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We investigated the role of microtubules in rhesus rhadinovirus (RRV) nuclear trafficking in rhesus fibroblasts. Intact microtu-
bules and microtubule dynamics are required for RRV trafficking to perinuclear regions. RRV trafficking was reduced by an in-
hibitor of the dynein motor and overexpression of dynamitin. Furthermore, RRV particles are colocalized with microtubules
and dynein proteins. These results highlight the important roles of microtubules and dynein-dynactin complexes in the trans-
port of RRV particles to nuclei during primary infection.

Kaposi’s sarcoma-associated herpesvirus (KSHV) is a gamma-
herpesvirus associated with Kaposi’s sarcoma (KS), primary

effusion lymphoma (PEL), and multicentric Castleman’s disease
(MCD) (17). Because KSHV infection is restricted to humans,
animal models are useful for studying KSHV and its related ma-
lignancies (34). Rhesus rhadinovirus (RRV) is closely related to
KSHV (1, 7, 41). RRV naturally infects rhesus macaques and in-
duces PEL- and MCD-like malignancies under experimental con-
ditions (29, 36, 48).

RRV virions enter rhesus fibroblasts (RFs) primarily
through clathrin-mediated endocytosis (49). Following inter-
nalization, the incoming virions have to pass the diffusional
barrier in the cytoplasm in order to deliver viral genomes to
nuclei (15, 43). Because of the crowded space in cytoplasm and
unspecific targeting, viral trafficking is unlikely to rely on ran-
dom diffusion (11, 38). Consequently, viruses often hijack cel-
lular cytoplasmic transport machineries to achieve fast trans-
port to nuclei during early steps of infection. In particular, a
number of viruses exploit microtubules and microtubule-
dependent motors to move from cell peripheries to nuclei (2, 5,
8, 24, 25, 27, 35, 42–45). KSHV infection is mediated by either
actin or microtubule cytoskeletons, depending on the cell types
(16, 32). Whether RRV entry and trafficking are also regulated
by cytoskeletons remains unclear.

Microtubules are highly dynamic and unstable polymers un-
dergoing rapid cycles of polymerization/depolymerization (18,
21, 30). We examined the role of microtubules in RRV trafficking
following their depolymerization or stabilization with chemical
inhibitors. A red fluorescent protein (RFP)-labeled RRV (RRV-
RFP) was used to directly track RRV trafficking (49). Nocodazole
depolymerizes microtubules by binding to �-tubulin and pre-
venting formation of interchain bonds (19). RF cells pretreated
with nocodazole (Sigma, St. Louis, MO) for 1 h were inoculated
with RRV-RFP for 4 h in the presence of nocodazole. As shown in
Fig. 1A, microtubules were effectively disrupted by nocodazole.
The extent of microtubule disruption was intensified with increas-
ing concentrations of nocodazole. Compared with the untreated
control, nocodazole significantly inhibited RRV trafficking to the
nuclei (Fig. 1B). The numbers of RRV particles docked at each
nucleus significantly decreased in a dose-dependent fashion fol-
lowing nocodazole treatment (Fig. 1C and D).

Paclitaxel (originally named “taxol”) binds to �-tubulin N ter-

minus and promotes formation of highly stable microtubules
(28). At 1 and 5 �g/ml, paclitaxel (Sigma) slightly increased the
assembly of microtubules (Fig. 1E). When paclitaxel was used at
25 �g/ml, strong fibers were observed. Treatment with paclitaxel
significantly inhibited RRV trafficking (Fig. 1F). The numbers of
RRV particles docked at each nucleus were reduced in a dose-
dependent manner following paclitaxel treatment (Fig. 1G and
H). We also measured the viability of the cells using a propidium
iodide (PI) labeling kit (Roche, Nutley, NJ). Neither nocodazole
nor paclitaxel treatment increased the number of PI-positive cells
(data no shown). Together, these results indicate that both intact
microtubule networks and microtubule dynamics are required for
RRV trafficking to perinuclear regions, and RRV particles might
be transported along microtubules during trafficking.

Microtubules are formed with relatively stable minus ends em-
anating from microtubule organization center (MTOC) near nu-
clei and dynamic plus ends facing toward the cell membrane (33).
Cargo movement on microtubules is bidirectional and is driven
by microtubule-associated molecular motors, such as dynein and
kinesin (18). Kinesin is a plus-end-directed microtubule motor,
which moves cargos toward the cellular periphery, while dynein is
minus end directed and is responsible for transporting cargos to
MTOC. Both motors are ATPases, and their movements are pow-
ered by ATP hydrolysis (10, 14, 20, 23).

Cytoplasmic dynein is a protein complex responsible for ret-
rograde movements of intracellular cargos and organelles, includ-
ing viruses, along microtubules that serve as cellular conveyor
belts. Dynein is composed of 4 major components: the heavy
chain, the intermediate chain, the light intermediate chain, and
the light chain (22, 46). Since dynein is involved in the trafficking
of many viruses (6, 9, 13, 43, 47), we determined whether RRV
transport along microtubules is dynein dependent. We used
erythro-9-[3-(2-hydroxynonyl)]adenine (EHNA) (Sigma), an in-
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FIG 1 Disruption of microtubule networks with nocodazole or inhibition of microtubule dynamics with paclitaxel blocks RRV trafficking in RFs. (A and E)
Effect of nocodazole and paclitaxel on microtubule networks. RFs were treated with increasing concentrations of nocodazole (A) or paclitaxel (E) and stained
with an anti-�-tubulin antibody. Microtubule networks were disrupted by nocodazole but stabilized by paclitaxel. (B and F) Effect of nocodazole and paclitaxel

Zhang et al.

600 jvi.asm.org Journal of Virology

http://jvi.asm.org


hibitor of dynein ATPase, to disrupt the function of cytoplasmic
dynein (37). EHNA strongly inhibited RRV intracellular traffick-
ing (Fig. 2A). The numbers of RRV particles docked at nuclei were
significantly reduced in a dose-dependent fashion in EHNA-

treated cells (Fig. 2B and C). In contrast, inhibition of kinesin with
5-adenylyl-imidodiphosphate (AMP-PNP) (Sigma) had no effect
on RRV trafficking (Fig. 2D to F). These results suggest that RRV
trafficking in RFs is kinesin independent. Both EHNA and AMP-

on RRV trafficking. RFs were treated with nocodazole (B) or paclitaxel (F) for 1 h and inoculated with RRV in the presence of inhibitors, fixed at 4 h postinfection (hpi),
and stained for RRV particles (red) and nuclei (blue). (C and G) Quantification of the total numbers of RRV particles docked at each nucleus following treatment with
nocodazole (C) or paclitaxel (G). Images were acquired for 6 to 10 fields per coverslip to allow counting of 50 nuclei. The t test, analysis of variance, and/or Mann-Whitney
tests were performed using SigmaPlot 11.0 (Systat Software, Inc., San Jose, CA) with P � 0.05 considered significant. The numbers of RRV particles docking on a nucleus
upon drug or control treatment are presented in box and whisker plots showing the median values (middle dark lines in the boxes) and the upper 75% and lower 25%
quartiles (top and bottom box lines of the open boxes). The top and bottom short lines showed the ranges of the data, and outliers were represented as black dots. All
experiments were performed in triplicates. (D and H) Distribution of nuclei with different numbers of RRV particles following treatment with nocodazole (D) or paclitaxel (H).

FIG 2 Inhibition of dynein but not kinesin blocks RRV trafficking. (A and D) RFs were pretreated with dynein inhibitor EHNA (A) or kinesin inhibitor
AMP-PNP (D) for 1 h prior to infection with RRV for 4 h and stained for RRV particles (red) and nuclei (blue). (B and E) Quantification of the total numbers
of RRV particles docked at each nucleus following treatment with EHNA (B) or AMP-PNP (E). (C and F) Distribution of nuclei with different numbers of RRV
particles following treatment with EHNA (C) or AMP-PNP (F). Experiments and data analyses were carried out as described in the legend to Fig. 1.
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PNP had minimal toxicity as fewer than 2% of the cells were PI
positive following the treatments (data not shown).

The interaction between the cytoplasmic dynein complex and
cargo is often mediated by a receptor protein complex called “dy-
nactin.” Dynactin consists of several subunits, including
p150Glued, Arp1, capping protein, p62, Arp11, and dynamitin
(40). Overexpression of dynamitin leads to dissociation of the
subunits from the dynein-dynactin complex, resulting in disrup-
tion of dynein motor function (4). We used a dynamitin-green
fluorescent protein (GFP) expression plasmid to confirm the role
of the dynein-dynactin complex in RRV transport. Compared to
untransfected cells, cells transfected with the vector control had
no change in the numbers of RRV particles docked at nuclei. In
contrast, cells transfected with dynamitin-GFP had significantly
lower numbers of RRV particles docked at the nuclei (Fig. 3),
indicating that intact dynein-dynactin complex is essential for

RRV trafficking. Compared to vector-transfected cells, cells trans-
fected with dynamitin-GFP had fewer cells having a clear and
single MTOC; however, the presence of a focus MTOC did not
appear to affect RRV infection and trafficking (data not shown).

Our results so far indicate that RRV trafficking in RFs is microtu-
bule and dynein dependent. To confirm these observations, we de-
termined the association of RRV particles with microtubules. RFs
infected with RRV-RFP were stained for RRV particles and
�-tubulin. Z-stacks were acquired and used to generate three-
dimensional (3D) projection XY overview images and the corre-
sponding cross-sectional XZ images. 3D analysis indicated that more
than 80% of incoming RRV particles were colocalized with microtu-
bules (Fig. 4A; see Movie S1 in the supplemental material). A magni-
fied 3D projection image of the individual RRV particles further il-
lustrated their association with microtubules (insets in Fig. 4A).

Next, we determined the association of RRV particles with dy-

FIG 3 RRV trafficking is mediated by dynein. (A) Overexpression of dynamitin-GFP but not the enhanced green fluorescent protein (EGFP) vector efficiently
inhibited RRV trafficking in RFs. Cells were transiently transfected with a dynamitin-GFP construct or a vector control. At 36 h posttransfection, cells were
inoculated with RRV for 4 h and stained for RRV particles with a rabbit anti-RFP antibody. (B) Quantification of the total numbers of RRV particles docked at
each nucleus. Images were acquired for 6 to 10 fields per coverslip to allow counting of 50 nuclei. Data were analyzed as described in the legend to Fig. 1. (C)
Distribution of nuclei with different numbers of RRV particles.

Zhang et al.

602 jvi.asm.org Journal of Virology

http://jvi.asm.org


nein. By staining both RRV particles and dynein heavy chain, we
observed colocalization of RRV particles with dynein (Fig. 4B; see
Movie S2 in the supplemental material). These results further con-
firm that intact microtubule networks and microtubule dynamics
are required for RRV trafficking to nuclei.

Our results show that RRV trafficking is regulated by both
microtubules and dynein. Two models can explain these re-
sults. In the first model, low pH triggers the release of nucleo-
capsids from endosomes to cytosol. The nucleocapsids bind to
microtubules through interactions with the dynein-dynactin
complexes to hitch a ride along the microtubules. In the second
model, virion-containing endosomes are transported along
microtubules to the perinuclear regions before releasing the
nucleocapsids. If the first model were correct, it would be im-
portant to identify the components of interactions between the
dynein-dynactin complexes and virions. Almost all subunits in
the dynein-dynactin complexes have the potential to directly
bind to cargos, with the exception of dynein heavy chain (15).

For example, herpes simplex virus 1 nucleocapsids bind to mi-
crotubules through the interaction between VP26 and dynein
light chains RP3 and Tctex1 (12). In the second model, the
interactions of the virions with microtubules and associated
motor proteins are not required. Instead, the virion-containing
endosomes directly bind to and travel along microtubules un-
der the control of molecular motors such as dynein or kinesin
prior to the release of nucleocapsids into the cytoplasm at low
pH (3, 26, 31). In this case, examination of the colocalization of
virions with intracellular endosomal markers and microtu-
bules in real-time could define the precise stage and time and
space of their association and release during virus entry.

Actin cytoskeletons are often involved in the trafficking of vi-
ruses. The involvement of either actin or microtubule cytoskel-
etons in KSHV trafficking is cell type dependent (16, 32, 39). In
primary human umbilical vein endothelial cells, KSHV trafficking
requires actin dynamics (16). However, in human fibroblasts,
KSHV trafficking is mediated by microtubules (32). While we

FIG 4 Colocalization of RRV particles with microtubules and the dynein motor proteins. (A) Colocalization of RRV particles with microtubules. RFs infected
with RRV at a multiplicity of infection (MOI) of 50 were fixed at 1 h postinfection (hpi) and stained for RRV particles (red), microtubule cytoskeletons (green),
and nuclei (blue). Z-stack images were acquired by Olympus FV1000 scanning confocal microscopy. Both the Z-projection and the XZ section showed
colocalization of RRV particles with microtubules (yellow; left panel). Regions delineated by rectangle inserts were shown at higher magnifications in adjacent
panels. 3D contoured images (middle and right panels) were generated with AutoQuant deconvolution (Media Cybernetics, Inc., Bethesda, MD) software and
Imaris 3D image analysis software (Bitplane, Zurich, Switzerland). Corresponding XZ sections were visualized by rotating on the x axis to observe the location
of virus particles. Movie S1 in the supplemental material corresponds to Fig. 4A. (B) Colocalization of RRV particles with dynein. RFs were infected with RRV
for 1 h and stained for RRV particles and dynein heavy chain. Images were processed for 3D colocalization analysis. Regions delineated by rectangles are shown
at higher magnifications in adjacent panels. Movie S2 in the supplemental material corresponds to Fig. 4B.
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have shown that microtubules mediate RRV trafficking in RFs, it is
possible that actin cytoskeletons are also involved in this process.
Further investigations are required to determine the role of actin
cytoskeletons in RRV trafficking.
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