Skip to main content
. Author manuscript; available in PMC: 2013 Feb 1.
Published in final edited form as: FEMS Immunol Med Microbiol. 2011 Dec 19;64(1):13–20. doi: 10.1111/j.1574-695X.2011.00909.x

Table 1.

A. phagocytophilum strategies for intracellular survival and propagation, and their effect on histopathology and disease.

A. phagocytophilum-related pathogetic mechanism Target or effector molecule Effect on A. phagocytophilum loada Effect of gene deletion/pharmacologic/antibody inhibition on histopathologic lesionsb References
Phagocyte oxidase Disorganized assembly or transcriptional repression of host CYBB/RAC2 0 (in vivo); ↑↑↑ (in vitro) ↓↓ (phox −/− B6 mice in vivo) (Banerjee, et al., 2000, Banerjee, et al., 2000, Carlyon, et al., 2002, von Loewenich, et al., 2004, Scorpio, et al., 2006)
Chemokine/cytokine expression IL8, IL-10:IFNγ ↑↑ 0 (CXCR1 antibody-treated vs. control antibody-treated in vivo); ↓↓ (in dexamethasone-treated horses) (Akkoyunlu & Fikrig, 2000, Akkoyunlu, et al., 2001, Scorpio, et al., 2004, Davies, et al., in press)
A. phagocytophilum granulocyte entry A. phagocytophilum
AnkA
Host ROCK1 and Syk
↑↑ to ↑↑↑ ↓↓ to ↓↓↓ (vs. ROCK1 or Syk- silencing or vs. AnkA control antibody in vitro) (Lin, et al., 2007, Thomas & Fikrig, 2007)
Histone deacetylase (HDAC) HDAC1 and 2 ↑↑ (vs. HDAC-silenced cells or NaB or trichostatin inhibition in vitro) Not done (Garcia-Garcia, et al., 2009)
a

↑ - increased bacterial load or survival

b

↓ - decreased or “0” no change in histopathologic inflammation compared to unmodified control