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Abstract
Pluripotent mesenchymal stem cells (MSCs) are considered ideal therapeutic targets in
regenerative medicine, as they hold the capacity to differentiate into higher order connective
tissues. The potential to harness MSCs for disease treatment and acceleration of repair will
ultimately depend on an improved understanding of how physical and/or chemical signals regulate
their activity, and the ability of exogenous stimuli to enhance MSC proliferation and define MSC
fate. Recent appreciation that bone marrow osteoprogenitors are inversely proportional to
adipocyte precursors suggests that their shared progenitor, the MSC, will commit to one lineage at
the cost of the other. This interrelationship may contribute to the phenotype of sedentary subjects
who have more fat and less bone, while conversely, to the outcome of exercise being less fat and
more bone. Mechanical biasing of MSC lineage selection suggests that physical signals may
influence the quantity of both fat and bone through developmental, as well as metabolic or
adaptive pathways. Considered with the recent finding that low magnitude mechanical signals
(LMMS) suppress the development of subcutaneous and visceral fat without elevating energy
expenditure, this indicates that MSCs are ideally positioned as mechanosensitive elements central
to musculoskeletal adaptation, but that the signals needn’t be large to be influential. The biasing of
MSC differentiation by mechanical signals represents a unique means by which adiposity can be
inhibited while simultaneously promoting a better skeleton, and may provide the basis for a safe,
non-invasive, non-pharmacologic strategy to prevent both obesity and osteoporosis, yet uniquely –
without targeting the resident fat or bone cell.

Introduction
Osteoporosis and obesity, two of the most dreaded diseases in the U.S., affect over 30% of
the American population and result in close to 200 billion dollars in annual health service
costs. (1) Osteoporosis, a disease characterized by diminished bone density, is one of the
most common age-related disorders, with atraumatic fractures severely compromising an
individual’s quality of life. The U.S. Surgeon General estimates that 50% of women over the
age of 65 are at risk of bone fracture, and within 50 years, costs to prevent and treat this
disease alone may exceed 250 billion dollars. (1) Turning from the elderly to the young,
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conservative estimates indicate that 25% of American children are overweight, while 11%
are obese, (2) both percentages strikingly higher than just 10 years ago. This obese
population is predisposed to type 2 diabetes (3) and an elevated lifetime risk of
cardiovascular disease and cancer (4).

Prior to 1994, type 2 diabetes mellitus was unusual in children; yet now, some clinics report
that up to one-third of adolescent children with diabetes are afflicted with type 2 disease (5–
7). Visceral adiposity and elevated free fatty acid levels are strongly correlated with insulin
resistance (8), a problem that becomes even more devastating as overweight children grow
into obese adults (9). Lifestyle factors, specifically, physical inactivity and poor dietary
intake, are important targets for primary prevention of obesity and diabetes. Studies in adults
suggest that modification of lifestyle and weight loss can decrease insulin resistance,
improve measures of glycemic control, and reduce lipemia (10;11). Unfortunately,
controlled clinical trials to determine if lifestyle interventions can prevent type 2 diabetes in
adults (12;13) are rarely successful or sustained in the general U.S. population, as weight
gain, and its concomitant complications, return quickly. In children, even the most
exhaustive federally funded intervention studies have failed to yield compelling positive
results (14;15). The role of exercise in preventing obesity has concentrated on calorie
expenditure, but has ignored any “non-metabolic” role. Teaching away from a “burn-it or
carry-it” perspective, a recent commentary in Obesity (16) referred to the relative success of
vigorous physical activity interventions, but suggested that the positive results were actually
due, in part, to mechanical stimulation of tissues rather than metabolizing of calories.

While both osteoporosis and obesity have garnered great public attention, effective and safe
pharmacologic interventions at any scale for either disease have proven elusive. Even
control of either osteoporosis or obesity has proven difficult, with perhaps the most common
etiologic factor being a “sedentary lifestyle” and the most common intervention being
exercise (17), indicating a pivotal role for mechanical signals in defining bone and fat mass.
But is this disease-responsivity to mechanical signals coincidence, or is there a biologic
connection? Herein, the capacity of mechanical signals to influence the fat and bone
phenotype is examined, not so much in terms of a direct mechanical impact on the resident
fat or bone cell population, but by biasing decision-making of their common progenitor, the
mesenchymal stem cell (MSC) (Fig. 1).

Mesenchymal Stem Cells (MSCs)
The number of studies examining the therapeutic potential of MSCs has rapidly increased in
recent years (18–20), yet the understanding of what drives decision-making in these
precursors remains in the nascent stages. Contributing to this difficulty, both specific in situ
and ex vivo identification of what actually constitutes the MSC population is a source of
heated debate, as delineating stem cells from their neighbors has proven frustrating based on
current histological and cytometric methods. To exemplify this point, a combination of
markers that distinguish both MSCs and hematopoietic stem cells (HSCs) from 99.9% of the
other cells residing in the bone marrow yields a population estimated, at best, at 3% purity
(21).

For MSCs, the expression of specific, exclusive surface markers has yet to be well-
characterized, and features that categorically define MSCs have not been reported. While
cell populations obtained in the current isolation methods are essentially heterogeneous
mixtures of several cell types, they are certainly enriched for MSCs (22). Not surprisingly,
the question of what factors determine whether a MSC differentiates into either an
adipocyte, osteoblast, or other cell type remains unknown, and is the focus of intense
research. Of the various signals capable of inducing differentiation, various biochemical
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factors have been reported that typically drive the differentiation towards one cell type, with
a parallel suppression of another pathway. Recent work on the differentiation of osteoblasts
from MSCs highlights the finding that cell fate decisions can be markedly influenced by
activating a very small subset of a particular signaling network, rather than requiring large
shifts of gene expression (23). Thus, even subtle changes in the MSC milieu can have
dramatic effects on the phenotype.

Mechanical Stimulation to Induce Cell Differentiation
In addition to the biochemical factors capable of altering stem cell fate, mechanical signals
are becoming recognized as playing key and interacting roles in defining the differentiation
pathway. Mechanotransduction is the process by which cells transduce physical force-
induced signals into biochemical responses, resulting in altered gene expression, cell
function and morphology, and extracellular matrix production. This adaptive process is
critical for mediating appropriate responses to acclimate and accommodate functional
loading in many tissues (24). The basis for mechanotransduction is that cells form networks,
which are connected by intercellular adhesion complexes such as adherens junctions, gap
junctions or by local paracrine signals (25). These networks are capable of acting as
integrated units to transduce various stimuli, such as mechanical loading, into coordinated
tissue responses. Not surprisingly, to transduce the mechanical signal requires the interaction
of many signaling pathways (25), and due to the complexity, this is still not well-
characterized. Various pathways such as cell-extracellular matrix interactions, cytokines,
second messenger transmission through gap junctions and intercellular adhesive junctions
enable cells to transmit mechanical signals to other cells (26).

As an example of cellular mechanotransduction in lineage determination, the role of
mechanical forces in the control of adipogenesis has been linked to changes in extracellular
matrix (ECM) proteins and matrix metalloproteinases (27). ECM components play an
important role in regulating adipose tissue remodeling during adipocyte differentiation, by
transducing cellular signals that can alter adipocyte gene transcription during adipogenesis
(28). Examples of the importance of mechanical signals to bone and bone marrow are
highlighted in the following section.

Mechanotransduction in Bone and Bone Marrow
Underlying the essence of mechanotransduction is the necessity that certain cells in the
biological environment can act as receptors, which in turn can generate secondary, cytogenic
signals that are aimed at target cells. How mechanical factors are sensed in the bone
comprises a large body of active research, with many differing hypotheses regarding the
mechanosensory element (29;30). The prevailing view is that osteocytes are responsible for
detecting mechanical signals, and respond by signaling the effector cells, osteoblasts and
osteoclasts, that modulate actual bone formation and resorption (31;32). Yet it is not
“simply” the bone matrix, and the cells entombed within the material, that are subject to
mechanical loading. Equally complex is the multitude of forces generated in the bone
marrow cavity in response to mechanical loading, and includes strain, pressure, fluid flow,
electric potentials and acceleration (32). Even as mechanotransduction by cells in the
musculoskeletal system has long been a focus of research and technology development, the
ability of mechanical signals to affect and alter the differentiation patterns of MSCs was
only recently noted (33;34).

Enmeshed within the bone/bone marrow interaction is the concept of a stem cell “niche”, a
specialized location where pluripotent cells reside and are regulated. The thought that the
marrow cavity represents such a niche has gained traction in recent years, with the endosteal
bone surface providing the primary location for marrow regeneration (35;36). Several
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models utilizing transgenic mice have shown that increases in hematopoiesis occur in
conjunction with increases in both osteoblasts and trabecular bone, as an increased niche
size is necessary to provide support for the increase in HSCs (37). Within this niche, it has
been suggested that osteoblasts can play a direct role in stem cell function by providing
support for HSCs (38). Thus, the ability of mechanical forces to effect changes in the bone
and bone marrow are interlinked, and perhaps the responsiveness of bone to mechanical
signals might provide insight into the ability of cells in the bone marrow to respond.

Absence of Mechanical Signals Promotes the Fat Phenotype
The site-specific bone wasting that occurs in aging, bed rest, and other sedentary lifestyles is
paralleled by a reduction in the mechanical signals that reflect the dynamics of muscle
contractibility (39). It is certainly possible that the absence of a mechanical signal to drive
MSCs towards bone and/or muscle formation (40) is permissive to differentiating MSCs to
preferentially commit, or default, to another lineage, such as adipocytes. Magnetic resonance
imaging (MRI) provides evidence of this association showing that post-menopausal women
have twice as much fat in the marrow as pre-menopausal women, and that women with low
bone density have more bone marrow fat than women with normal bone density (41). The
aging process is commonly associated with a redistribution of fat, away from the peripheral
depots and into organs (i.e. bone marrow, liver, and muscle). The causality of the inverse
bone/marrow fat connection is not clear, and certainly other factors such as age, activity
level, and hormone status all contribute to the response. Importantly, application of
mechanical signals to MSCs in culture can effectively suppress their differentiation towards
adipogenesis, even in culture conditions that markedly prefer a “fat” pathway (42). Thus,
while mechanical signals provide key anabolic signals to bone formation, it also appears that
the absence of these signals encourages adipogenesis. Indeed, this is precisely the case with
some isolated stem cells in vitro, where in the absence of an exogenously applied
differentiation signal (i.e., chemical or biophysical stimuli), the default pathway is to form
lipid-laden adipocytes. (43)

Mechanical Signals Driving the Bone Phenotype
Existing models have led to the hypothesis that amplitude-mediated parameters of exercise,
such as strain magnitude (44) or strain energy density (45) are critical to defining the bone
response and the resulting skeletal morphology (46). There is strong evidence that the
resident bone cells recognize and respond to mechanically generated signals that stimulate
the osteoblast/osteocyte network (47) and inhibit osteoclastogenesis (48), a process mediated
by tissue strain (49), enhanced fluid flow (50), intramedullary pressure (51) and/or
streaming potentials (52). Importantly, each of these physical parameters is more strongly
correlated to the dynamics of the load environment (impact (53), strain rate (54) and strain
gradients (55)) than the actual strain magnitude generated by the load.

It has been demonstrated that mechanically-mediated bone remodeling exhibits a strong
interdependence of strain magnitude and cycle number, such that bone mass can be
enhanced either with a few large strain events (56), or 100,000’s of extremely low
magnitude strain signals (57), leading to a paradigm that bone structure depends as much on
the persistent, low magnitude strains that arise during predominant activities (i.e., standing),
as it does on the rarer strain events generated during strenuous activity (58). While the
ability of large strain events to drive bone formation has been recognized for some time,
more recent studies have indicated that very small mechanical signals, induced at relatively
high frequency (cycles per second), can also promote bone formation (59).

Adult female sheep subject to 1 year of brief (20 min·d−1), low magnitude (0.3g, where 1g is
earth’s gravitational field), high frequency (30Hz, where 3Hz is the stride frequency for an
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elite runner), mechanical signals realized a 34.2% increase in trabecular density in the
proximal femur, as compared to control (CON) (p<0.01) (59). Significant increases were
noted in both trabecular volume (+32%; p<0.04) and number (+45%; p<0.01), paralleled by
decreased spacing (−36%; p=0.02) (60). µCT reconstructions of the distal femoral condyle
(61) showed a 10.6% greater bone mineral content (BMC) in experimental animals (p<0.05)
due to an 8.3% increase in trabeculae (p<0.01). Strength to failure was 26.7% greater
(p<0.05), indicating an improvement in bone quality over controls. These results suggest an
overall adaptation that increases bone stiffness and achieves a more uniform stress
distribution (62), providing evidence that, similar to our findings with cortical bone (63;64),
strain gradients may be critical in driving bone’s adaptation to mechanical signals. With this
drive towards bone formation, and the recruitment of osteoblasts from the progenitor pool, it
was realized that, if there is a finite number of mesenchymal precursors, there could be a
parallel inhibition of adipose formation.

Mechanical Signals Suppress the Fat Phenotype
Considering the importance of exercise in stemming both osteoporosis and obesity, and the
anabolic response of the skeletal system to low magnitude mechanical signals (LMMS), we
hypothesized that mechanical signals anabolic to bone would, in parallel, curb the
production of fat in the growing animal. Forty 7-week-old C57BL/6J (B6) male mice on a
normal chow diet were randomized into LMMS or CON groups. For 15 weeks, LMMS mice
were subject to 15min·d−1 of a 90Hz, 0.4gp-p signal. At 12 weeks (19 weeks of age) in vivo
CT showed that torsal fat volume of LMMS mice was 27.4% lower than in CON (p=0.008;
Fig. 2). In contrast, total lean volume of the torso (total volume minus fat and bone) was
similar between LMMS and CON (p=0.7), while lean volume in ratio of body mass was
5.0% greater in LMMS than CON (p=0.01).

Fat volume data derived from in vivo CT calculated fat volume was validated against the
weights of the dissected fat pads harvested post-sacrifice at 15 weeks (22 weeks of age), in
which LMMS mice had 26.2% less epididymal (p=0.01) and 20.8% less subcutaneous
(p=0.02) fat than CON mice. Weekly food intake of LMMS (26.4g·w−1 ± 2.1) and CON
(27.0g·w−1 ± 2.1) were essentially identical. Lack of correlations between food intake and
either total body mass (r2 = 0.15; p = 0.7) or fat volume (r2=0.008; p = 0.6) indicated that the
lower adiposity in LMMS could not be explained by differences in food consumption.

Although there was a slight decrease in fasting glucose and insulin levels in the LMMS
group (p=0.07), this result was not significant, suggesting that the applied LMMS did not
affect liver or beta cell function. At sacrifice, triglycerides (TG, total mg in tissue) in
adipose tissue of LMMS mice were 21.1% (p=0.3) lower than CON, and 39.1% lower in the
liver (p=0.02). Total non-esterified free fatty acids (NEFA, total mmol in tissue) in adipose
tissue were 37.2% lower in LMMS mice as compared to CON (p=0.01), while NEFA in the
liver of LMMS mice was 42.6% lower (p=0.02). Numerous studies have demonstrated that
dyslipidemia can have major negative impacts on metabolism, growth and development – in
particular, intra-tissue lipid accumulation and intra-myocellular lipids have been closely
linked to insulin resistance – and is considered the best predictor for future development of
insulin resistance (65). The ability to suppress adipose tissue expansion by mechanical
signals, as well as to limit NEFA and triglyceride production, suggests a mechanical
approach to limit obesity may also improve dyslipidemia.
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LMMS Suppresses Adiposity by Influencing Differentiation Pathways of
MSCs

Bone marrow transplants studies where GFP-labeled bone marrow was injected into wild
type recipient mice were used to determine if the suppression of adiposity in the growing
animal by LMMS was achieved by redirecting bone marrow-derived MSCs away from an
adipocytic fate (66). This was approached utilizing heterozygous B6 green fluorescent
protein positive (GFP+) mice as bone marrow donors (67). Upon implantation into a wild
type mouse (16 wild type male B6 mice, 8 weeks of age), the fate of the bone marrow stem
cells can be monitored by the production of GFP. One week post-transplant, half the GFP+

recipient mice were subjected to LMMS (as above), and half served as sham-loaded CON.
Sacrificed at 6 weeks, the epididymal fat pad and marrow from the tibia were harvested for
examination. FACS analysis was performed on the epididymal fat pad and bone marrow
isolated from GFP+ recipients using the GFP fluorescence signal. To help identify MSCs
within the overall bone marrow cell population, cells were labeled with stem cell antigen-1
(Sca-1), an antigen typically associated with hematopoietic cells, but more recently shown to
be expressed on cells with adipogenic, chondrogenic and osteogenic potential (68).

The ratio of GFP+ adipocytes in the epididymal fat pad to GFP+ MSCs was shown to be
19% lower (p<0.02) in animals subjected to LMMS relative to controls (CON: 101.2% ±
16.1%; LMMS 82.0% ± 11.1%). Data indicating reduced commitment to adipocytes were
supported by the weight of the epididymal fat pad following 6 weeks of LMMS, which was
12.2% less than CON (p<0.03).

The brevity of the signal, and that loading inherent to LMMS is low relative even to normal
weight bearing, suggests that the inhibition of adipogenesis was achieved by pathways other
than an exercise-mediated increase in metabolic activity. Taken in consideration with the
data from these GFP+ recipient mice, these results indicate that the reduced adiposity
resulting from LMMS is achieved through influencing the differentiation of adipocyte
precursors, MSCs, deterring them from the adipocytic lineage, and if paralleled by an
increase in lean mass (see below), driving them to a musculoskeletal fate. Despite a similar
diet, LMMS curbed fat gain by “simply” avoiding the creation of adipocytes.

If the processes of fat and bone formation are inversely coupled, it should be apparent by
evaluating both systems simultaneously; improving musculoskeletal quality could also
directly serve as an effective measure to prevent the onset of obesity (65;69). To assess the
efficacy of the LMMS signal in response to a model of obesity (diet-induced), young adult
(7-week C57/BL6) male mice were fed a high fat diet (45 kcal % fat) and randomized into
either CON or LMMS-treated groups. At 12 weeks (19 weeks of age), neither body mass
gains nor the average weekly food intake differed significantly between the LMMS or CON
groups (CON weighed 32.9g ± 4.2g, while LMMS mice were 6.8% lighter at 30.7g ± 2.1g;
p=0.15). TG and NEFA measured in plasma, epididymal adipose tissue, and liver were all
lower in LMMS as compared to CON. Liver TG levels decreased by 25.6% (p=0.19) in
LMMS animals, and were paralleled by a 33.0% (p=0.022) decrease in NEFA levels.
Reflecting the decreased adipose burden, fasting serum levels of adipokines were decreased
in LMMS. Compared to CON, circulating levels of leptin were decreased by 35.3%
(p=0.05), adiponectin by 21.8% (p=0.009), and resistin by 15.8% (p=0.26). Circulating
serum osteopontin (−7.5%, p=0.41) and osteocalcin (−14.6%, p=0.22) levels were not
significantly affected by the mechanical signals. Thus, as the signal prevents the formation
of adipocytes, the overall metabolic state of the animal appears improved as an outcome of
LMMS stimulation.
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Based on newly developed methodology allowing the spatial delineation of adipose tissue
into subcutaneous and visceral fat depots in small animals using low-resolution micro-
computed tomography (Fig. 3) (70;71), it was further seen that visceral adiposity was more
sensitive than subcutaneous adiposity to the mechanical signal. (72) Total abdominal
adiposity was segregated as either subcutaneous or visceral adipose tissue (SAT or VAT).
LMMS animals had 28.5% (p=0.021) less VAT by volume, and 19.0% (p=0.016) less SAT
by calculated volume. As obesity researchers have long since noted that the metabolic risk
tends to be greater than, and show higher correlation to visceral adiposity than subcutaneous
adiposity (73;74), the specific reduction of visceral fat in these animals is encouraging.

It is important to note with these studies that the real power of this mechanical signal,
particularly in regard to biasing MSC differentiation, will occur when there is the greatest
population of cells “available” to be influenced. Thus, it could be readily argued that that the
most influential time for mechanical loading strategies is while the subject is young, and
thus the most relevant target should be in the prevention, rather than treatment, of bone loss
and prevention of adiposity rather than treatment of obesity.

As evidenced by the suppressed influence of exercise to elicit large changes in BMD of
older populations, we suspect that the real power of a method to affect MSC differentiation
is during periods where there is a ready supply of undifferentiated cells in a “neutral”
environment to be acted upon. Older individuals with significant amounts of marrow fat are
caught in a positive feedback loop of sorts, where the fat that is present secretes factors into
the local environment that inhibit bone, while promoting the development of additional fat.
That said, it is also conceivable that “all” interventions, physically or chemically based, are
more influential in the young than the old for this very reason: that there are more cells to
impact during the early than the late years. Of course, if the mechanical (or other)
interventions ultimately slow the progression of bone marrow towards fat, perhaps
pharmacological interventions will also be more successful, as the potential cell populations
available to respond will be much greater.

Mechanical Signals at the Cellular Level
While matrix strains two orders of magnitude below peak functional strains in bone are
known to be anabolic (75;76), the means by which such LMMS cause bone formation is not
clear. Matrix strains of less than 0.001% perturb cells by less than one angstrom, a
deformation, per se, but one that is unlikely to be recognized by cells (77;78). Rather,
byproducts of matrix deformation, (i.e., fluid flow-induced shear stresses, streaming
potentials, fluid drag on pericellular processes) or perhaps enhanced nutrient transport, may
contribute to a cell’s responsiveness to mechanical signals (32;79).

Instead of a matrix deformation-dependent pathway for mechanotransduction, the frequency
sensitivity of bone’s adaptive system points towards a more fundamental pathway by which
physical signals interact with cells in tissue. The physical acceleration of a cell may present
a generic signal that can transmit physical challenges by altering intracellular cytoskeletal
relationships (80–82). As such, it is possible that the mechanism by which MSCs sense
mechanical signals is based on acceleration and deceleration of the cell, rather than
distortion of the substrate. Therefore, cells may be responsive to LMMS despite the virtual
absence of matrix strain (83–85) through accelerations/decelerations of the cell provoking
out of phase motion with respect to the tethered nucleus, sufficient to activate a biologic
response (85).

In addition, other physical signals such as pulsed electromagnetic fields or low intensity
pulsed ultrasound (LIPUS) may exert similar effects on bone and fat tissue, based on similar
mechanotransduction pathways. There is a great deal of preclinical and clinical evidence that

Luu et al. Page 7

Bonekey Osteovision. Author manuscript; available in PMC 2012 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ultrasound in general, and the signal used in the sonic accelerated fracture healing signal
(SAFHS) device in particular, will accelerate fracture repair, catalyzing an array of
hypotheses regarding the cascade of events and the effector cells. Potentially, the MSC
population, which is recruited to the fracture site, could be further stimulated to proliferate
and differentiate by LIPUS.

Transducing a Mechanical Signal into a Biologic Response
Evidence that chemical and physical signals influence MSC differentiation toward the
osteoblastic over the adipocytic lineage is growing. For example, MSC entry into the
adipocyte lineage is advanced by expression and action of PPARγ, which, when absent or
present at single copy allows enhanced osteogenesis (86). PPARγ stimulation of MSCs
towards adipogenic lineage selection is achieved, at least partly, through inhibition of
canonical Wnt signaling (87), a pathway critically important to MSC entry into the
osteogenic lineage and expansion of the osteoprogenitor pool (88). The reciprocal effect of
β-catenin signaling on osteoblast/adipocyte lineage selection by MSCs has also been shown,
where a high bone mass phenotype due to a constitutively activated Lrp5/Wnt signal is
accompanied by decreased marrow fat (89). When considered in the context of bone’s
sensitivity to mechanical signals, factors such as strain and shear are known to enhance bone
cell function by accelerating differentiation along the osteogenic pathway (90), promoting
osteoblast activity (91), and also by suppressing bone resorption (49). Indeed, activation and
nuclear translocation of β-catenin (92;93) occurs within minutes of the introduction of
mechanical signals. β-catenin activation is dependent upon strain’s ability to inactivate
GSK3β, allowing for an increase in the β-catenin pool that can be activated (94), resulting in
increased osteoblast differentiation and a greater commitment to the musculoskeletal system.

The critical role of β-catenin in early selection of the osteoprogenitor lineage, and the ability
of mechanical signals to activate cellular β-catenin, begs the question of whether mechanical
signals could influence osteoblast differentiation at very early stages. Primary marrow stem
cells subjected to daily bouts of mechanical strain express bone lineage markers at double
the rate as those devoid of deformation (42). A progressive decrease in both active and total
β-catenin accompanied the adipogenic transformation of MSCs, but mechanical signals
completely prevented such decreases in β-catenin and in doing so limited expression of both
PPARγ and adiponectin (95). In agreement with the effects of strain on differentiated bone
cells (94), mechanical preservation of the cellular β-catenin levels depends at least partially
on the ability of strain to inactivate GSK3β. It has been proposed that in the “disuse” – or
unstrained – condition, active GSK3β is permissive to adipogenesis by targeting β-catenin
for degradation, and that mechanical factors, through different proximal effectors, primarily
target β-catenin to regulate MSC lineage decisions biased towards osteoblastogenesis over
adipogenesis.

In addition to the effects of mechanical signals on cellular differentiation, we have shown
that the LMMS signal also increases the number of stem cell progenitors in vivo. Flow
cytometric measurements of total bone marrow from our animal studies (both for normal
chow diet and high fat diet animals) yielded the surprising result that 6 weeks of LMMS
treatment significantly increased the overall stem cell population (including HSCs and
MSCs) relative to controls. LMMS-stimulated animals demonstrated a 37.2% (p=0.024)
increase in stem cell numbers relative to sham CON animals based on expression of Sca-1.
MSCs, as represented by cells positive for both Sca-1 and Preadipocyte factor-1 (Pref-1),
represented a much smaller percentage of the total cells. Identified in this manner, LMMS-
treated animals had a 46.1% (p=0.022) increase in specifically MSCs relative to CON (Fig.
4). Although the mechanism is still under study, this mechanical modulation of stem cell

Luu et al. Page 8

Bonekey Osteovision. Author manuscript; available in PMC 2012 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



populations and potentially their proliferative capacity represents a unique therapeutic target
for tissue regenerative therapy.

Summary
Clearly, the interaction between bone and fat is complex, and highly contingent on a
multitude of factors including genetic, biochemical, and mechanical inputs that coordinate
the overall interaction and resulting phenotype. The phenotypic response, as measured by
amount of adipose and bone tissue, as well as the biochemical changes measured in the
various organs including the liver, are surely resultant from more complex interactions than
those currently explored. In particular, the role of signals originating from other cellular
sources with specificity for MSCs, adipocytes and/or osteoblasts needs to be further
assessed, both as contributors to the LMMS response and as outcomes to the stimulation.
However, what is clear is that the increasing prevalence of, and costs associated with,
osteoporosis and obesity represent major health concerns. Further, for obese individuals the
excess adiposity actually puts them at risk for developing a multitude of additional diseases
such as diabetes, cardiovascular disease and cancer. Pharmacological treatments for both
have met with limited success, and carry several associated risks. Rather than simply
exploring treatments for the compromised state once the disease has developed, it is
generally accepted that primary prevention should be emphasized. With this, fundamental
understanding of some of the interacting factors that drive the differential development of
stem cells down either a bone or fat lineage holds promise for the discovery of new
prevention and treatment strategies (Fig. 5). The ability of mechanical signals to influence
MSC differentiation and to subvert MSC adipocyte formation towards the formation of more
healthful tissues (i.e., bone or muscle) holds the promise to constrain overall adipose gain
through developmental, rather than metabolic pathways.
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Fig. 1.
Schematic representation of the lineage potential of multipotent mesenchymal stem cells
(MSCs) in the bone marrow. The development of mature cells such as adipocytes and
osteoblasts proceeds through intermediate “progenitor” cells, preosteoblasts and
preadipocytes. Although not thoroughly characterized, several combinations of surface
markers have been utilized to enrich for MSCs, as well as committed but not yet fully
differentiated precursor cells. The processes of commitment and differentiation are complex
and also not well-characterized, but certain transcription factors such as Runx2 (bone) and
PPARγ (fat) have been shown to promote the differentiation of one cell type and suppress
the differentiation of the other.
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Fig. 2.
A longitudinal (top) and transverse (bottom) µCT reconstruction of abdominal fat content
through the torso of a control (left) and LMMS (right) B6 mouse, performed in vivo at 12
weeks using CT signal parameters specifically sensitive to fat. Following 12 weeks of daily,
15 minute LMMS, fat within the torso was 27% lower than in controls. Reproduced from
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17879-84.
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Fig. 3.
(a). Reconstructed µCT scan of a mouse in which the skeleton can be readily identified to
define the region of interest. (b). The majority of the adipose tissue in the mouse is localized
in the abdominal region, as the thoracic cavity and legs show lower prevalence of low
density (fat) tissue. (c). To quantify fat volume in these different body compartments, tissues
of different density were segregated and categorized as either fat (yellow), lean mass (red),
or bone (white). (d). Representative images from three different animals with either low,
intermediate, or high adiposity, with the threshold specific to fat applied. Subcutaneous fat is
shown in gray, visceral fat in red. Reproduced from Med Eng Phys. 2009 Jan;31(1):34–41
with permission of Elsevier Limited.
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Fig. 4.
Representative density dot plots from flow cytometry experiments indicate the ability of
LMMS to increase the number of stem cells in general (Sca-1 single positive, top
quadrants), and MSCs specifically (both Sca-1 and Pref-1 positive, top right quadrant). Red,
high cell density; blue, low cell density. Compared with control animals (A), LMMS
increase the number of stem cells in the bone marrow of LMMS animals (B). The actual
increase in total bone marrow-derived stem cell number (C) and MSC number (D) was
calculated as percent positive cells/total cells for the cell fraction showing highest intensity
staining. Reproduced from J Bone Miner Res 2009;24;50–61 with permission of the
American Society for Bone and Mineral Research.
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Fig. 5.
The ability of LMMS to increase bone while decreasing fat is tied to the common progenitor
stem cell from which osteoblasts and adipocytes differentiate. While an inverse relationship
between bone and fat tissues has been observed previously, we now show that LMMS
increase bone differentiation by decreasing fat differentiation, creating an inverse
developmental link between obesity and osteoporosis. Shown in reconstructed µCT images,
an LMMS-treated animal (right) is shown in comparison to an age-matched sham CON
(left). Light gray represents bone, transparent gray represents subcutaneous fat, red
represents visceral fat. Increasing fat in an animal tends to accumulate in the visceral (as
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opposed to subcutaneous) compartment and increases the circumference of the animal
without significant impact to skeletal length.
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