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Abstract
The intimate connection between telomerase regulation and human disease is now well
established. The molecular basis for telomerase regulation is highly complex and entails multiple
layers of control. While the major target of enzyme regulation is the catalytic subunit TERT, the
RNA subunit of telomerase is also implicated in telomerase control. In addition, alterations in
gene dosage and alternative isoforms of core telomerase components have been described. Finally,
telomerase localization, recruitment to the telomere and enzymology at the chromosome terminus
are all subject to modulation. In this review we summarize recent advances in understanding
fundamental mechanisms of telomerase regulation.
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1. Introduction
The ends of eukaryotic chromosomes are defined by a tract of simple G-rich repeats and
associated proteins that constitute the functional unit termed the telomere. The length of the
telomeric DNA tract is highly dynamic and subjected to forces that both shorten and extend
the repeat array. Telomeres must be long enough to assemble a protective “cap” that can
distinguish the terminus from a double-strand break. Dysfunctional telomeres trigger cell
cycle arrest, genome instability and in humans, replicative cell senescence and apoptosis [1,
2]. On the other hand, telomeric DNA loss through incomplete DNA replication or
nucleolytic processing suppresses tumorigenesis by limiting the proliferative potential of
normal somatic cells. At the heart of this balancing act is telomerase, a ribonucleoprotein
reverse transcriptase that consists of two core components: a catalytic reverse transcriptase
subunit (TERT), and an RNA subunit (TR or TER), which serves as a template for telomeric
DNA addition by TERT.
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Telomerase is a highly regulated enzyme and in normal individuals its activity is confined to
cells with extended proliferation potential: the germline, embryonic tissues and self-
renewing stem cell populations of the hematopoetic system and skin. In other tissues,
telomerase is inactivated during gestation, thereby restricting the proliferation program [3].
Mis-regulation of telomerase has dire consequences. As discussed elsewhere in this volume,
reactivation of telomerase is associated with approximately 90% of human cancers [4],
while insufficient telomerase activity is linked to a litany of stem cell disorders including
dyskeratosis congenita, aplastic anemia and idiopathic pulmonary fibrosis [5, 6].

The molecular basis for telomerase regulation is highly complex and entails multiple levels
of control. A major determinant of enzyme activity is transcriptional regulation of the
catalytic subunit TERT. However, emerging data indicate that TERT is subjected to both
post-transcriptional and post-translational control. In addition, transcriptional regulation of
TR has also been reported. In some instances the number of genes encoding TERT and TR
is expanded, increasing enzyme activity or, over evolutionary time, giving rise to alternative
ribonucleoprotein complexes. Finally, telomerase recruitment and enzyme activity at the
chromosome terminus are modulated by telomere-associated proteins and by telomeric RNA
transcripts. Here we summarize some of the recent advances in understanding telomerase
regulation.

2. Transcriptional regulation of TERT
TERT gene expression parallels telomerase activity in many multicellular organisms. For
example, in the model plant Arabidopsis, TERT mRNA peaks in flowers and suspension cell
culture where telomerase activity is most abundant, but can barely be detected in leaves
where telomerase is strongly repressed [4]. Similarly, human TERT is expressed during
early development, but with the exception of proliferating cells or renewal tissues, it is
absent in most normal somatic cells [7, 8]. Transient transfection of an hTERT promoter-
luciferase reporter reveals an expression pattern that mirrors the telomerase activity profile
[9]. These and other observations argue that the TERT promoter is a major target of enzyme
regulation.

The hTERT promoter has been extensively studied [reviewed in [10, 11]]. A plethora of
transcription factor binding sites allow for nuanced hTERT expression (Figure 1). For
example, TERT transcription is influenced by Sp1 [11], a general transcription factor that
interacts with the TATA binding protein. Notably, TATA boxes are not found in the hTERT
promoter, and yet mutations in Sp1 binding sites completely abolish hTERT promoter
activity [9, 11]. Telomerase expression is also controlled by oncogenes (i.e. c-Myc) as well
as tumor suppressors (i.e. WT1). c-Myc influences telomerase expression by binding the two
E-boxes present in the hTERT promoter. Increased expression of c-Myc, which is observed
in cancer cells, results in increased telomerase activity [2, 11-13]. Binding of WT1 (Wilm's
tumor suppressor) to the hTERT promoter negatively regulates hTERT expression [14]. On
the other hand, inactivation of WT1 is associated with telomerase activation during
tumorigenesis [15].

Other factors repress hTERT expression. These include MZF-2, a zinc finger transcription
factor [16], and member of the E2F family of transcriptional regulators involved in cell-
cycle progression [17]. Repression of hTERT transcription may also be accomplished by
inhibiting potential activators like c-Myc, via the TGFβ/Smad signaling pathway [18] or
BRCA1, a tumor suppressor for hereditary breast and ovarian cancers that is involved in
DNA repair [19, 20]. Finally, it has been suggested that p53 may be involved in the negative
regulation of hTERT expression, because most cancers are deficient in p53 [21, 22].
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Several lines of evidence indicate that silencing of hTERT is under epigenetic control [23].
The TERT promoter lies within a highly condensed chromatin domain [24] and is associated
with hypoacetyled core histones [25, 26]. In addition, both histone and CpG methylation are
implicated in hTERT regulation [27, 28], although in the latter case there is controversy as
to whether methylation contributes to positive or negative regulation of hTERT expression
in cancer cells [29, 30]. CTCF, an insulator that organizes chromatin domains to modulate
transcription [31], binds the first exon of hTERT (Figure 1) in cells that repress hTERT
expression [32]. Finally, activation of the hTERT promoter is correlated with dramatic
changes in the surrounding chromatin environment [23].

3. Post-translational regulation of TERT
Post-translational regulation of telomerase is supported by the observation that TERT
mRNA levels do not always correlate with telomerase enzyme activity [33-35]. Moreover,
not all cells with active telomerase are capable of maintaining telomere tracts [36]. The
biogenesis and assembly of the telomerase RNP represent other avenues of enzyme
regulation and are discussed in detail elsewhere in this issue [37]. Figure 2 depicts some of
the post-translational modifications of TERT and how they affect protein stability,
subcellular localization and ultimately, enzyme activity. A number of studies indicate
telomerase activity is modulated by phosphorylation [reviewed in [38]. Putative
phosphorylation sites are present in the TERT sequences from mammals [39] and plants
[35]. At least two kinases are implicated in hTERT phosphorylation. In response to ionizing
radiation, hTERT is phosphorylated by c-Abl leading to a three-fold reduction in telomerase
activity [40]. Mice lacking c-Abl display increased telomerase activity and telomere
elongation [40]. Thus, c-Abl negatively regulates telomerase activity. In contrast,
phosphorylation of hTERT by Akt correlates with increased telomerase activity, presumably
resulting from hTERT translocation from the cytoplasm to the nucleus [39, 41].

Ubiquitination may also influence telomerase activity. The MKRN1 ubiquitin ligase (E3)
interacts with hTERT in a yeast-two hybrid assay [42]. Over-expression of MKRN1 leads to
degradation of TERT, resulting in decreased telomerase activity and shortened telomeres.
This finding suggests that telomerase activity is modulated by TERT stability. The half-life
of human telomerase activity is approximately 24 hrs [43], while the half-life of TER is
extraordinarily long, five days [44]. These observations support the conclusion that hTERT
stability contributes to telomerase regulation. A recent study shows that CHIP (C terminus
of Hsc70-interacting protein), a co-chaperone with E3 ubiquitin ligase, controls hTERT
stability in the cytoplasm [45]. CHIP interaction with hTERT leads to polyubiquitination,
blocking hTERT entry into the nucleus and culminating in proteolytic degradation (Figure
2). Intriguingly, the interaction of CHIP with hTERT peaks in G2/M, and is diminished in S
phase when telomerase acts on telomeres. Thus, CHIP may regulate telomerase activity
during the cell cycle by controlling the intracellular trafficking and consequently the
stability of hTERT [45].

The subnuclear localization of telomerase is also dynamically controlled during the cell
cycle and contributes to enzyme regulation [46-48]. Emerging data argue that delivery of
enzymatically active telomerase to the chromosome terminus first requires the passage of
TR through Cajal bodies via a telomerase-specific Cajal body protein termed TCAB1 [49].
Specifically, Cajal bodies are proposed to act as a type of processing center, where TR and
possibly associated proteins are modified, in some fashion before the enzyme can become
fully competent for telomere elongation [50, 51] (see below).

Negative regulation of telomerase activity can be achieved by sequestration of the enzyme in
the nucleolus. Following DNA damage, hTERT transiently moves from the nucleoplasm to
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the nucleolus (Figure 2). This re-localization is hypothesized to reduce the probability of de
novo telomere formation at sites of DNA damage [46]. PinX1, an interaction partner for the
human shelterin component TRF1, is also proposed to regulate telomerase by sequestration
[52] (Figure 2). PinX1 directly binds hTERT [53, 54] and hTR [53] and inhibits telomerase
activity in vitro [54]. As in human cells, the interaction of PinX1 with Est2 (TERT) leads to
sequestration in the yeast nucleolus [55].

4. Transcriptional and post-transcriptional regulation of TR
Although hTR expression is detected in some tissues where hTERT is not, hTR abundance
increases in tumors relative to normal cells [56, 57], arguing that hTR abundance contributes
to telomerase regulation. Transcription of hTR is activated by Sp1 and HIF-1 and repressed
by Sp3, which integrates cues from the MAPK signaling cascade to silence the hTR
promoter [reviewed in [10]. Furthermore, like hTERT, hTR transcription appears to be
subjected to epigenetic control as repression of hTR expression is associated with decreased
levels of H3 and H4 acetylation [27]. Finally, at least six sites in hTR are subjected to post-
transcriptional modification by pseudouridylation [58]. Intriguingly, two of these sites lie in
a highly conserved domain essential for telomerase catalytic activity. In vitro telomerase
reconstitution assays with model pseudouridylated hTR result in modest alterations in
enzyme activity and processivity. Whether hTR modification regulates telomerase activity in
vivo is still an open question, although recent findings suggest that this is a distinct
possibility (see below).

5. Gene dosage and alternative TERT and TR isoforms
TERT and TR exist as single copy genes in most organisms studied and a null mutation in
TERT or TR is ultimately lethal. In mice, both TERT [59] and TR [60, 61] are
haploinsufficient for maintaining telomere tracts. Indeed, the etiology underlying a growing
list of stem cell diseases is linked to hemizygosity of core telomerase subunits [62].
Conversely, amplification of chromosomal loci encoding TERT or TR is correlated with
tumor formation [63-66]. Thus, gene dosage plays a critical role in telomerase regulation.

Alternative splicing of TERT is widespread and has been described for a number of
multicellular eukaryotes including a variety of mammals [28, 67, 68], birds [69], fish [70]
and plants [71]. Ten different splice variants have been reported for human TERT [28,
72-76]. Three of the major products are depicted in Figure 2. Alternative splicing of hTERT
results in both nucleotide deletion and mutation. Several splice variants have been correlated
with changes in telomerase activity [77-79]. The most well-studied is hTERTα, which
encodes a 183 bp deletion with an accompanying nonsense mutation. Expression of TERTα
correlates with decreased telomerase activity, and hence this isoform is proposed to act as
dominant negative inhibitor of telomerase activity [74, 75].

Variant isoforms of telomerase subunits have also emerged as a consequence of gene
duplication. Three different TERT genes are found the ciliated protozoan Euplotes crassus
[80]. These genes encode proteins that display 83-87% identity and are differentially
expressed during the sexual stage of the life cycle [80]. Expression of the EcTERT-2 gene is
limited to macronuclear development, a period when telomeres form de novo on thousands
of newly generated mini-chromosomes. In contrast, EcTERT-1 and EcTERT-3 are
expressed during vegetative growth when telomerase performs its canonical function of
maintaining pre-existing telomere tracts. Remarkably, the EcTERT-2 gene is destroyed by
programmed DNA elimination following new telomere formation, presumably to control
promiscuous telomere addition at sites of spontaneous DNA damage [80]. Like most other
model organisms, E. crassus encodes only a single telomerase RNA. Thus, the E. crassus
TER assembles with different TERT subunits into alternative RNP complexes to facilitate a
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developmentally programmed switch from de novo telomere formation to telomere
maintenance.

A second example of alternative telomerase subunits is found in Arabidopsis thaliana [81,
82]. A. thaliana encodes two different template RNA components, TER1 and TER2. The
two RNAs assemble with the single TERT isoform into alternative telomerase particles.
TER1 is a typical telomerase template critical for telomere maintenance [81]. TER2, on the
other hand, is a novel negative regulator of enzyme activity [82]. Why an alternative RNP
evolved to negatively regulate the plant telomerase is unclear since, unlike mammals, plants
do not face the threat of metastatic cancer as a consequence of unbridled telomerase activity.
These findings suggest that additional modes of restraining telomerase could be elucidated
in mammals where inappropriate expression is much more deleterious.

6. Regulation of telomerase recruitment to the telomere
Once an active telomerase RNP particle is formed, it must engage the chromosome terminus
to facilitate the incorporation of telomere repeats. Here we briefly consider how crosstalk
between telomerase RNP components and telomere capping proteins influences the
recruitment of telomerase to the telomere. Mechanisms to regulate the length of the telomere
tract are discussed elsewhere in this volume [83].

The interaction of telomerase with the telomere is best understood in budding yeast.
Lundblad and colleagues established that Est1, a non-catalytic telomerase holoenzyme
component, physically links the RNP to the telomere through interactions with the
telomerase RNA (Tlc1) and Cdc13, a member of the CST telomere capping complex [84].
The telomerase-telomere interaction is regulated during the cell cycle, peaking during S
phase [85]. In addition, the interaction of Est1 with Tlc1 is controlled by cell cycle regulated
proteolytic degradation [86]. Moreover, a number of studies suggest that Est1-Cdc13
association is controlled via phosphorylation of Cdc13 by Cdk1 (Cdc28) [87] or by Tel1
(ATM) [88-91]. However, recent analyses of Tel1 consensus phosphorylation sites on
Cdc13 do not support this model [92]. In conjunction with its role recruiting telomerase to
the telomere, Est1 influences the interaction of telomerase with its DNA primer in vitro to
stimulate elongation [93-95].

The Ku heterodimer is also implicated in telomerase recruitment. In budding yeast Ku
directly interacts with a stem loop in Tlc1 [96]. Cells lacking Ku exhibit defects in Tlc1
nuclear localization and have shorter telomeres with long G-overhangs [97, 98]. The current
view is that Ku assists in positioning telomerase at the telomere in G1 to promote telomere
synthesis by the enzyme in S phase [99].

The mechanism of telomerase recruitment is less clear in multicellular organisms.
Telomerase associates with components of shelterin, the telomere capping complex in
human cells [98]. One of these proteins, TPP1, is implicated in telomerase recruitment [100,
101]. TPP1 forms a subcomplex POT1, another shelterin component, simulating interaction
of POT1 with the single-strand 3’ overhang on the chromosome end [101]. TPP1 also
interacts with the telomerase RNP, binding the TEN domain of TERT [102]. Intriguingly,
the TEN domain promotes repeat addition processivity of the core enzyme [103, 104].
Whether interaction of TPP1 with this region telomerase alters enzyme activity is unknown.
Furthermore, unraveling precisely how TPP1 influences telomerase function in vivo is
hindered by the fact that depletion of TPP1 also dislodges POT1 from telomeres, activating
an immediate DNA damage response and cell cycle arrest, not the ever-shorter-telomere
phenotype expected for defect in telomerase recruitment [100, 105].
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7. Control of telomerase processivity at the chromosome terminus
Once telomerase engages the single-strand overhang on the telomere, telomere repeat
incorporation is facilitated by two enzyme modes: a processive reaction in which multiple
telomere repeats are added in a single DNA binding event, and a non-processive or
distributive mode in which only one or two repeats are incorporated. The TEN1 domain that
promotes repeat addition processivity (RAP) of the core enzyme [103, 104, 106]. Collins
and colleagues discovered a new accessory factor, p82, for the Tetrahymena telomerase that
strongly stimulates RAP of the catalytic core [107]. In addition, RAP of human telomerase
is influenced by the putative human telomerase recruitment factor TPP1 in vitro [108, 109].

Analysis of telomerase dynamics in vivo reveals a striking correlation between RAP and the
length of the telomere tract telomerase acts upon. Telomerase is preferentially recruited to
shorter telomere tracts [110-112] and in yeast the enzyme does not extend every telomere in
every cell cycle [110]. However, telomerase RAP is increased at critically shortened
telomeres relative to telomeres in the wild type size range [113]. Thus, modulation of
telomerase processivity plays a direct role in establishing telomere length homeostasis.

Recent studies reveal that processivity of human telomerase is highly regulated in cancer
cells (Figure 3). Unlike yeast, human telomerase extends every telomere end every cell cycle
[114]. However, RAP is altered depending on whether the enzyme is establishing or
maintaining telomere length homeostasis [51]. On shortened telomere tracts recovering from
telomerase inhibition, telomerase acts in a distributive manner. Multiple telomerase enzymes
sequentially engage the same chromosome end to rapidly extend the telomere. In contrast,
when telomerase maintaining telomere length homeostasis, RAP is strongly stimulated and
only a single telomerase enzyme associates with each telomere. Approximately 10 repeats
are added before the enzyme dissociates. This remarkable switch from a distributive to a
processive mode for telomere synthesis requires trafficking of hTR through Cajal bodies
[51]. Hence, post-transcriptional modification of hTR or an auxillary factor may modulates
telomerase processivity in vivo.

In budding yeast, telomerase processivity is negatively regulated by the Pif1 helicase. Pif1
unwinds telomeric DNA from the telomerase RNA template, dislodging telomerase from the
chromosome terminus [115]. In cells over-expressing Pif1, the interaction of telomerase
with telomeres is reduced leading to telomere shortening. Conversely, Pif1 depletion results
in telomere elongation. In conjunction with its action at native chromosome ends, Pif1 also
promotes genome stability by ejecting telomerase from non-telomeric DNA substrates [116].
Pif1 is phosphorylated in response to DNA damage, which stimulates its helicase activity,
decreasing the opportunity for telomerase to form incorporate telomere repeats at sites of
DNA damage [117]. Although mammalian PIF1 physically associates with telomerase [118,
119], it is not required for telomere length regulation [115, 118, 119]. However, it is
currently unclear whether human PIF1 regulates telomerase activity at double-strand breaks.

8. Telomerase regulation by TERRA
One of the defining features of telomeres is that they are heterochromatic. Consequently, it
was surprising when telomere transcripts termed Telomeric Repeat containing RNA
(TERRA) were discovered. TERRA molecules are long non-coding RNAs transcribed by
RNA polymerase II from subtelomeric and telomeric DNA. Telomere transcription is
reported for a number of eukaryotes including mammals, fish and yeast [120-123].
Arabidopsis appears to be unusual in that it transcribes both strands of the telomere,
generating TERRA as well as TERRA antisense transcripts, ARRET [123]. Notably,
Arabidopsis TERRA and ARRET are not derived exclusively from telomeres; they are also
transcribed from centromere-proximal telomeric sequences.
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TERRA varies in size ranging from 100nt to 9000nt in mammals and ~380nt in yeast [120].
TERRA molecules are capped by 7-methylguanosine (m7G) [122] and at least a subset of
them bear a 3’ poly(A) tail [121, 122]. Intriguingly, only poly(A) minus TERRA is detected
in chromatin [124, 125], suggesting that TERRA may have different functions. TERRA
interacts with numerous RNA binding proteins [125, 126]. One of these is hnRNPA1, a
single-strand nucleic acid binding protein that recognizes RNA as well as telomeric DNA
[127, 128]. A recent study reveals that the interaction of TERRA with hnRNPA1 plays a
pivotal role in facilitating the exchange of single-strand binding proteins at the chromosome
terminus [127]. Following chromosomal replication, the 3’ overhang on the telomere is
initially bound by RPA, which is subsequently replaced by hnRPA1. hnRNPA1 is then
dislodged from the DNA through its interaction with TERRA, allowing the POT1/TPP1
components of the shelterin complex to bind and thus establish a functional telomere cap.

In addition to this newly discovered role in promoting changes in telomere protein
composition, TERRA is also postulated to reinforce the heterochromatic nature of the
chromosome terminus [120-122]. Moreover, because TERRA is complementary to the
template domain of TR, it has the potential to negatively regulate telomerase. Indeed several
studies support this prediction [121, 122, 126]. Human TERRA physically associates with
telomerase in nuclear extracts, and as predicted, base pairs with the complementary template
region of TR [126]. TERRA may also interact with TERT independently of TR. Further
evidence for telomerase regulation by TERRA has been obtained in yeast rat-1 mutants,
where TERRA levels increase as telomeres shorten [121]. It is unknown whether TERRA is
released from the telomere to inhibit telomerase in trans, or acts in cis on the chromosome
terminus to block telomerase action. The latter model is appealing as long telomeres
correlate with increased levels of TERRA. Thus, negative regulation of telomerase by
TERRA in cis could provide an elegant feedback mechanism to promote telomere length
regulation.

9. Conclusions
Although the initial studies of telomerase regulation focused on transcriptional control of
core subunits, it is now apparent that the telomerase RNP is subjected to a highly
sophisticated network of regulatory pathways that modulate subunit abundance, intracellular
trafficking and the interaction with and activity on the chromosome terminus. The necessity
of governing telomerase activity is underscored by the remarkable conservation of factors,
both protein and RNA based, that control enzyme behavior. Our understanding of
telomerase and its pivotal role in safeguarding the genome will undoubtedly mature as new
links between enzyme regulation and fundamental aspects of cellular physiology continue to
be revealed.
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Figure 1.
Simplified diagram of regulatory and functional elements associated with the hTERT gene.
Rightward arrow depicts start of transcription. Start and stop of translation are indicated. A
subset of hTERT promoter elements as well as the binding site for CTCF, a chromatin
insulator element, are indicated. Within the TERT coding region, dark blue boxes denote
reverse transcriptase motifs, while the light blue box shows the TEN domain. The three
major splicing isoforms of TERT (α, β and γ) are shown in pink. Drawing is not to scale.
See text for details.
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Figure 2.
Summary of post-translational modifications of hTERT and their consequences for
telomerase activity. Red arrows indicate negative regulation, green arrows positive
regulation. See text for details.
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Figure 3.
A model for the regulation of repeat addition processivity (RAP) of telomerase is regulated
in human cancer cells. Diagram summarizes results from [51]. A) Telomerase displays high
RAP in cells that maintain telomere length. In this setting, a single telomerase enzyme binds
each chromosome end, adding multiple telomere repeats (extended blue arrows) before
being released from the DNA. B) Telomerase RAP is decreased following artificial telomere
shortening. Under these conditions, telomerase is less processive (fragmented blue arrows),
adding fewer telomeric repeats before dissociation (low RAP). However, multiple enzymes
bind each chromosome end sequentially to rapidly extend telomere tracts and thereby
reestablish telomere length homeostasis.
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