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3'-end cleavage and subsequent poly-
adenylation are critical steps in 

mRNA maturation. The precise loca-
tion where cleavage occurs [referred to 
as poly(A) site] is determined by a tri-
partite mechanism in which a A(A/U)
UAAA hexamer, GU-rich downstream 
element and UGUA upstream element 
are recognized by the cleavage and poly-
adenylation factor (CPSF), cleavage 
stimulation factor (CstF) and cleavage 
factor I

m
 (CFI

m
), respectively. CFI

m
 is 

composed of a smaller 25 kDa subunit 
(CFI

m
25) and a larger 59, 68 or 72 kDa 

subunit. CFI
m
68 interacts with CFI

m
25 

through its N-terminal RNA recogni-
tion motif (RRM). We recently solved 
the crystal structures of CFI

m
25 bound 

to RNA and of a complex of CFI
m
25, the 

RRM domain of CFI
m
68 and RNA. Our 

studies illustrated the molecular basis for 
UGUA recognition by the CFI

m
 complex, 

suggested a possible mechanism for CFI
m
 

mediated alternative polyadenylation, 
and revealed potential links between 
CFI

m
 and other mRNA processing fac-

tors, such as the 20 kDa subunit of the 
cap binding protein (CBP20), and the 
splicing regulator U2AF65.

Introduction

3' processing of message RNA (mRNA) is 
an essential maturation step that increases 
the stability of mRNA, facilitates its 
export from the nucleus to the cytoplasm, 
and enhances translation efficiency.1 3' end 
formation is a two-step process involving, 
first, endonucleolytic cleavage at a polyad-
enylation site [poly(A) site] followed by the 
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addition of a polyadenine tail.2-5 Poly(A) 
site definition is accomplished through 
the recognition of specific cis-elements 
[referred to as poly(A) signal] located on 
the mRNA by their corresponding protein 
factors.4,5 Two of the well-studied poly(A) 
signals are the A(A/U)UAAA hexamer 
and downstream GU-rich element, which 
are bound by the cleavage and polyadenyl-
ation specificity factor (CPSF) and cleav-
age stimulation factor (CstF) complexes, 
respectively.4,5 A third poly(A) signal con-
sists of UGUA elements and was identified 
as the preferred binding site of Cleavage 
Factor I

m
 (CFI

m
) by SELEX and biochem-

ical analyses.6,7 The tripartite core protein-
RNA complexes, together with Cleavage 
factor II

m
 serve as a platform to recruit 

other 3' processing factors to modulate the 
efficiency of the cleavage and polyadenyl-
ation reaction.1-3,8

CFI
m
 is a two-subunit complex, com-

posed of a small 25 kDa (CFI
m
25) sub-

unit and a larger 59/68/72 kDa subunit.9 
CFI

m
25 is encoded by one gene, CPSF5, 

whereas two separate genes, CPSF6 and 
CPSF7, code for two isoforms of the 
large subunit, CFI

m
68 and CFI

m
59. The 

third isoform, CFI
m
72, is an alternatively 

spliced form of CFI
m
68.9-11 CFI

m
68 and 

CFI
m
59 both contain an N-terminal 

RRM domain, a central proline-rich 
region, and a C-terminal RS-like 
domain.10,11 The N-terminal RRM of 
CFI

m
59/68 mediates the interaction with 

CFI
m
25.11 Besides its fundamental role 

in UGUA-mediated poly(A) site recog-
nition,6,7 CFI

m
 has been shown to influ-

ence alternative poly(A) site selection,12-14 
mRNA export,15,16 and mRNA splicing.17 
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conserved aromatic residues that are 
responsible for RNA binding is replaced 
by a leucine (L128 on RNP1).22

CFI
m
68, CFI

m
59 and their homo-

logues were aligned using ClustalW28 and 
sequence conservation was calculated and 
mapped onto the CFI

m
68 RRM model 

using ConSurf (Fig. 2B).29 In agreement 
with the proposed RNA path based on the 
biochemical data, residues in the vicinity 
of clefts 1 and 2, and located at the bottom 
of the RRM manifest higher conservation 
than the rest of the RRM. Taken together 
these observations suggest that the RNA is 
unlikely to loop across the β-sheet surface.

A Potential RNA   
Looping-Mediated Regulation  
of Alternative Polyadenylation  

by CFIm

Pre-mRNA may be polyadenylated in 
several different ways due to the pres-
ence of multiple polyadenylation sites in 
the 3'-UTR.30 Deep sequencing and bio-
informatics analyses have demonstrated 
the prevalence of alternative polyadenyl-
ation,8,31,32 which gives rise to mRNAs 
with 3' UTR of various lengths30,33,34 and 
subsequently affects a variety of cellular 
events, such as gene silencing, tissue differ-
entiation, and development.30,35 A recent 
report illustrated the involvement of CFI

m
 

in alternative polyadenylation in male 
germ cells.12-14 Moreover, knockdown of 
either CFI

m
25 or CFI

m
 complex in Hela 

cell extracts led to a shift to the use of an 
upstream poly(A) site.12,13 The ability to 
loop the intervening sequence between 
two UGUA elements by CFI

m
68 provided 

a potential mechanism for CFI
m
 to regu-

late alternative poly(A) site selection.18 
Gel shift assays using UGUA-containing 
RNAs of various lengths for the interven-
ing sequence showed that a minimum 
of 7 nucleotides (7 nt) is required for 
effective binding by the CFI

m
68 RRM-

CFI
m
25 complex, whereas longer spacers 

(9 to 15 nt) enhanced the binding affin-
ity. These data led to the hypothesis that 
CFI

m
68 RRM might not restrain the 

maximal length of the intervening RNA, 
and might therefore loop out an entire 
poly(A) site, including the AAUAAA hex-
amer and downstream GU rich element 
(Fig. 1). A similar RNA looping-mediated 

To further investigate the role of the 
larger CFI

m
 subunit in poly(A) site rec-

ognition, we solved a crystal structure 
of a CFI

m
68 RRM-CFI

m
25-RNA ter-

nary complex.18 Consistent with previ-
ous observations, CFI

m
68 and CFI

m
25 

forms a 2:2 heterotetramer.12 However, 
instead of forming a dimer, two CFI

m
68 

RRM molecules bind to opposite sides of 
the CFI

m
25 homodimer.18 The CFI

m
68 

RRM adopts the typical β
1
α

1
β

2
β

3
α

2
β

4
 

architecture.22 The RRM contacts 
CFI

m
25 through the loops connecting 

β
1
/α

1
 and β

2
/β

3
, referred to as loop1 and 

loop3, respectively. Interactions medi-
ated by loop1 are mainly hydrophobic, 
whereas loop3 residues participate in 
hydrogen bonding interactions, involv-
ing both side chain and main chain 
atoms. Mutagenesis analyses illustrated 
that only loop3 is critical for the CFI

m
 

complex formation.
Biochemical data demonstrated a criti-

cal role of CFI
m
68 in looping the inter-

vening sequence between the two UGUA 
elements bound by the CFI

m
25 dimer. 

Two CFI
m
25 monomers are oriented in 

an anti-parallel orientation, so that the 5' 
end of the two UGUA elements are fac-
ing each other. Hence, the intervening 
sequence needs to loop around to position 
both UGUA elements in the RNA bind-
ing pocket of CFI

m
25. Mutagenesis analy-

ses attempting to sketch a low resolution 
RNA path have revealed that the CFI

m
68 

RRM residues located in the clefts formed 
at CFI

m
68-CFI

m
25 interface are essential 

for RNA looping. A CFI
m
68 RRM qua-

druple variant bearing mutated residues 
in both clefts (W90A/W91A/N117A/
R118A) nearly abrogated the RNA bind-
ing affinity of CFI

m
. Unlike other RRMs, 

which bind RNA across the β-sheet sur-
face formed by the four anti-parallel 
β-strands,22 CFI

m
68 RRM is likely to 

direct the looping RNA beneath the 
β-sheet surface: Asp94, which is located 
at the bottom of the RRM, significantly 
reduced the RNA binding affinity of CFI

m
 

when mutated to alanine. Furthermore, an 
additional C-terminal α-helix (α

3
) imme-

diately following the RRM blocks the 
surface of the β-sheet, which is the plat-
form that usually binds RNAs.22 Also, in 
the CFI

m
68 RRM one of the three highly 

The recently solved crystal structures 
of CFI

m
25-RNA and CFI

m
68 RRM-

CFI
m
25-RNA complexes18 taken together 

with biochemical analyses shed light on 
the molecular mechanisms underpinning 
CFI

m
’s specificity for UGUA elements 

and its role in alternative poly(A) site 
selection. The major findings resulting 
from these studies and their implications 
are discussed below.

CFIm Binds mRNA through the 
Collaboration of Two Distinct 

 Protein Domains

A quick glance at the domain organization 
of the two subunits of CFI

m
 might give 

the erroneous impression that CFI
m
68 is 

likely to be the subunit that recognizes 
UGUA sequence elements, because the 
RRM it contains is the most abundant 
single-stranded RNA binding domain in 
vertebrates.19,20 Furthermore, this motif 
interacts with RNA in a sequence-specific 
manner in a large number of instances.21,22 
In contrast, CFI

m
25 possesses a Nudix 

hydrolase domain,23,24 a motif found in 
housekeeping enzymes which primarily 
hydrolyze (di)nucleotides.25,26 However, 
UV crosslinking11 and gel shift assays27 
indicated that CFI

m
25 is capable of bind-

ing RNA. The CFI
m
68 RRM, on the 

other hand, enhances RNA binding medi-
ated by CFI

m
25, but is not able to bind 

RNA by itself.11

Crystal structures of CFI
m
25 in com-

plex with an RNA oligonucleotide con-
taining a UGUA element unveiled the 
molecular basis for sequence specific rec-
ognition.27 Comparison with other Nudix 
proteins revealed that CFI

m
25 possesses a 

unique α-helix loop motif preceding its 
Nudix fold. This α-helix loop motif not 
only blocks the canonical hydrolase active 
site, but also provides a scaffold for CFI

m
25 

to bind RNA.27 The UGUA element 
is recognized via a variety of hydrogen 
bonding interactions. U1 is mainly recog-
nized by main chain atoms from Phe104, 
whereas U3 is recognized by the side chain 
of Arg63. In addition to the interaction 
with the side chain of Glu55, G

2
 forms an 

intramolecular Watson-Crick/sugar-edge 
base pair with A4.27 Moreover, Phe103 
stacks with U1 and G

2
 to further stabilize 

the CFI
m
25-UGUA complex.27
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CFI
m
68, since a threonine is located at the 

position corresponding to CFI
m
59 Arg159. 

Another interesting feature within α
3
 is 

the hydrogen bond between Ser166 and 
the main chain carbonyl of residue 162,

59
 

(numbered as in CFI
m
59), which exists in 

both CFI
m
59 and CFI

m
68. Ser166 is sub-

ject to phosphorylation,46 which would 
disrupt the hydrogen bonding interaction 
with the main chain carbonyl of residue 
161,

68
 and potentially destabilize helix 

α
3
. Interestingly, when this serine was 

mutated into an aspartate, a phosphate 
mimic, we observed a two-fold increase in 
the RNA binding affinity of the CFI

m
68/

CFI
m
25 complex (data not shown). The 

potential role of Ser166 phosphorylation 
in the regulation of mRNA processing 
will need to be explored further.

Despite the fact that they crystallized 
in different space groups, the heterotetra-
mer of CFI

m
59 RRM-CFI

m
25 is organized 

in the same manner as the CFI
m
68 RRM-

CFI
m
25 complex, with two CFI

m
59 RRMs 

flanking the CFI
m
25 homodimer. In order 

to investigate the relationship between 
CFI

m
59 and CFI

m
68 in RNA binding, we 

inspected the sequence conservation (Fig. 
2A and B) and electrostatics potential of 
the two RRM domains (Fig. 2C). Most 
of the surface charges are similar between 
CFI

m
59 and CFI

m
68. One notable differ-

ence is that the cleft 2 side of CFI
m
59 is 

more negatively charged than in CFI
m
68. 

The potential impact of the charge differ-
ence on RNA binding will require further 
experimental investigation.

Although the overall domain archi-
tecture of individual subunits are nearly 
identical between CFI

m
68 RRM-CFI

m
25 

and CFI
m
59 RRM-CFI

m
25 complexes, a 

of a family of protein arginine meth-
yltransferases (PRMTs).10,44 The SH3 
domain of PRMT2 was found to inter-
act with CFI

m
59, but not CFI

m
68.10,45 

On the other hand, the PRMT5 com-
plex only methylates CFI

m
68 within the 

GAR motif that is absent in CFI
m
59.10 

The distinct methylation patterns of 
the two larger CFI

m
 subunits suggested 

they might play different roles in mRNA 
3' processing, but the function of these 
modifications have yet to be determined.

Besides the crystal structure of the 
CFI

m
68 RRM-CFI

m
25 complex,18 a struc-

ture of a CFI
m
59 RRM-CFI

m
25 complex 

has also been solved recently (Structural 
Genomics Consortium, Karolinska 
Institute; PDB ID code 3N9U). Although 
different RRM constructs were used for 
crystallization, namely residues 13–235 
for CFI

m
68 and 50–182 for CFI

m
59, both 

groups could observe interpretable electron 
density only for the RRM domain, i.e., 
residues 81–173 of CFI

m
68 and 82–177 of 

CFI
m
59. A structural comparison between 

the two complexes provides insight into 
the function of various CFI

m
 isoforms 

(Fig. 2D). The overall protein architec-
ture of CFI

m
59 RRM is very similar to 

that of CFI
m
68, with a typical RRM fold 

appended with a C-terminal helix posi-
tioned on top of the β-sheet. (RMSD 1.23 
Å calculated on 93 Cα atoms) (Fig. 2D). 
In addition to the hydrophobic stacking 
interaction between Phe168 and Tyr127 
and van der Waals contacts between 
Leu165 and Tyr85, which stabilize α

3
 as 

observed in CFI
m
68, Arg159 makes stack-

ing and hydrogen bonding interactions 
with Phe168 and Gln167, respectively. 
These additional forces are not observed in 

regulation mechanism has been proposed 
for the splicing regulator pyrimidine track 
binding protein (PTB).36 The antiparallel 
organization of the RRMs in PTB may 
allow the protein to loop out and exclude 
an entire exon from the mature mRNA.36 
Interestingly enough, the 3-subunit cleav-
age stimulation factor complex (CstF) 
has been proposed to form a heterohex-
amer consisting of two copies of each sub-
units: CstF77, CstF64 and CstF50.3,37-39 
Although CstF64 contains only one RRM 
domain, which has been shown to recog-
nize GU rich element,40,41 CstF64 might 
achieve a similar RNA looping mecha-
nism facilitated by the dimeric status of 
CstF complex and thereby influence the 
usage of an alternative poly(A) site. The 
hypothesis is consistent with the previous 
observation that a lower level of CstF64 
in plasma B cells correlates with the use 
of alternative poly(A) sites as compared 
to pre-B cells.42 We speculate that RNA 
looping might be a general mechanism 
utilized by some 3' processing factors to 
regulate polyadenylation.

CFIm68 and CFIm59 Might Play 
 Different Roles in 3' Processing

CFI
m
68 and CFI

m
59 share a similar 

domain composition that is the hall-
mark of splicing regulator SR proteins,43 
with a central proline-rich region flanked 
by an N-terminal RRM domain and 
a C-terminal RS-like domain. On the 
other hand, CFI

m
68 possesses an addi-

tional glycine-arginine rich (GAR) motif, 
which is missing in CFI

m
59. Interesting, 

CFI
m
68 has previously been shown to 

participate in the export of mRNA out of 
the nucleus and the GAR motif is respon-
sible for the interaction with the mRNA 
export receptor NXF1/TAP.15,16 These 
data demonstrated a potentially differ-
ent function for the two larger subunits. 
A recent study focused on post-transla-
tional modifications also shed light on 
the role of the multiple forms of the larger 
subunit.10 In the report, Martin and col-
leagues identified distinct methylation 
patterns of arginine residues in CFI

m
68 

and CFI
m
59, and the different enzymes 

they are methylated by.10 The RS-like 
domain of both CFI

m
68 and CFI

m
59 are 

weakly methylated by PRMT1, a member 

Figure 1. A model for how Cfim might facilitate alternative polyadenylation.
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a different manner, since an RNA mol-
ecule is not expected to thread through a 
4 Å cleft. We cannot rule out, however, 
that the RRM movement might be the 
result of crystal packing interactions. 
Structures of CFI

m
 in complex with a long 

RNA containing two UGUA elements 
will be required to define the path of the 
intervening looping sequences and possi-
bly shed light on the different roles that 
CFI

m
68 and CFI

m
59 play in RNA bind-

ing, in particular and mRNA processing 
in general.

in the CFI
m
59 RRM-CFI

m
25 complex, 

cleft2 is open. While one cleft1 exhibits 
the same width as in the CFI

m
68 RRM-

CFI
m
25 the other cleft1 is much narrower 

(~4 Å), due to a ~4° shift of the RRM 
domain which does not affect loop1 or 
loop3, which remain in the same posi-
tion (Fig. 2D and E). As a consequence, 
a salt bridge is formed between Glu112 of 
CFI

m
59 and Arg68 of CFI

m
25 (Fig. 2E). 

The movement of the RRM domain sug-
gests that CFI

m
68/CFI

m
25 and CFI

m
59/

CFI
m
25 complexes might bind RNA in 

superposition of the entire heterotetramer 
revealed interesting differences (Fig. 2D 
and E). The large subunit of CFI

m
 con-

tacts the CFI
m
25 dimer through loop1 

and loop3 of the RRM domain, and two 
clefts are formed at the RRM-CFI

m
25 

interface. These clefts have been proposed 
to serve as the entry and exit paths for the 
mRNA bound by CFI

m
. In the CFI

m
68 

RRM-CFI
m
25 complex, the exit clefts 

(designated as cleft2) are quite wide (~20 
Å) whereas the entrance clefts (designated 
as cleft1) are narrower (~8 Å). Similarly, 

Figure 2. Sequence and structure comparison of Cfim68 and Cfim59. (A) Sequence alignment of the Cfim68 and Cfim59 RRM domains. identical resi-
dues are highlighted in red. (B) Conservation of the Cfim68 RRM was calculated using the ConSurf server29 and displayed with PyMOL.53 (C) the electro-
static surface potential of the Cfim68 (left) and Cfim59 (right) RRM domains was calculated with Delphi58 and colored according to the electrostatic po-
tential (blue, positive; red, negative). Models are in the same orientation as the model on the right in (B). (D) Superposition of the Cfim25/Cfim59 (PDB 
iD: 3N9U) complex with Cfim25/Cfim68 (3Q2S). Both complexes are shown as cartoon models. Cfim25 monomers complexed with Cfim59 (Cfim2559) are 
colored in purple and pink, whereas Cfim25 monomers in complex with Cfim68 (Cfim2568) are colored in green and light green. the Cfim59 RRMs are 
colored in gold and yellow and Cfim68 RRMs are colored in teal and blue. Cleft1 on the left side of the picture is narrower due to a movement in the 
RRM domain, indicated with the orange curved arrow. the region delineated by a gray rectangle is shown in more detail in (e). (e) A close-up view of 
cleft1. Arg68 of Cfim25 participates in a salt bridge with Glu112 of Cfim59 (Glu11259), but the same arginine residue is too far away to make contact with 
the analogous glutamate in Cfim68 (Glu11168). Residues are shown as stick models and colored according to the molecules they belong to. ionic bonds 
are shown as red dashed lines. Helices are shown as cylinders for clarity.
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Note

After this review was accepted for publica-
tion a paper describing a crystal structure 
of a CFIm complex was published: 

Li H, Tong S, Li X, Shi H, Ying Z, Gao 
Y, Ge H, Niu L, Teng M. Structural basis 
of pre-mRNA recognition by the human 
cleavage factor I(m) complex. Cell Res 
2011; 21:1039-51.

CFIm may Bridge 3'  
Processing with Other mRNA  

Processing Events
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steps in mRNA processing, emerging 
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m
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