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Abstract

Sexual differentiation is a highly regulated process in the fission yeast Schizosaccharomyces pombe and is triggered by
nutrient depletion, mainly nitrogen source. One of the key regulatory proteins in fission yeast sexual differentiation is the
transcription factor Ste11. Ste11 regulates the transcription of many genes required for the initial steps of conjugation and
meiosis, and its deficiency leads to sterility. Ste11 activity is mainly regulated at two levels: phosphorylation and abundance
of its mRNA. Csx1 is an RNA binding protein that we have previously described to bind and regulate the turnover rate of the
mRNA encoding the transcription factor Atf1 in the presence of oxidative stress. We have observed that Csx1-deficient
cells have defects in sexual differentiation and are partially sterile. We investigated how Csx1 is regulating this process in S.
pombe. Csx1 associates with ste11+ mRNA and cells lacking Csx1 are sterile with a reduced amount of ste11+ mRNA.
Overexpression of ste11+ mRNA completely rescues the mating deficiencies of csx1D cells. Here, we present a novel
mechanism of ste11+ mRNA positive regulation through the activity of Csx1, an RNA binding protein that also have key
functions in the response to oxidative stress in fission yeast. This finding opens interesting question about the possible
coordination of sexual differentiation and oxidative stress response in eukaryotes and the role of RNA binding proteins in
the adaptation to environmental signals.
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Introduction

In the fission yeast S. pombe, haploid homothallic (h90) and

heterothallic (h+ or h2) strains reproduce by mitosis and are

divided by medial fission under standard growth conditions.

Under nitrogen starvation conditions, cells with opposite mating

type exchange mating pheromones that promote cell fusion,

inducing conjugation and forming diploid zygotes. Diploids then

undergo meiosis and sporulation, producing four haploid spores

(tetrad) that, under adequate conditions, would germinate

finishing the mating cycle [1].

The transcription factor Ste11 is a key factor in the sexual

differentiation process in S. pombe [2]. Ste11 participates in the

transcriptional induction of many genes involved in the mating

process, including the key meiotic regulator Mei2, and cells

deficient in Ste11 are profoundly sterile [2,3,4,5]. The activity of

Ste11 is regulated at several levels [1]. First, Ste11 protein is

phosphorylated by several kinases including Pat1, Spk1 and Cdc2

[6,7,8,9], and second, Ste11 mRNA abundance is regulated by

Atf1, Rst2, Pcr1 and Prr1 transcription factors [10,11,12,13,14,15]

and Msa1 and Msa2/Nrd1 RNA binding proteins [16,17,18].

Most of these processes are controlled by signaling systems that

detect nutritional changes in the environment and trigger the

transition mitosis-meiosis through the conjugation/meiosis path-

way. Thus, sexual differentiation in S. pombe is regulated by several

signaling pathways, like the cAMP pathway (PKA), the MAPK

pheromone signaling pathway (Spk1), the TOR pathway, and the

MAPK stress-responsive Sty1/Spc1 pathway. PKA negatively

regulates mating, while the MAPKs Spk1 and Spc1/Sty1

positively regulate the mating process. TOR kinases, Tor1 and

Tor2, exert positive and negative effects on mating, respectively

[1,11,13,19,20].

One of the mechanisms of Ste11 regulation is through the

activity of the Spc1/Sty1 MAPK pathway [13]. Upon nitrogen

starvation, Atf1, a transcription factor regulated by Spc1/Sty1,

activates Ste11 transcription and, therefore, mating capacity

[10,13,14]. Cells deficient in Spc1/Sty1 or Atf1 are not capable

of arresting cell cycle in G1 upon nitrogen starvation and are,

therefore, sterile.

atf1+ mRNA levels, under certain stress conditions, like

hydrogen peroxide treatment, are regulated by the activity of

Csx1, an RNA binding protein with 3 RNA recognition motifs.

Csx1 phosphorylation depends on Spc1/Sty1 activity, although

the functional role of this phosphorylation remains unclear [21].

We have noticed that Csx1-deficient cells may also have defects

in mating. In this report we have examined the role of Csx1 RNA

binding protein in the sexual differentiation process in S. pombe.

Results

1. Function of Csx1 in sexual differentiation
During the construction of strains containing different Csx1

alleles, we noticed that the mating efficiency of heterothallic Csx1-
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deficient strains was lower than wild type strains, indicating a

possible role of Csx1 in sexual differentiation in fission yeast.

To analyze the ability to mate of cells lacking Csx1, we observed

sporulation in homothallic strains, h90 wild type and h90 csx1D.

Both strains were plated in mating-inducing conditions (ME

media) and incubated at 24uC for two days (Figure 1A, 1B).

In these experiments, we did not observe any morphological

difference between tetrads formed in csx1D and wild type strains.

However, the number of zygotes and tetrads in cells lacking Csx1

appeared to be much lower than in wild type.

To quantify mating efficiency we inoculated these strains in ME

media. After 48 hours incubation at 24uC, the number of

vegetative cells, zygotes and tetrads was measured, and the mating

and sporulation ratio determined.

As it is shown in Figure 1C, about 45–55% of wild type cells

mated in these conditions, while in csx1D cells, this ratio ranged

between 4–8%. This result confirms that Csx1 is required for

efficient sexual differentiation.

To elucidate whether mating defect in csx1D strain was due to a

problem in conjugation and/or in meiosis, we performed a similar

experiment using diploid strains. Diploid strains undergo meiosis

under nitrogen starvation conditions, and they do not require

previous conjugation.

Using the same media and temperature conditions employed

with haploid strains, we quantified the sporulation ratio in h2/h+

csx1+/csx1+ strain, used as reference, and in h2/h+ csx1D/csx1D
strain. The sporulation ratio observed in h2/h+ csx1D/csx1D strain

was about half of that reached by h2/h+ csx1+/csx1+ strain

(Figure 1D). This result indicates that diploid cells lacking Csx1

cannot undergo meiosis with the same efficiency as wild type

strain, demonstrating that Csx1 may be required for meiosis. Csx1

deficiency has a stronger impact in haploid mating/sporulation

than in diploids. This result indicates that Csx1 is also required for

steps previous to meiosis, like nutrient sensing or conjugation.

2. Role of Csx1 in G1 cell cycle arrest
When homothallic strains are subjected to nitrogen starvation

conditions they mate and sporulate, and one of the first steps in

this response is the arrest of cell cycle at G1. Cells deficient in G1

cell cycle arrest (like spc1D and atf1D) are sterile [13].

Therefore, a possible explanation for csx1D sterility could be

that homothallic csx1D strain did not arrest cell cycle at this stage.

To test this possibility we performed flow cytometry assays after

induction of sexual differentiation, analyzing DNA content of wild

type and csx1D strains. We included ste11D and spc1D strains in the

experiments, to compare with other well-known sterile strains

(Figure 2). Cells were incubated in minimal media (EMM) and

mating was induced in minimal media without nitrogen source

(EMM-N) at 24uC, and they were harvested every two hours

during a time course.

Wild type strains display an efficient G1 arrest as early as

4 hours after nitrogen depletion, and at eight hours most cells are

arrested at G1 (Figure 2).

The profile displayed by csx1D and ste11D strains is almost

identical, both mutant strains can arrest cell cycle at G1, but the

arrest in these strains takes longer than in wild type strain,

appearing the 1C peak after about 6–8 hours. In agreement with

previous reports, spc1D strain profile demonstrates that Spc1 is

required for cell cycle arrest at G1 [13].

By flow cytometry we confirmed that h90 csx1D strain did not

show any evident defect in cell cycle, arresting at G1 after 8 hours

in nitrogen starvation. We found that cells lacking Ste11 are able

to arrest cell cycle at G1 stage and exhibit a similar pattern to cells

lacking Csx1. This result is consistent with a role of Csx1 and

Figure 1. Csx1 is required for sexual differentiation in fission yeast. Morphology of homothallic wild type (A) and csx1D (B) strains after
48 hours in ME at 24uC. Pictures were taken using Nomarski filter. C. Mating percentage (conjugation/meiosis) reached by homothallic wild type and
csx1D strains after 48 hours in ME at 24uC. Bars indicate standard error. D. Meiotic percentage reached by diploid h2/h+ csx1+/csx1+ and h2/h+ csx1D/
csx1D strains after 48 hours in ME at 24uC. Bars indicate standard error.
doi:10.1371/journal.pone.0030067.g001

Csx1 Regulates Ste11 mRNA Abundance
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Ste11 in similar mating processes or a regulation of one of them by

the other.

3. Effect of csx1D in posttranscriptional regulation under
nitrogen starvation conditions

Csx1 is an RNA binding protein that regulates atf1+ stability

under hydrogen peroxide treatment and is phosphorylated in a

Spc1-dependent manner [21].

We hypothesized that the genetic relationship between Csx1

and Spc1/Atf1 might not be restricted to oxidative stress

conditions, but also to sexual differentiation. Spc1 regulates the

transcription factor Atf1 that, in turn, stimulates the production of

ste11+ mRNA under nitrogen starvation conditions. On the other

hand, as we showed before, deficiencies in Csx1 or Ste11 cause

similar defects in the mating process under nitrogen starvation

conditions. We hypothesized that Csx1 could be playing a

regulatory role in this process.

To test whether posttranscriptional response was altered in

csx1D strain, we performed quantitative PCR to determine atf1+

and ste11+ mRNA levels under nitrogen starvation. We used h90

wild type strain as reference (Figure 3A and 3B).

In wild type cells, ste11+ mRNA is induced 4–5 times upon

nitrogen starvation (Figure 3A). We noticed that in h90 csx1D
strain, ste11+ mRNA was reduced to 10% of wild type levels, both

in regular minimal media and in nitrogen starvation conditions.

Therefore, the induction of ste11+ mRNA is strongly dependent on

Csx1 activity, even in the presence of nitrogen source in the media.

ste11+ mRNA transcription is induced by Atf1 and atf1+ mRNA

is a known target of Csx1 under hydrogen peroxide treatment

[13,21]. We, therefore, monitored the levels of atf1+ mRNA in

strains h90 wild type and h90 csx1D (Figure 3B). The abundance of

atf1+ mRNA in csx1D and wild type strains after 6 hours in

nitrogen starvation at 24uC was similar to the one observed in

basal conditions. We therefore concluded that ste11+ regulation

was mediated by Csx1, independently of the effect exerted on atf1+

mRNA.

4. Csx1 associates with ste11+ mRNA
As shown in figure 3A, ste11+ mRNA levels are altered in h90

csx1D strain. One possible explanation for this defect could be that

Csx1 stabilized ste11+ mRNA through protein-RNA interaction.

To test this hypothesis we performed RNA-immunoprecipitation

(RIp) assays using h90 csx1:TAP strain, using h90 wild type strain as

negative control of TAP purification. RIp assays were followed by

reverse transcription (RT) reaction to generate cDNA. This cDNA

was used as template in a PCR reaction to amplify ste11+ mRNA.

We performed the same experiment in minimal media (EMM)

and in minimal media without nitrogen (EMM-N) at 24uC,

harvesting cells at 1 and 3 hours after nitrogen starvation

(Figure 3C).

As was expected, in the negative control of RT reaction, where

RNase-free water instead of reverse transcriptase was added, there

was no amplification of ste11+ mRNA. We can observe ste11+

amplification in the IP extracts of h90 csx1:TAP strain, meaning

that Csx1 is binding ste11+ mRNA and this binding is maintained

in all conditions described before. This result was also confirmed

by reverse transcription followed by quantitative PCR (RT-qPCR)

(Figure 3D).

Through these assays we confirmed that Csx1 is binding ste11+

mRNA in the presence or absence of nitrogen. Furthermore, the

binding of Csx1 to ste11+ mRNA correlates with ste11+ mRNA

abundance. We have previously shown that Csx1 regulated Atf1

abundance through direct binding [21]. Therefore, our current

working model indicates that Csx1 regulates ste11+ mRNA stability

through direct binding or association to the same ribonucleopro-

tein complex.

5. Ste11 rescues csx1D sterile phenotype
We have observed that strains lacking Csx1 are sterile. This

disability in sexual differentiation in csx1D strain seems to be

mainly due to ste11+ mRNA abundance reduction and subsequent

inappropriate response to nitrogen starvation conditions. To

challenge this hypothesis, we monitored the effect of Ste11 ectopic

expression in Csx1-deficient cells. We transformed homothallic

csx1D strain with pREP1-Ste11. This plasmid contains ste11+ ORF

under nmt1 promoter, repressible by thiamine. Using this plasmid

we tested if overexpression of Ste11 in cells lacking Csx1 could

rescue csx1D strain defects in sexual differentiation.

This experiment was carried out in plates containing minimal

media without nitrogen in the absence of thiamine to induce

sexual differentiation and promoter activation, respectively.

Homothallic wild type and csx1D strains were also transformed

with control pREP1 plasmid (Figure 4A).

As was expected, in h90 wt+pREP1 and h90 csx1D+pREP1 we

observed similar mating effects of Csx1 on mating efficiency.

Overproduction of Ste11 induced an increase in mating

efficiency in wild type strains (Figure 4A). In h90 csx1D+pREP1-

Ste11 strain, under nmt1+ promoter activation and therefore ste11+

overexpression, we observed that mating percentage reached wild

type levels. This result indicates that the mating defect in csx1D
strains is mostly due to the downregulation of Ste11.

The overproduction of Csx1 in Csx1-deficient cells is able to

rescue the mating capacity to levels similar to those found in wild

type cells (Figure 4B). This increase in the mating efficiency

correlates with increased levels of ste11+ mRNA (Figure 4C).

Levels of atf1+ mRNA were analyzed in the same samples but we

did not observe any significant changes (Figure 4D). These results

are consistent with a model where Csx1 regulates ste11+ mRNA

levels that, consequently, affect mating efficiency in fission yeast.

Discussion

Here, we have presented the RNA binding protein Csx1 as a

novel regulator of sexual differentiation in fission yeast. The

absence of Csx1 reduces mating capacity of homothallic S. pombe

Figure 2. G1 arrest upon nitrogen starvation in several strains.
Homothallic wild type, spc1D, ste11D, csx1D strains were incubated in
EMM-N for up to 24 hours and samples were taken at the indicated
times. DNA relative amount was estimated by the fluorescent signal
amount emitted by propidium iodide and the flow citometry
histograms represented.
doi:10.1371/journal.pone.0030067.g002
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cells. This sterility can be fully rescued by overproduction of the

transcription factor Ste11. Csx1 and ste11+ mRNA co-precipitate,

indicating that either Csx1 directly binds ste11+ mRNA or they are

part of the same multimolecular complex. The steady-state levels

of ste11+ mRNA are dependent on Csx1 activity, and cells deficient

in Csx1 have reduced ste11+ mRNA. We have not been able to

measure ste11+ mRNA half-life in response to Csx1 activity due to

the low amount of ste11+ mRNA in csx1D mutants. However, we

have previously reported that Csx1 plays an important role on

atf1+ mRNA stabilization under oxidative stress [21]. Our working

hypothesis proposes that Csx1 would be stabilizing ste11+ mRNA,

even before nitrogen starvation signals are triggered. However,

further work should be done in order to demonstrate this

important point.

In S. pombe, other RNA binding proteins have been demon-

strated to play important roles in sexual differentiation either

positively like Mei2 [3], or negatively like Msa1 and Msa2/Nrd1

[16,17,18]. All of them perform different biochemical functions

and are regulated by different signals. Therefore, Csx1 positively

regulate Ste11 that, in turn, regulates Mei2 [2].

The signals that allow Csx1 to distinguish the different stimuli

and therefore associate with each mRNA remain unknown, but it

is an interesting research field. One possible candidate for this

coordination is the MAPK Spc1/Sty1 which, like Csx1, also

participates in the response to oxidative stress and sexual

differentiation in S. pombe.

Interestingly, there are several proteins in fission yeast that are

important for both, mating efficiency and oxidative stress response.

Proteins like Prr1, Spc1/Sty1 and Atf1 regulate ste11+ mRNA

levels and also the survival under several conditions of stress

[12,13]. This dual role points toward a coordination between both

processes that should also be studied in other eukaryotes.

Materials and Methods

Strains and growth conditions
csx1+ gene was deleted and TAP-tagged using a one-step PCR

method [22] in a h90 background using the following oligonucle-

otides:

Csx1_delF:TGACTTTTGTGTCTCATTGAAACTTTGTT

GTTCATTCATATTACTTACTTTCTTTTACTTTTTTTTG

GATATCTATTTAACGGATCCCCGGGTTAATTAA;

Csx1_delR:AATAAAAAAAATCACGAGAGCACCCTTCA

GTTCTTTAAGACATTAAACTAACTTGATCAGGAGCCCT

CGAAAACTTATACGAATTCGAGCTCGTTTAAAC;

Csx1_tagF:GCTTGCCTCCTCGTTCTTATTCTACATTT

AATTGTACTGGTCAATACTTGCAACCTTCTCTACGCTT

GTCACGCGATTCACGGATCCCCGGGTTAATTAA.

pREP1 plasmids were introduced into S. pombe following lithium

acetate protocol [23]. For overexpression experiments using the

nmt1 promoter, cells were plated in EMM without NH4Cl

(nitrogen source) and without thiamine, and incubated at 24uC
for 48 hours. To induce mating, S. pombe strains were cultivated in

Edinburgh minimal media (EMM), washed and resuspended in

EMM without NH4Cl (EMM-N) [24]. To calculate mating

percentage, fresh cultures were plated in ME (Malt Extract) media

for 48 hours at 24uC. 10 ml of a cell dilution were placed into

Neubauer chamber and tetrads, zygotes and normal cells were

Figure 3. Csx1 binds ste11+ mRNA and regulates its abundance. Quantitative real-time PCR analysis of ste11+ mRNA (A) and atf1+ mRNA (B) in
homothallic wild type and csx1D strains in minimal media (EMM) and in the absence of nitrogen source (EMM-N) for 6 hours. Bars indicate standard
error. C. Binding of Csx1 to ste11+ mRNA. Cell extract was obtained (IN) and TAP immunoprecipitation (IP) was performed with homothallic wild type
and csx1:TAP strains in minimal media (EMM) and in the absence of ammonium source (EMM-N) for 1 hour and 3 hours. RNA was isolated and cDNA
generated by reverse transcription. ste11+ mRNA was amplified by PCR and monitored by agarose electrophoresis (455 bps). D. Strains and treatment
conditions were identical to those described in C. Binding of Csx1:TAP to ste11+ mRNA was measured by reverse transcription followed by
quantitative PCR. Actin mRNA was used as control. The graph represents ste11+ mRNA relative levels in input samples and after Csx1:TAP purification
(IP).
doi:10.1371/journal.pone.0030067.g003
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quantified, and the ratio of mating calculated. For calculations of

haploid mating, we performed the following operation:

(2xA+2xB)/(2xA+2xB+C), where A is the number of zygotes, B

the number of tetrads and C the number of vegetative cells.

Pictures were taken after 48 hours incubation in ME media at

24uC using Nomarski optics.

Quantitative PCR
Total RNA was extracted as described in Lyne et al. [25].

cDNA was generated using Reverse Transcription System kit

(PromegaH), following manufacturer’s guidelines. To amplify

ste11+, atf1+ and act1+ (actin) mRNAs the following primers were

used:

187.Ste11_5_probe: ACCTAAAACCCCGAATACCG;

188.Ste11_3_probe: TTAGAATTGGGCAACCAAGG;

185.Atf1_5: AACCCCTACTGGAGCTGGAT;

186.Atf1_3: GGGAACCTGGGAGAGTAAGC;

189.Act1_5_probe: AGCACCCTTGCTTGTTGACT;

190.Act1_3_probe: CTCATGAATACCGGCGTTTT.

Actin was used as endogenous control. Quantitative analyses

were performed using the DDCt method.

RNA immunoprecipitation
RNA immunoprecipitation was performed using homothallic wild

type and csx1:TAP strains. Immunoprecipitation was carried out in a

rotational wheel at 4uC using Pan IgG mouse magnetic beads

(DynabeadsH-Invitrogen) as described by Amorim and Mata [26].

Specific oligonucleotides were used for Ste11 detection by PCR:

187.Ste11_5_probe: ACCTAAAACCCCGAATACCG

188.Ste11_3_probe: TTAGAATTGGGCAACCAAGG

Flow cytometry
Flow cytometry was used to estimate the relative DNA content

of fission yeast cells, and define the cell cycle stage of the

population. Time course was performed growing all strains in

EMM and samples were taken at 2, 4, 6, 8 and 24 hours after

mating induction (nitrogen starvation). 3 ml of cells were harvested

at 0.3 OD600. 7 ml of ethanol were added and incubated at 4uC
for 10 minutes.

Cells were spin down and resuspended in 1 ml of PBS-Triton-

HCl solution (1 ml PBS, 0.5% Triton-X-100, 0.1 N HCl) and

incubated for 10 minutes at room temperature.

Cells were spin down and resuspended in RNAse A at 250 mg/

ml. After 2-hour incubation at 37uC, 200 ml of cells were mixed

with 800 ml of PBS. That mixture was gently sonicated to separate

cellular aggregates and propidium iodide at 2.5 mg/ml was added

to each sample. The flow cytometer used in this study was

FACSCalibur (Bencton Dickinson).
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