 mm−1 

b. µs′ = 1.0 ± 0.02 mm−1 

2. Heterogeneous phantom 

a. Background 

i. µa = 0.01 ± 0.002 mm−1 

ii. µs′ = 0.85 ± 0.1 mm−1 
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b. Blob A 

i. µa = background 

ii. µs′ = 10x background 

c. Blob B 

i. µa = 5x background 

ii. µs′ = 5x background 

d. Blob C 

i. µa = 10x background 

ii. µs′ = background 
Full descriptions of these phantoms can be found in [32] and [33]. The phantoms were 

supplied on loan from UCL and are available for study from there. 

5. Results 

5.1. Theoretical model 

 
Fig. 6. A graph illustrating how the hematoma detector would be capable of detecting a 
hematological event in the dural/subarachnoid region of the head. a) Illustrates the geometry 
and the source detector configuration with direction of travel, b) shows the intensity ratio as the 
source detector combination moves along the indicated trajectory. 

In Fig. 6 we illustrate the effect of examining the difference (ratio of measures) between a 
source and two detectors as they are translated around the basic spherical numerical phantom. 
The presented data are normalized to remove meshing artifacts (as we translate the source, the 
unstructured mesh alters slightly in shape causing variations in the signal, which confound the 
visualization of the actual data). As these fluctuations are not relevant to the instrumental 
design, which will rely solely on measured data with no modeling involved, they have been 
removed for clarity. The graph (Fig. 6b) illustrates the intensity difference (ratio) between two 
fibers with separations of 20 and 40 mm from the source. 

In Fig. 7 we illustrate the effect of changing the location and size of the hematoma 
inclusion, as described in the numerical phantoms section. In the instance of depth change it is 
important to note we have not adjusted the separation of the source detector pairs to 
accommodate the depth change. 

5.2. Experimental Results 

Here we present the results collected from the two phantoms used. We first present data 
collected on the phantom containing the inclusions. Then as a validation study we show data 
from the “null” or homogeneous phantom. 
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Fig. 7. A set of graphs illustrating how the model can be used to identify the device’s ability to 
discriminate and detect hematomas based on size: a) smaller—50% size; b) larger—two 
radially aligned touching spheres of the same size, and on depth: c) at an extra 5 mm depth; d) 
at a further 5 mm depth. 

In Fig. 8 we demonstrate the intensity ratio data for fiber 1 (Source Detector separation: 
8.816 mm) to each of fibers 2 (Source Detector separation: 17.632 mm) and 5 (Source 
Detector separation: 44.08 mm). These fiber separations roughly compare a maximum 
sensitivity depth of around 4.4 mm to depths of 8.8 mm and 22 mm; these approximations are 
based on the case of an infinite half space as given in [34]. It is difficult to be precise in the 
absence of analytic models for the cylindrical case; however, the approximation is accurate 
enough to ascertain that fibers 1 and 2 do not penetrate to the depth of the hematoma and fiber 
5. The figure shows surface plots of the data described in height on the cylinder and the 
angular location θ for the two separation pairs; these and all following surface intensity ratio 
plots have been plotted on the same color scale for clarity. The blob locations are illustrated 
by black outlines on the surface. We have used a zero centered ratio and, for the images, we 
used the negative of the data to provide a color scale where a high value represents a positive 
inclusion. Note: the theta location of the inclusions is shifted in each case as, for each image, 
we have set theta 0 to be the angular location of the mid-point of the source and the “far” 
detector (fiber 2 or 5) at the start of the scan. In Fig. 9 we plot the ratio at the height of each 
anomaly in the cylinder for all fiber pairs to fiber 1. Here the theta is corrected to the source  
 

 
Fig. 8. A visualization of the intensity ratio data on the surface of the cylinder, position given 
by height in mm and degrees from a nominal point based on source to far fiber detector 
midpoint. Here showing the data with the blob outlines projected to the surface, from a) fibers 
1 and 2 and b) fibers 1 and 5. 
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location. In Table 1 we give the peak contrast for each detector pair and anomaly. In Fig. 10 
we illustrate the detection of the two absorbing anomalies in the image by using a threshold 
similar to the principle of the hematoma detector (the threshold level was chosen at −0.07 
AU). Here again we show a surface map in height and θ and have located the blobs with 
outlines as shown previously. 

 

Fig. 9. A plot of the intensity ratio data on the surface of the cylinder, position given in degrees 
from a nominal point based on source position. Here showing the data ratios from fiber 1 to all 
other fibers at the level, for a) the absorbing anomaly, b) the mixed anomaly, and c) the 
scattering anomaly. 

Table 1. A table giving the peak ratios for each anomaly and each fiber pair 

Fiber Pair Absorbing Anomaly Mixed Anomaly Scattering Anomaly 
Fiber 1 to fiber 2 −0.026 −0.0147 −0.0201 
Fiber 1 to fiber 3 −0.0607 −0.0424 −0.0050 
Fiber 1 to fiber 4 −0.936 −0.0757 −0.0423 
Fiber 1 to fiber 5 −1.1023 −0.0866 −0.0557 
Fiber 1 to fiber 6 −0.994 −0.0786 −0.0407 

 

Fig. 10. A visualization of the thresholded intensity ratio data on the surface of the cylinder, 
position given by height in mm and degrees from a nominal point based on source to far fiber 
detector midpoint. Here showing the data with the blob outlines projected to the surface from 
a) fibers 1 and 2 and b) fibers 1 and 5 

#156089 - $15.00 USD Received 12 Oct 2011; revised 5 Dec 2011; accepted 9 Dec 2011; published 20 Dec 2011
(C) 2011 OSA 1 January 2012 / Vol. 3,  No. 1 / BIOMEDICAL OPTICS EXPRESS  203



 
Fig. 11. A visualization of the intensity ratio data on the surface of the cylinder, position given 
by height in mm and degrees from a nominal point based on source to far fiber detector 
midpoint. Here showing the data on the homogeneous phantom (color-scale matched to 
heterogeneous data) from a) fibers 1 and 2 and b) fibers 1 and 5. 

For the purposes of a control experiment we demonstrate the same imaging procedure on the 
homogeneous phantom. Figure 11 shows the intensity ratio data for the homogeneous 
phantom using the same fiber pairs and the same color scale as that given in Fig. 8. 

6. Discussion 

Our initial simulation results were aimed at demonstrating the viability of the concept of using 
motion as a signal from a theoretical point of view. It is clear from Fig. 5 that an absorbing 
inclusion (such as a pool of blood or hematoma) can easily be detected if we move a single 
source with two detectors, at the properly chosen separations from the source, past it. This 
point is illustrated more clearly in Fig. 6 (c and d) where we vary the depth of the inclusion 
and change our sensitivity to it. We further illustrate how the size of the inclusion will affect 
the data as shown in Fig. 6 (a and b). These factors will be further studied in future work 
based on evaluating the sensitivity and specificity of the device using data obtained from 
databases of CT scans of hematoma subjects. 

Based on the success of the simulations we went on to show a proof of concept device. 
Here, by using a more sophisticated instrument than needed, we were able to acquire data of a 
quantitative nature on a tissue-like phantom. Figure 7 clearly demonstrates how the device 
picks up different anomalies in the tissue-like phantom with differing contrasts. These 
differing contrasts clearly show the importance of choosing the fiber separations correctly as 
the anomalies are only detected when the correct source detector separations are used, as 
expected. In this case we have chosen fibers 1 and 5. The data in Fig. 8, where we show plots 
of the data at the level of each anomaly in the phantom, clearly illustrate the choice of this 
fiber pair as the most sensitive for this depth. Further, if we examine the data in Table 1, we 
can see that by subtracting out the scattering effect from the mixed anomaly (half the peak 
value) and then halving the left over absorption effect in the mixed anomaly we find the ratio 
of the absorbing effect to be 0.574 of the absorbing anomaly. If we consider that the mixed 
anomaly has half the absorption of the pure absorbing anomaly, this is a very close 
quantitative value to the absorption contrast and is skewed upwards as the removal of the 
scattering effect does not compensate for the increased absorption caused by the increased 
scatter. Figure 9 goes on to show how by selecting an appropriate (quantitative) threshold for 
our contrast we may obtain very accurate localization of the absorption inclusions in a map of 
the surface. The detection technique shown here is suitable for non-expert use as no numerical 
methods are used and no decisions concerning algorithms or regularization parameters are 
required. 

Finally as a control to illustrate the absence of false positives we showed data in Fig. 10 
from a homogeneous phantom. Here, as we plot the data on the same color scale as the 
original heterogeneous maps, it is entirely clear that no inclusions were detected. 
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One open question is the choice of optical contrast parameters. In this study we have 
chosen an existing phantom that suited our needs. The background properties can be 
considered as tissue like. The absorbing anomaly at a factor of 10x background is reasonable 
as it can be estimated that total blood consists of 2 mM concentration of hemoglobin and there 
is ~3% blood content in brain tissue [2,24], which corresponds to 60 µM hemoglobin. In the 
case of a hematoma, 100% blood is present, which corresponds to the 2mM concentration. 
Hence, the absorption ratio increase could be considered as much as 33 fold as blood is the 
strongest absorber in the NIR range; while this ratio may not represent a precise contrast, we 
consider a factor of 10, therefore, to be reasonable. 

We have demonstrated, then, both in theory and with a proof of concept device that 
motion can be used as a signal for NIR imaging. We have shown that such a device can be 
used to locate structural absorption anomalies such as would occur in a hematoma in the dural 
region. From existing work on functional imaging we know that diode based systems [35] are 
capable of providing light penetration into brain tissue to the depth required for such imaging. 
Therefore, we have demonstrated that a handheld hematoma device based upon this technique 
can be realized potentially filling the gap in triage assessment of the possibility of hematoma. 
An interesting aside was that the strong scattering inclusion was not detected with the given 
thresholding. This suggests that the scattering changes that can be reasonably expected in 
tissue are unlikely to affect the device’s imaging capacity—this result implies a good 
specificity for the device, but will require further investigation. 

7. Conclusion 

In this work we have presented a novel approach to NIR imaging to allow the detection of 
both unilateral and bilateral hematomas. We have demonstrated the novel idea of using a 
moving NIR device to detect structural changes in the dural region. This approach introduces 
a new paradigm for diffuse optical imaging, which has previously relied on static imaging 
approaches, considering motion as noise. 

We have shown with numerical modeling that such a device is theoretically possible. 
Further, we illustrated that such models can be used to effectively determine the ability of 
such an instrument to detect hematomas and categorize sensitivity and specificity. 

Finally we have demonstrated, using a simple experimental set-up, that we can effectively 
detect inclusions in a tissue-like phantom. These inclusions are detected accurately in terms of 
localization (based on the use of motion trackers) and with good quantitative assessment of 
inclusions. No false positives were detected in the control phantom (null test). 

Future work will involve building a statistical model of hematomas based on existing CT 
data. This approach will allow us to optimize the design of a device for the detection of both 
unilateral and bilateral hematomas. 
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