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Abstract

Mammalian oocytes undergo an asymmetrical first meiotic division, extruding half of their chromosomes in a small polar
body to preserve maternal resources for embryonic development. To divide asymmetrically, mammalian oocytes relocate
chromosomes from the center of the cell to the cortex, but little is known about the underlying mechanisms. Here, we show
that upon the elevation of intracellular cAMP level, mouse oocytes produced two daughter cells with similar sizes. This
symmetrical cell division could be rescued by the inhibition of PKA, a cAMP-dependent protein kinase. Live cell imaging
revealed that a symmetrically localized cleavage furrow resulted in symmetrical cell division. Detailed analyses
demonstrated that symmetrically localized cleavage furrows were caused by the inappropriate central positioning of
chromosome clusters at anaphase onset, indicating that chromosome cluster migration was impaired. Notably, high
intracellular cAMP reduced myosin II activity, and the microinjection of phospho-myosin II antibody into the oocytes
impeded chromosome migration and promoted symmetrical cell division. Our results support the hypothesis that cAMP
plays a role in regulating asymmetrical cell division by modulating myosin II activity during mouse oocyte meiosis I,
providing a novel insight into the regulation of female gamete formation in mammals.
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Introduction

Asymmetrical cell division generates unequally sized daughter

cells that are destined to acquire different fates. This plays

important roles in multiple biological processes [1,2,3,4,5,6]. In

female mammals, after an exquisite process of homologous

chromosome pairing and synapsis, immature oocytes are blocked

at prophase I of meiosis with a morphologically visible nucleus,

called the germinal vesicle (GV). As the oocyte resumes meiosis in

response to hormonal stimulation, it undergoes a process of

meiotic maturation to complete meiosis I with an extreme form of

asymmetrical cell division. This produces the secondary oocyte

and the much smaller first polar body [7,8,9,10]. The secondary

oocyte is arrested at metaphase II until fertilization or partheno-

genetic activation drives meiotic spindle II to rotate 90 degrees to

facilitate the extrusion of the second polar body [11]. During both

meiosis I and II, cortical migration and asymmetrical positioning

of the meiotic spindle is crucial for the asymmetry of the division

[10,12].

During the meiotic maturation process in mouse oocytes, the

meiotic spindle assembles around the site where germinal vesicle

breakdown (GVBD) takes place. After assembly, the spindle

migrates towards the nearest site on the cortex before anaphase

onset [13]. During mitosis, the spindle also migrates to the

appropriate location before the initiation of anaphase. Dynamic

astral microtubules and cytoplasmic dynein, a minus-end-directed

motor protein whose asymmetrical activation and localization is

regulated by cortical polarity factors, are proposed to play

prominent role in mitotic spindle migration [14]. However, astral

microtubules cannot play a similar role in directing metaphase I

spindle migration in mammalian oocytes because oocytes lack

conventional centrosomes and do not exhibit prominent astral

microtubules on spindle poles [15]. In fact, several studies have

demonstrated that actin is involved in this spindle migration; for

example, the metaphase I spindle remains centrally positioned in

oocytes treated with actin polymerization inhibitors [12,16,17] or

in oocytes lacking the actin nucleator formin-2 [17,18,19]. It has

also been demonstrated that activated myosin helps to propel the

microtubule spindle to the cortex by pulling on the cytoplasmic

actin network that extends from the spindle poles to the cortex

[19,20,21,22,23,24]. These recent studies suggested that myosin

pulling on an actin filament network is important for spindle

positioning and anchoring to the cortex in mammalian oocytes.

When chromosomes come close to the cortex after spindle

migration, they induce cortical differentiation and restrict the

position of the cleavage furrow, which is generated by the

enrichment of actin filaments and the reduction of microvilli

[8,9,25]. Furrow ingression is initiated shortly after the formation

of cleavage furrow. Notably, the pulling force of myosin on the

contractile ring is essential for furrow ingression [22,26,27,28].

Therefore, both of the two critical events of meiotic maturation,

spindle migration and furrow ingression, are associated with
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myosin. However, it is not clear how myosin itself is modulated in

mouse oocytes during meiotic maturation.

cAMP, a cyclic nucleotide, plays a key role in regulating female

gamete maturation in mammals and some invertebrates [29,30].

Specifically, meiotic resumption of oocytes is triggered by a

decrease in intracellular cAMP levels [31,32,33]. The spontaneous

meiotic resumption of denuded oocytes can be reversibly pre-

vented by incubation with membrane-permeable cAMP analogs,

cAMP phosphodiesterase (PDE) inhibitors or adenylate cyclase

activators, such as dibutyryl cAMP (dbcAMP), 3-isobutyl-1-

methylxanthine (IBMX) and forskolin [34,35]. For example, it

has been shown that intracellular cAMP in oocytes decreases

within 2 hours of the removal of IBMX, and that this decrease

promotes the commitment to resuming meiosis I [36,37]. Because

of the roles cAMP plays in meiotic arrest, cAMP analogs, PDE

inhibitors and adenylate cyclase activators are widely employed to

sustain high intracellular cAMP levels in order to inhibit GVBD in

oocyte cultures in vitro. However, it remains unclear whether

cAMP plays other roles in the meiotic maturation process of

mouse oocytes.

In this study, intracellular cAMP was elevated in mouse oocytes

using the chemicals mentioned above (i.e., IBMX, dbcAMP and

forskolin) to explore the possible roles of cAMP during meiotic

maturation. A large proportion of these chemically treated oocytes

underwent symmetrical cell divisions and generated two daughter

oocytes with similar sizes. Detailed analyses showed that chro-

mosomes were located in the center of the cell, resulting in a

symmetrical cleavage furrow, and thus, symmetrical cell division.

Live cell imaging revealed that the migration of the chromosome

cluster towards the cortex was significantly suppressed in treated

oocytes. Notably, the activity of myosin II (a cAMP-PKA pathway

downstream molecule) was impaired in the oocytes with elevated

cAMP. Oocytes that had been microinjected with an antibody

against activated myosin II also mimicked the severely impaired

chromosome migration and symmetrical division caused by

elevated cAMP levels. These data provide evidence that cAMP

plays a role in regulating chromosome migration by modulating

the activity of myosin II, affecting the localization of the cleavage

furrow, and thus, asymmetrical cell division in meiosis I.

Results

Elevated intracellular cAMP gives rise to abnormal
cytokinesis in mouse oocytes

IBMX and dbcAMP have been widely used in in vitro culture

of oocytes to inhibit GVBD by maintaining high levels of

intracellular cAMP [38,39,40,41,42]. In the present study, oocytes

were treated for 24 hours with 0.2 mM IBMX or 0.3 mM

dbcAMP. As shown in Figure 1 and movie S1, 83.4562.28% of

oocytes in the control group completed meiosis I by producing a

large secondary oocyte and a tiny first polar body (‘‘1Pb’’ type);

10.5163.56% remained at the germinal vesicle (GV)-stage (‘‘GV’’

type); and 6.0461.36% underwent germinal vesicle breakdown

(GVBD) but did not produce daughter cells (‘‘1-cell’’ type). No

oocytes in the control group produced two daughter cells of similar

sizes (‘‘2-cell’’ type) (Fig. 1A). However, in oocytes treated with

IBMX or dbcAMP, the percentages of ‘‘1Pb’’ type decreased

significantly (37.7067.22% in IBMX and 36.5868.46% in

dbcAMP groups). The percentage of ‘‘GV’’ type oocytes changed

only slightly (4.7661.63% in IBMX and 17.2067.89% in

dbcAMP groups). Notably, the proportion of ‘‘1-cell’’ type oocytes

(31.1964.52% in IBMX and 29.1363.84% in dbcAMP

groups) and ‘‘2-cell’’ type oocytes (27.8661.49% in IBMX and

Figure 1. Incubation with dbcAMP or IBMX disrupts asymmet-
ric division in meiosis I in mouse oocytes. Denuded mouse
oocytes were cultured in DMSO control medium for 16 hours (control
group), or in M16 medium containing 0.3 mM dbcAMP or 0.2 mM IBMX
for 24 hours, followed by 16 hours of culture in M16 medium (dbcAMP
and IBMX group). (A) Representative images of different oocyte
phenotypes after incubation. GV designates oocytes remaining in the
GV stage; 1Pb designates mature eggs that extruded a first polar body
in the first meiotic division; 1-cell designates oocytes that displayed
only one cell; 2-cell designates oocytes that produced two daughter
cells of similar sizes in the first meiotic division. Arrowheads are used to
indicate 2-cell oocytes. Scale Bar: 100 mm. (B) Comparison of cell
division types between oocytes treated with or without IBMX or
dbcAMP. Data are the mean 6 SEM from 3 independent experiments. P
values were calculated with a 264 x2-test. N: number of cells analyzed.
doi:10.1371/journal.pone.0029735.g001
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17.0967.02% in dbcAMP groups) increased significantly in

treated groups (Fig. 1A).

The frequency of ‘‘2-cell’’ type oocytes increased in a time-

dependent manner after dbcAMP or IBMX treatment (Fig. S1A).

To rule out the possibility that these cytokinetic disorders were

secondary to delayed GVBD, we performed a set of drug treat-

ment experiments on post-GVBD oocytes. To further confirm that

the abnormal cytokinetic results were directly caused by cAMP

and its downstream factors, we treated post-GVBD oocytes with a

adenylate cyclase activator, forskolin [43,44,45], and a PKA

inhibitor, H-89 [46,47], to determine their effects on cytokinesis.

As shown in Figure 2, all three cAMP-elevating chemicals

promoted both the ‘‘2-cell’’ and ‘‘1-cell’’ type division patterns.

We also found that H-89 could rescue the symmetrical division

Figure 2. High intracellular cAMP disrupts asymmetric division in post-GVBD oocytes, and H-89 rescues this effect on asymmetric
division. Denuded mouse oocytes at the GV stage were collected and cultured in M16 medium for 90 min. Then, oocytes that had undergone GVBD
were transferred into DMSO control medium or medium supplemented with different drugs and cultured for 16 hours. (A) Representative images of
oocytes after a 16 hour incubation. Arrowheads indicate 2-cell oocytes. Scale bar: 100 mm. (B) Oocyte division results after 16 hours incubation. Data
are the mean 6SEM from 3 independent experiments. ** P,0.01, 263 x2-test, compared to concurrent control.
doi:10.1371/journal.pone.0029735.g002
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induced by cAMP-elevating chemicals and decrease the frequency

of ‘‘1-cell’’ type divisions (Fig. 2B). IBMX/dbcAMP treatment of

post-GVBD oocytes also increased the frequencies of both ‘‘2-cell’’

and ‘‘1-cell’’ divisions in a dose-dependent manner (Figs. S1B–C).

Altogether, these observations indicate that high intracellular

cAMP perturbs the asymmetrical division of primary oocytes.

Altered cleavage furrow positioning and ingression
perturb the asymmetrical division of primary oocytes

To investigate how increased intracellular cAMP perturbs the

asymmetrical division of primary oocytes, we carried out time-

lapse imaging experiments on post-GVBD oocytes receiving

0.6 mM dbcAMP or1.0 mM IBMX treatment to track the process

of meiosis I, with special attention to the localization of the

cleavage furrow. To quantitatively describe the localization of the

cleavage furrow, the vertical distance from the far-end cortex to

the cleavage furrow was measured in both daughter cells, and the

ratio of the longer distance over the shorter distance (DL/DS) was

used as a measure of furrow localization (Fig. 3). For those oocytes

formed more than one furrow (Movie S5), we measured the

relevant data of the furrows that regressed later than the others.

For the 55 control oocytes examined, the average ratio was

3.0860.13 with a maximum value of 5.34 and a minimum value

of 1.68. Based on these data, cleavage furrow localization was

defined ‘‘abnormal’’ if the DL/DS ratio was less than 1.68.

According to the DL/DS ratios, 44% and 40.4% of dbcAMP- and

IBMX-treated oocytes displayed abnormally positioned cleavage

furrows. Notably, all ‘‘2-cell’’ type divisions (10/50 in dbcAMP

and 7/52 in IBMX groups) were attributed to the ingression of a

centrally localized cleavage furrow (DL/DS ,1.1, Fig. 3B, Movie

S2). Similar results were obtained in oocytes that had been treated

with lower concentrations of the two chemicals (0.3 mM dbcAMP,

0.2 mM IBMX) at the GV stage (Fig. S2). Treatment of post-

GVBD oocytes with lower chemical concentrations also produced

abnormally localized cleavage furrows— over 10% oocytes

displayed more symmetrically localized cleavage furrow (Fig. S3),

indicating that cAMP drugs at the relatively lower concentration

can also affect the normal division. Taken together, these results

demonstrate that dbcAMP and IBMX cause cleavage furrows to

position centrally, leading to symmetrical oocyte divisions and the

subsequent production of ‘‘2-cell’’ type oocytes.

As shown in Figure 3C–D and Movies S3, S4, the ‘‘1-cell’’ type

division was caused by cleavage furrow regression. Treatment of

oocytes with dbcAMP or IBMX significantly increased the

frequency of furrow regression (22% and 17.3% in the dbcAMP

IBMX groups, compared to 7.5% of controls). Notably, the

regression took place at similar frequencies in oocytes with

normally and abnormally localized cleavage furrows (Fig. 3E, Fig.

S3B). Interestingly, we also observed two oocytes, one from the

dbcAMP group and the other from IBMX group, that formed two

simultaneous cleavage furrows; in these oocytes, the two furrows

both regressed sequentially (Movie S5). Taken together, our data

indicate that dbcAMP and IBMX treatments increased the

likelihood of cleavage furrow regression.

To investigate possible causes of furrow regression, we

monitored chromosome movements in both control and treated

groups. Frequencies of lagging chromosomes in treated groups

were slightly higher than in the control group (Figure 3E), but the

differences were not statistically significant (data not shown). In

both control and treated groups, lagging chromosomes occurred

more frequently in anaphase/telophase than in prometaphase

(Figure 3E). No furrow regression was observed when chromo-

somes lagged only at prometaphse (Figure 3E); besides, over 75%

of furrow regression were concomitant with anaphase/telophase

chromosome lagging (3/4, 8/11 and 9/9 in control, dbcAMP and

IBMX group) (Figure 3C–E, Movies S3, S4, S5), indicating that

lagging chromosomes at anaphase/telophase contributes to furrow

regression. Interestingly, in the control group, most oocytes with

anaphase/telophase lagging chromosomes were able to complete

cytokinesis, while in treated groups, about half of the oocytes with

anaphase/telophase lagging chromosomes underwent furrow

regression (9/19 in dbcAMP group and 9/17 in IBMX group)

(Figure 3E). These results indicate that the treatement of cAMP

elevating drugs increased the incidence of the lagging-chromo-

some-related furrow regression.

Abnormal cleavage furrow positioning is associated with
mislocalized chromosome clusters at anaphase onset

Previous studies have highlighted the important role of the

chromosome cluster (or meiotic spindle) during polar body

formation [8,9,12,48]. Chromosome cluster migration toward

the cortex induces cortical differentiation, and thus restricts

cleavage furrow position. Cortical differentiation is characterized

by actin filament (F-actin) enrichment and microvilli reduction on

the cortex [8,9,25,48]. To test whether cortical differentiation was

affected by high levels of intracellular cAMP, the F-actin

distribution was investigated at the initiation of anaphase or

cytokinesis by staining with TRITC-conjugated phalloidin. At the

onset of anaphase I, ‘‘F-actin caps’’ were observed in 53.33% and

61.90% of oocytes receiving IBMX and dbcAMP treatment,

respectively, but in 82.60% of controls (Fig. 4A). No F-actin cap

was observed in oocytes with more centrally located chromosomes,

either in the control or treated groups (Fig. 4A, row 2). At the

beginning of cytokinesis, an F-actin cap remained visible in all 15

control oocytes, but in only 4/18 IBMX-treated oocytes and 2/11

dbcAMP-treated oocytes. No ‘‘F-actin cap’’ was observed in cells

that divided symmetrically after treatment (Fig. 4B). These results

not only confirmed that cortical differentiation depends on the

location of the chromosome cluster but also indicates that

intracellular cAMP may affect chromosome cluster positioning

in oocytes.

Because cortical differentiation is dependent on the localization

of chromosome clusters and restricts the position of the cleavage

furrow, it is possible that mislocalization of the cleavage furrow

could be caused by abnormal chromosome position in oocytes. To

test this hypothesis, we investigated the relationship between

chromosome cluster positioning and furrow localization using live

cell imaging. To quantify the localization of the chromosome

cluster, the shortest distance between the chromosome cluster and

the cortex was measured at movie initiation (D0) and anaphase

onset (DA), and the DA/D0 ratio was used as a measurement of

chromosome position at anaphase onset. In the 55 control oocytes,

DA/D0 averaged 0.4660.01 with a maximum of 0.70 and a

minimum of 0.27. Based on the range of DA/D0 ratios from the

control group, we defined chromosome cluster positioning as

‘‘abnormal’’ if the DA/D0 ratio was greater than 0.70. Abnormally

localized chromosome clusters were observed in 44% and 40.4%

of oocytes treated with dbcAMP and IBMX, respectively (Fig. 3E).

The average ratio of DA/D0 was significantly greater in the treated

oocytes (0.8360.04 in dbcAMP and 0.7960.05 in IBMX groups)

than in the controls (0.5660.03) (Fig. 5C). Notably, all cells with

abnormally localized cleavage furrows displayed abnormal

chromosome cluster positioning at anaphase onset, and no

centrally localized cleavage furrows were observed in oocytes with

normally positioned chromosome clusters (Fig. 3E). Therefore, our

data demonstrate that the formation of abnormally localized

cleavage furrows is dependent on the abnormal positioning of

chromosome clusters at anaphase onset in mouse oocytes.

A Novel Role of cAMP in Oocyte Meiosis I
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Figure 3. IBMX and dbcAMP treatment perturbed oocyte cytokinesis. Denuded mouse oocytes at the GV stage were collected and cultured
in M16 medium for 90 min. Then, oocytes that had undergone GVBD were transferred into DMSO control medium or medium supplemented with
0.6 mM dbcAMP or 1.0 mM IBMX for subsequent live cell imaging. Representative live cell images were collected from oocytes undergoing normal
cytokinesis with furrow abscission (A), symmetric cytokinesis with furrow abscission (B), asymmetric cytokinesis with furrow regression (C) and
symmetric cytokinesis with furrow regression (D). White arrowheads: prometaphase lagging chromosome. Yellow arrowheads: anaphase/telophase
lagging chromosome. The DL and DS in (A), (B), (C) and (D) represent the vertical distances from the far-end cortex to the cleavage furrow in the larger
and smaller daughter cells, respectively. Time points (hours:minutes) indicate the time elapsed from the beginning of imaging. Chromosomes were
stained with Hoechst 33342, shown in red. Corresponding movies are provided in the supplemental materials. (E) Analysis of cell division in the
control, dbcAMP and IBMX group, with each row representing a single oocyte division. Colour indicates whether the cell showed the presence (red)

A Novel Role of cAMP in Oocyte Meiosis I
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Impeded chromosome migration leads to abnormally
positioned chromosome cluster at anaphase onset

To investigate how the abnormal positioning of chromosomes

occurred, we utilized live cell imaging techniques to monitor the

movement of chromosome clusters during meiosis I. To quantify

the movement of the chromosome cluster, the shortest distance

from chromosome cluster to the cortex was measured at movie

initiation (D0) and every hour thereafter (Dt) until the oocytes

examined initiated anaphase (Fig. 5B). The ratio Dt/D0 was used

as a parameter for chromosome cluster localization, and the

change of the Dt/D0 was used as an indicator of the movement of

chromosome clusters during prometaphase I. In the control group,

Dt/D0 began to decrease at 3 hours after movie initiation and

continued to decrease until anaphase onset, when the chromosome

clusters were observed to be adjacent to the cortex (Fig. 5A). In

contrast, Dt/D0 did not change significantly in either IBMX- or

dbcAMP-treated oocytes during the first 8 hours after the

beginning of imaging (Fig. 5B), and the chromosome clusters

remained almost completely still (Fig. 3C, 3D and 5A). At the

initiation of anaphase, DA/D0 was significantly greater in the

treated oocytes (0.8360.04 in dbcAMP and 0.7960.05 in IBMX)

than in the controls (0.5660.03) (Fig. 5C). The suppression of

chromosome migration was also observed in oocytes that had been

treated with lower concentrations of the two chemicals (0.3 mM

dbcAMP, 0.2 mM IBMX) at the GV stage (Fig. S4) Thus, these

data indicate that the abnormal localization of chromosomes at

anaphase onset can be attributed to the impaired cortex-ward

migration of the chromosome cluster.

Decreased myosin II activity impedes chromosome
cluster migration in oocytes

It has been reported that activated myosin II is a downstream

effector of the cAMP-PKA pathway [49,50,51] and plays

important roles in the regulation of spindle migration and

asymmetrical division in meiosis I [19,20,21,22,23,24]. Because

myosin II is activated by the phosphorylation of its regulatory light

chain (MLC) at Ser19/Thr18 [52], we carried out immunostain-

ing of phospho(Ser19)-myosin II to detect myosin II activity in

control, IBMX-treated and dbcAMP-treated oocytes. The results

showed that all control oocytes (20/20) displayed strong staining

for phosphorylated MLC around the chromosome cluster,

whereas only 61.5% (24/39) and 58.8% (10/17) of IBMX- and

dbcAMP-treated oocytes did so (Fig. 6A), indicating that myosin II

activity around the chromosomes was reduced in IBMX- and

dbcAMP-treated oocytes. Immunoblotting against phospho(-

Ser19)-myosin II presented further evidence that treatment with

dbcAMP or IBMX decreased myosin II activity in mouse oocytes

(Fig. 6B).

To determine whether decreased myosin activity could affect

the asymmetry of cytokinesis, we microinjected phospho-MLC II

(Ser19) antibodies into oocytes to inhibit myosin activity. The

results showed that 7.1762.98% of anti-phospho-MLC microin-

jected oocytes underwent 2-cell type divisions, whereas no 2-cell

divisions were observed in control oocytes that were microinjected

with donkey anti-mouse IgG (Figs. 7A and B). We also used live

cell imaging to follow chromosome movement in these oocytes. In

control oocytes, chromosomes migrated towards the cortex

beginning shortly after GVBD. In contrast, chromosomes

remained centrally located in the anti-phospho-MLC microinject-

ed oocytes (Fig. 7C). Similarly, treatment with blebbistatin, an

inhibitor of myosin II [53], generated symmetrical divisions in 17

out of 43 oocytes (Fig. S5). Therefore, the reduced myosin activity

in oocytes impaired chromosome migration and thus contributed

to the symmetrical cytokinesis of meiosis I.

Discussion

This study showed that the administration of chemicals that

elevate intracellular cAMP caused some oocytes to undergo

symmetrical cell division during meiosis I, thus producing two

daughter cells with similar sizes. This symmetrical cell division

could be rescued by inhibiting PKA, a cAMP-dependent protein

kinase. Detailed analyses showed that the impaired migration

of chromosome clusters led to the symmetrical localization of

or absence (green) of abnormal anaphase chromosome localization (A.C.L., first column) or abnormal cleavage furrow localization (A.F.L., second
column); occurrence of cleavage furrow regression (red) or not (green) (C.F.R., third column); presence (red) or absence (green) of lagging
chromosomes at prometaphase (P, fourth column) or anaphase/telophase (A/T, fifth column). The proportion of red in each column is included
below. Chromosome localization was deemed ‘‘abnormal’’ if the ratio of the shortest chromosome-cortex distance at anaphase initiation (DA) over
that at movie initiation (DO) was greater than 0.68 (DA/D0 .0.68). Furrow localization was deemed ‘‘abnormal’’ if DL/DS was less than 1.70 (DL/DS

,1.70).
doi:10.1371/journal.pone.0029735.g003

Figure 4. Cortical specification in the primary oocyte is
dependent on chromosome cluster position. Representative
images of oocytes before cytokinesis initiation (A) and after cytokinesis
completion (B). Denuded oocytes were incubated in the presence of
0.3 mM dbcAMP or 0.2 mM IBMX for 24 hours, followed by incubation
in M16 for 9 hours, or in control medium in the absence of dbcAMP or
IBMX for 10 hours, and subsequently fixed and co-stained with
Alexa594-phalloidin (red) and Hoechst 33342 (blue). Oocytes with
(row 1 in panel A) or without (row 2 in panel A) an ‘‘F-actin cap’’ were
observed in both the control group and treatment groups. Arrowheads
indicate ‘‘F-actin cap’’ localization. Scale bar: 20 mm.
doi:10.1371/journal.pone.0029735.g004
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cleavage furrows and thus to symmetrical cell division. The activity

of myosin II, downstream of the cAMP-PKA pathway, was

decreased when intracellular cAMP was elevated and microinjec-

tion of oocytes with antibodies against activated myosin II severely

impeded chromosome migration toward the cortex during meiosis

I and resulted in symmetrical divisions. These results provide

evidence that cAMP plays a role in modulating chromosome

migration by regulating myosin II activity, subsequently affecting

cleavage furrow localization and the asymmetrical division of

meiosis I in oocytes.

An interesting and novel discovery in this study is that oocytes

with elevated intracellular cAMP do not position the meiotic

spindle adjacent to the cortex, which is required to form a polar

body. During the maturation process in these oocytes, the centrally

formed metaphase I spindle failed to translocate to the cortex,

remaining in the center of the oocyte until anaphase onset (Fig. 5,

Movie S2). During mitosis, the spindle needs to migrate to the

appropriate location before anaphase initiation, a process that is

proposed to rely on dynamic astral microtubules and the minus-

end-directed MT motor protein dynein [14]. However, astral

Figure 5. IBMX and dbcAMP treatment of post-GVBD oocytes disturbed chromosome migration. Denuded GV stage oocytes were first
cultured in M16 medium for 90 min; after GVBD, the oocytes were transferred into DMSO control medium or medium supplemented with 0.6 mM
dbcAMP or 1.0 mM IBMX for live cell imaging. Chromosome movement was tracked during meiosis I. (A) Representative time-lapse images of
chromosome movement from imaging initiation to anaphase onset. Time from imaging initiation is shown (hours:minutes). Red: DNA. (B) Green dots
indicate the position of the chromosome cluster. The shortest distance between the chromosomes and the cortex was measured at each time point
(Dt) and divided by the distance to the cortex at the beginning of the experiment (D0). Dt/D0 was used as an indicator of chromosome movement
and plotted against time. Panel (C) shows the relative position of the chromosome cluster at anaphase onset, as DA/D0. DA is the shortest distance
between the chromosomes and the cortex at anaphase initiation. ** P,0.01, Student’s t-test, compared to concurrent control. N: number of cells
analyzed.
doi:10.1371/journal.pone.0029735.g005
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microtubules are unlikely to play a similar role in directing

metaphase I spindle migration in mammalian oocytes, due to the

lack of conventional centrosomes and prominent astral microtu-

bules on spindle poles [15]. Studies of the actin cytoskeleton have

demonstrated that actin is involved in spindle positioning during

meiosis I; the metaphase I spindle remains centrally positioned in

oocytes that have been treated with actin polymerization inhibitors

[12,16,17] or lack the actin polymerization activator formin-2

[17,18,19]. However, the actin cytoskeleton appeared normal in

oocytes with elevated cAMP, in that all treated oocytes initiated

furrow formation (Fig. 3, Fig. S2, Fig. S3), which is known to be

driven by the actomyosin-based contractile ring [54], though not

all oocytes accomplished abscission of the cleavage furrow (Fig. 3,

Fig. S2, Fig. S3). Clearly, increased cAMP did not grossly distort

the actin cytoskeleton, although asymmetrical spindle positioning

did not occur.

A recent study by Schuh and Ellenberg [24] suggests that

myosin pulling on actin contributes to the motion of the meiotic

spindle. They propose that activated myosin helps to propel the

microtubule spindle to the cortex by pulling on the cytoplasmic

actin network that extends from the spindle poles to the cortex.

Their model, which has been experimentally verified, predicts that

spindles will move end-on to the nearest cortex and that motion

will speed up as the spindle nears the cortex. Consistent with this

role for myosin, we observed activated, phosphorylated myosin

light chain protein concentrated adjacent to the meiotic spindle in

untreated oocytes (Fig. 6A). Additionally, microinjection of

phospho-myosin II antibody into oocytes reduced the rate of

chromosome migration and promoted symmetrical cell division

(Fig. 7). Similarly, we observed decreased myosin activity in

oocytes with elevated cAMP (Fig. 6). Our study confirms the

important role of myosin for spindle positioning and anchoring to

the cortex in mammalian oocytes.

In meiosis I mouse oocytes, when chromosomes come close to

the cortex after spindle migration during meiosis I, they induce

cortical differentiation which restricts the position of the cleavage

furrow; this differentiation is reflected by enrichment of actin

filaments and reduction of microvilli [8,9,10,25,55]. Consistently,

our results of F-actin immunostaining demonstrated that cortical

differentiation occurred when the chromosomes approached the

oocyte cortex (Fig. 4). It is also worth noting that no F-actin cap

was observed in oocytes with more centrally positioned chromo-

somes. Live cell imaging analysis revealed that all oocytes were

able to initiate cleavage furrow formation, regardless of whether

chromosomes were centrally or cortically positioned (Fig. 3, Fig.

S2, Fig. S3). This suggests that cortical differentiation has a

positive, but nonessential, role in furrow formation. Our obser-

vations are inconsistent with the proposal that furrow induction by

the spindle midzone in the oocyte is distance-dependent, as

suggested by Wang et al. [56]. In that study, centrally formed

spindle midzones induced neither membrane furrow nor cytoki-

nesis, while subcortical spindle midzones induced cortical

furrowing and polar body extrusion after egg activation [56].

This inconsistency suggests a probable difference in the mecha-

nisms regulating furrow formation in meiosis I and meiosis II in

mammalian oocytes.

Most of the furrow regression incidents, which were more

frequent in treated oocytes than in control oocytes, were con-

comitant with anaphase/telophase lagging chromosome (Figs. 1B

and 3C–E). One mechanism that could explain this finding is the

Figure 6. IBMX and dbcAMP treatment decreased myosin II activity in mouse oocytes. (A) Immunostaining of control (CTRL) oocytes
cultured in control medium for 10 hours and oocytes cultured in M16 medium for 10 hours after a 20 hour incubation with 0.3 mM dbcAMP or
0.2 mM IBMX. Oocytes were stained with anti-phospho-MLC2 (Ser19) antibody (myosin II, green) and Hoechst 33342 (DNA, blue). (B) The myosin II
activities of control or treated oocytes were assayed. Extracts from control, dbcAMP-treated and IBMX-treated oocytes were immunoblotted with
antibodies against phospho-MLC2 or b actin. Each lane represents a protein sample derived from 300 oocytes.
doi:10.1371/journal.pone.0029735.g006
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presence of chromatin in the cleavage furrow, which has been

reported to interfere with the completion of cytokinesis [57,58].

Another interesting discovery is that oocytes with anaphase/

telophase lagging chromosomes in treated groups displayed much

higher rates of cleavage furrow regression than those oocytes in

control group (Figure 3E). Given that the myosin activity was

reduced in treated oocytes (Fig. 6) and the pulling force of myosin

on the contractile ring is essential for cytokinesis completion

[22,26,27,28,59], it is reasonable to suggest that the higher rates of

furrow regression in treated oocytes are attributable to the reduced

myosin II activity. Besides, it seems that furrow regression and

furrow localization are independent (Fig. 3, Fig. S2, Fig. S3),which

is consistent with previous studies [60].

The chemicals used in this study elevate intracellular cAMP by

acting as a cAMP mimic (dbcAMP) [61], by preventing the PDE-

dependent degradation of cAMP (IBMX) [62], or by over-

activating adenylyl cyclase (forskolin). The PKA inhibitor H-89

was able to inhibit the symmetrical division induced by high

intracellular cAMP (Fig. 2), indicating that cAMP regulates

asymmetrical division during oocyte meiosis I by activating

cAMP-dependent PKA. This is inconsistent with work by Wang

et al. in Xenopus, which suggested that PKA activity is restrictive

only up to GVBD [63]. The later stages of oocyte maturation,

including formation of the metaphase I spindle, homolog

separation (anaphase), emission of the first polar body and

formation of metaphase II spindle, are not sensitive to PKA

activation [63]. One likely explanation is the species difference —

the cAMP-PKA regulation pathway may not be identical in

rodents and Xenopus, and mice may thus be more susceptible to

cAMP-induced PKA activation. Newhall et al. proposed in 2006

that type II PKA translocated from the cytosol [64,65,66] to

mitochondria to ensure GVBD initiation [67]. Given that the

knockout mice used by Newhall et al. were not completely infertile

[67], and that soluble (cytosolic) type I PKA is present in rodent

oocytes [68], we speculate that the cAMP may have activated type

I PKA in the post-GVBD oocytes in our study. Increased PKA

activity could attenuate RhoA activation and thus reduce Rho-

kinase activity, which is responsible for myosin II regulatory light

chain activation [69,70,71]. Additionally, activated PKA phos-

phorylates MLCK (Myosin Light Chain Kinase), thereby reducing

its activity and leading to decreased myosin activity [72].

Consistent with these theories, we observed reduced myosin

activity in drug treated oocytes (Fig. 6). Additionally, specifically

suppressed myosin activity in oocytes significantly reduced the

chromosome migration rate (Fig. 7). This suggests that as a

downstream effector of cAMP-PKA pathway, myosin II is

responsible for chromosome migration defects and subsequent

abnormalities in cytokinesis, indicating that the cAMP-PKA

pathway might be involved in the regulation of asymmetrical

chromosome positioning.

In summary, this study indicates that the cAMP-PKA pathway

contributes to the regulation of chromosome subcortical location

and cytokinesis in mouse oocyte meiosis I. The regulatory role of

the cAMP-PKA pathway in chromosome migration and cleavage

furrow ingression may be exerted through myosin II. This is the

first time that the cAMP-PKA pathway has been reported to

regulate not only meiosis resumption but also other meiotic events

in mouse oocytes. Moreover, it has recently been proposed that

reduced non-muscle myosin activity could cause cytokinesis failure

and multipolar mitosis in cultured somatic cells [22]. Therefore,

the mitotic and meiotic side effects of chemicals that are widely

used to activate the cAMP-PKA pathway for therapeutic or

agricultural purposes should be considered carefully prior to their

use.

Materials and Methods

ICR female mice aged 3–6 weeks were purchased from the

National Rodent Laboratory Animal Center (Shanghai Branch,

China). The collection and using of mice oocytes were under the

approval of the Institutional Review Board at University of

Science and Technology of China, the approval ID: UST-

CAU201000004.

Figure 7. Microinjection of oocytes with monoclonal anti-
phospho-myosin antibody facilitated abnormal cytokinesis in
meiosis I. (A) Representative images of oocytes taken 16 hours after
microinjection with DAM-488 2nd antibody (Control) and anti-phospho-
MLC2 (Ser19) antibody (P-myosin). The arrowhead indicates a
symmetrically dividing oocyte. Scale bar: 100 mm. (B) The frequency
of 1 Pb, GV, 1-cell and 2-cell type divisions in the Control and P-myosin
groups. The P value was calculated using a 264 x2-test. (C) The shortest
distance between chromosomes and the cortex was measured in 15
oocytes per group at GVBD (DGV) and hourly time points after GVBD
(Dt). Dt/DGV plotted against time was used as an indicator of
chromosome movement.
doi:10.1371/journal.pone.0029735.g007
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Chemicals
All chemicals used in this study were purchased from Sigma

Chemical Company (St. Louis, MO, USA) unless otherwise noted.

Stock solutions of IBMX (0.5 M), forskolin (10 mM) and H-89

(10 mg/ml) were dissolved in dimethyl sulfoxide (DMSO), stock

solution of dbcAMP (30 mM) were dissolved in distilled water. All

the stock solutions were stored at 220uC and diluted with culture

medium prior to use. In the cases of treatment on GV-stage

oocytes, the control group employed M16 medium with cor-

respondent DMSO concentration. In the cases of treatment on

post-GVBD oocytes, the DMSO concentration of the control

medium was at the highest level used in the different experimental

treatments.

Collection and culturing of denuded oocytes
Mice were sacrificed by cervical dislocation. Cumulus-oocyte

complex (COC) were released from antral follicles by puncturation

in M2 medium (Sigma-Aldrich, Cat. No. M7167). After being

pipetted repeatedly, cumulus cells were removed from COC. Only

denuded oocytes showing clear nuclear membrane (GV oocytes)

were collected. Oocytes were washed 3 times in M2 medium then

transferred into M16 medium (Sigma-Aldrich, Cat. No. M7292).

Oocytes were cultured in M16 medium covered by mineral oil

(Sigma-Aldrich, Cat. No. M8410), in a humidified atmosphere of

5% CO2 at 37uC. For post-GVBD treatment, oocytes were first

cultured in M16 medium for 90 min, then the oocytes which had

underwent GVBD were transferred into M16 medium with

IBMX/dbcAMP/forskolin/H-89 for following experiments. Be-

fore use, all the media were pre-equilibrated in an incubator with

5% CO2 and 100% humidity at 37uC.

Microinjection of denuded oocytes
Monoclonal antibody of phospho-myosin II light chain (Cell

Signaling Techonology, Cat. No. 3675) or donkey anti-mouse

antibody conjugated with Alexa Fluor 488 (Molecular Probes, Cat.

No. A21202) was diluted at 1:500 and microinjected into the

cytoplasm of GV oocytes with an Eppendorf TransferMan NK2

microinjector and borosilicate glass capillaries (World Orecision

Instruments, Cat. No. TW100F-6). The oocytes were maintained

in M2 medium during microinjection, then were cultured in M16

medium in a humidified atmosphere with 5% CO2 at 37uC.

Immunostaining
For phospho-myosin II staining, the oocytes were fixed with

3.7% paraformaldehyde in PBS for 1 hour at 30uC, and then

rinsed 3 times in blocking solution (1% BSA in PBS) followed by

permeabilization with 0.25% Triton X-100 in PBS for 10 minutes

at room temperature. Then, rabbit antibody against Ser19-

phospho myosin II light chain-2 (Cell Signaling Technology,

Cat. No. 3671) was applied at 1:100 for 1 hour at room

temperature. An Alexa Fluor 488 dye conjugated anti-rabbit

antibody (Molecular Probes, Cat. No. A21206) was used at 1:150

as the secondary antibody. Before the incubation in PBS

containing 5 mg/ml Hoechst 33342 for 10 minutes, oocytes were

rinsed 3 times in blocking solution (10 minutes each) to reduce

nonspecific binding. For F-actin staining, the oocytes were fixed

for 25 minutes in 4% paraformaldehyde in PBS, and then

permeabilized in PBS containing 0.1% Triton X-100 and 0.3%

BSA for 10 minutes. After the incubation for 2 hours in PBS

containing 0.01% Triton X-100, 0.03% BSA, and 5 U/ml

TRITC-phalloidin at room temperature (Sigma-Aldrich, Cat.

No. P1951), the oocytes were rinsed 3 times in PBS containing

0.01% Triton X-100 and 0.03% BSA, followed by an incubation

in PBS containing 5 mg/ml Hoechst 33342 for 10 minutes before

observation.

Immunoblotting analysis
Control oocytes were collected for lysates at 10 hours after

GVBD, so were those which had been incubated with dbcAMP or

IBMX for 20 hours. Western blotting was performed as previously

described [73]. Lysates were separated by SDS-PAGE and the

proteins were then transferred to nitrocellulose membranes

(Amersham Biosciences, Cat. No. RPR303D). The membranes

were then blocked in TBST (0.5% Tween-20 in TBS) containing

5% BSA for 1 hours, incubated with a rabbit anti-Ser19-phospho

myosin II light chain-2 antibody (Cell Signaling Technology, Cat.

No. 3671; 1:1000) or a mouse anti-beta actin antibody (Abcam,

Cat. No. Ab52; 1:1000) overnight at 4uC. Alkaline phosphatase

(AP)-conjugated anti-mouse IgG (Promega, Cat. No. S372B;

1:1000) or anti-rabbit IgG (Promega, Cat. No. S373B; 1:1000)

were used as secondary detection reagents. Phosphorylated myosin

II light chain-2 and beta-actin protein levels were evaluated by the

detection of activity of alkaline phosphatase using a Lumi-Phos kit

(Pierce Biotechnology, KJ1243353).

Live cell imaging and analysis
For live cell imaging, oocytes were collected and placed in M16

medium supplemented with 5 ng/ml Hoechst 33342 (Molecular

Probes) and chemicals in correspondent concentration on gridded

coverglass bottom dishes (MatTek, CatNo. P35G-1.5-7-C-grid).

The dishes were placed in a 16 cm610.8 cm61.8 cm chamber

with humidified 5% CO2 delivered into it. The chamber was

housed in a custom-made 37uC incubator attached with a

microscope.

Images at multiple locations on the coverglass were automat-

ically acquired using a Nikon TE2000E inverted microscope

equipped with a 206Nikon Plan Apo objective, a linearly-encoded

stage (Proscan, Prior), a Hamamatsu Orca-ER CCD camera and

NIS-Elements AR v3.0 software. Fluorescence illumination was

provided by a mercury-arc lamp with two neutral density filters

(for a total 128-fold reduction in intensity). Fluorescence and

differential interference contrast images were acquired every

15 minutes. The oocytes that entered mitosis at least 10 hours

before the end of imaging were analyzed for chromosome cluster

dynamics. Only the oocytes that entered anaphase with clearly

visible chromosome clusters and cleavage furrows were analyzed

for anaphase chromosome-cortex distance and furrow positioning.

Statistics
The number of oocytes used for each experiment is indicated in

the figure legends. Unless otherwise specified, data were collected

from three independently replicated experiments and presented as

the mean 6 SEM. Statistical significance was assessed by means of

two-tailed Student’s t-test or 264 chi-square test. In all cases,

P,0.05 was deemed significant.

Supporting Information

Figure S1 Disturbance of meiosis I induced by dbcAMP
and IBMX is time- and dose-dependent. (A) Denuded

mouse oocytes were cultured in M16 medium containing 0.3 mM

dbcAMP or 0.2 mM IBMX for different lengths of time. The

frequency of ‘‘2-cell’’ divisions (oocytes produced two daughter

cells of similar sizes) increased with increased duration of dbcAMP

or IBMX treatment. (B) and (C) The frequency of 2-cell and 1-cell

divisions increased with increasing concentration of IBMX or

dbcAMP. Denuded mouse oocytes were cultured in M16 medium

A Novel Role of cAMP in Oocyte Meiosis I

PLoS ONE | www.plosone.org 10 January 2012 | Volume 7 | Issue 1 | e29735



until GVBD and then cultured in M16 medium containing

different concentrations of IBMX or dbcAMP for 15 hours. Data

represent the mean 6 SEM from 3 independent experiments.

(TIF)

Figure S2 IBMX and dbcAMP treatment perturb oo-
cytes cytokinesis. Denuded mouse oocytes at the GV stage

were cultured in M16 medium supplemented with 0.3 mM

dbcAMP or 0.2 mM IBMX for 20 hours, then transferred into

drug-free medium for live cell imaging. Control oocytes were

collected and cultured in DMSO control medium. Representative

live cell images were collected from oocytes undergoing normal

cytokinesis with furrow abscission (A), symmetric cytokinesis with

furrow abscission (B), asymmetric cytokinesis with furrow

regression (C) and symmetric cytokinesis with furrow regression

(D). The DL and DS in (A), (B), (C) and (D) represent the vertical

distances from the far-end cortex to the cleavage furrow in larger

and smaller daughter cells, respectively. Time is shown as

hours:minutes after GVBD. Chromosomes were stained with

Hoechst 33342 (red). Panel (E) summarizes the normal and

abnormal cytokinesis in control, dbcAMP-treated and IBMX-

treated groups, with each row representing a single oocyte

division. The cell divisions are indicated in different colors:

presence (red) or absence (green) of abnormal anaphase chromo-

some localization (A.C.L., first column) or abnormal cleavage

furrow localization (A.F.L., second column); occurrence of

cleavage furrow regression (red) or not (green) (C.F.R., third

column). The proportion of red in each column is included below.

Chromosome localization was deemed ‘‘abnormal’’ if the ratio of

the shortest chromosome-cortex distance at anaphase initiation

(DA) to that at GVBD (DGV) was greater than 0.6 (DA/DGV .0.6).

Furrow localization was deemed ‘‘abnormal’’ if DL/DS was less

than 1.9 (DL/DS ,1.9).

(TIF)

Figure S3 Incubation with 0.2 mM IBMX or 0.3 mM
dbcAMP did not significantly affect post-GVBD oocytes.
Denuded mouse oocytes at the GV stage were collected and

cultured in M16 medium for 90 min; then, oocytes that had

undergone GVBD were transferred into DMSO control medium

or medium supplemented with 0.3 mM dbcAMP or 0.2 mM

IBMX for live-cell imaging. Shown is a summary of normal and

abnormal cytokinesis in control, dbcAMP and IBMX groups, with

each row representing a single oocyte division. The cell divisions

are indicated in different colors: presence (red) or absence (green)

of abnormal anaphase chromosome localization (A.C.L., first

column) or abnormal cleavage furrow localization (A.F.L., second

column); occurrence of cleavage furrow regression (red) or not

(green) (C.F.R., third column). The proportion of red in each

column is included below. Chromosome localization was deemed

‘‘abnormal’’ when DA/DO .0.68. The vertical distances from the

far-end cortex to the cleavage furrow in larger and smaller

daughter cells were measured in each oocyte, and furrow

localization was deemed ‘‘abnormal’’ if DL/DS ,1.70.

(TIF)

Figure S4 IBMX and dbcAMP treatment on oocytes at
GV stage disturbed chromosome migration. Chromosome

movement was tracked by live cell imaging in control oocytes, and

the oocytes treated for 20 hours with 0.2 mM IBMX or 0.3 mM

dbcAMP. (A) Representative time lapse images of chromosome

movement from GVBD to anaphase onset. The time of GVBD

was set as 00:00 (hours:minutes). Red: DNA. (B) Green dots

indicate the position of the chromosome cluster. The shortest

distance between the chromosomes and the cortex was measured

at each time point (Dt) and divided by the distance to the cortex at

GVBD (DGV). Dt/DGV plotted against time was used as an

indicator of chromosome movement. Panel (C) shows the relative

position of the chromosome cluster (i.e., average DA/DGV) at

anaphase onset. DA is the shortest distance between the

chromosomes and the cortex at anaphase initiation. P values are

from a t-test.

(TIF)

Figure S5 Blebbistatin induces symmetric meiosis I
division in mouse oocytes. (A) Oocytes were incubated with

(Bleb) or without (CTRL) 0.2 mM blebbistatin for 16 hours.

Arrowheads indicate oocytes that produced 2 daughter cells of

similar size (‘‘2-cells’’). (B) The frequency of 2-cells was elevated by

the presence of 0.2 mM blebbistatin.

(TIF)

Movie S1 A representative time-lapse movie showing a
mouse oocyte that completes normal meiosis I. Acquisi-

tion time is shown as hours: minutes: seconds in the upper left

corner.

(AVI)

Movie S2 A representative time-lapse movie showing a
mouse oocyte that completes symmetric cytokinesis.
Acquisition time is shown as hours: minutes: seconds in the upper

left corner.

(AVI)

Movie S3 A representative time-lapse movie showing a
mouse oocyte with asymmetrically positioned cleavage
furrow that undergoes furrow regression eventually.
Acquisition time is shown as hours: minutes: seconds in the upper

left corner.

(AVI)

Movie S4 A representative time-lapse movie showing a
mouse oocyte with symmetrically positioned cleavage
furrow that undergoes furrow regression eventually.
Acquisition time is shown as hours: minutes: seconds in the upper

left corner.

(AVI)

Movie S5 A representative time-lapse movie showing a
mouse oocyte with two simultaneous formed cleavage
furrows that regressed sequentially. Acquisition time is

shown as hours: minutes: seconds in the upper left corner.

(AVI)
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