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Root development and architecture could be changed to adapt 
the environmental conditions. Although root is usually grown 
in soil, it still exposes to light penetrated through soil particles. 
Some studies also indicated light can be conducted from shoots 
to roots through vascular bundle tissues.1,2 Recently, we have 
reported that the light-exposed seminal roots of indica-type rice, 
i.e., Taichung Native 1 (TCN1), presented the wavy morphol-
ogy.3 The light-induced wavy root was not performed in japonica 
rice such as Tainung 67 (TNG67). Moreover, the circumutation 
of TCN1 seminal root tip were observed with time-lapse photog-
raphy during root growth. According to the investigations among 
various rice varieties, it has been found that the root morphology 
was determined by helix period and circumnutation trajectory 
of root tip moving behavior.3 For example, the root tip move-
ment of light-exposed TCN1 seedlings was a regular circumnta-
tion; therefore, the roots performed a regular wavy phenotype. 
In the other rice variety (i.e., Taichung Sen 17) with the curling 
root morphology, the circumnutation trajectory of seminal roots 
was significantly irregular compared with that was observed in 
TCN1. In the previous report, we showed that the auxin and 
oxylipins (i.e., ketol) played important roles to trigger the light-
induced wavy roots.3

The wavy root phenotype has also been observed in Arabidopsis 
when it was cultured on an agar-plate that was inclined at an angle 
of less than 90°.4 Based on the studies in Arabidopsis mutants, 
the performance of obstacle-touching induced wavy phenotype 
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in seedlings roots was related to the functions of auxin efflux/
influx carriers and some proteins involved in cell expansion.4-6 
Moreover, ethylene also played a role to modulate the wavy root 
morphology.7

In our previous experiments for studying the light-induced 
wavy roots, rice seedlings were cultured in water. In order to 
reveal the effect of interaction between light signal pathway and 
touch stimuli on rice seminal root growth, the sterilized rice 
seeds of TCN1 and TNG67 cultivars were germinated at 30°C 
in dark for 2 d and moved to continuous white light conditions 
(90 μmol m-2 s-1) to grow in vertically oriented square dishes 
containing 1.5% and 2% (w/v) Phytagel (Sigma, St. Louis, 
MO), respectively. The Phytagel percentage of the medium that 
we used here were higher than that was used for plant tissue 
culture in usual. After 3 d culture, the seminal roots of seed-
lings on 1.5% Phytagel performed wavy phenotype that was 
similar to the wavy roots observed in water-cultured seedlings 
under light conditions. Furthermore, the seminal roots in 2% 
Phytagel was grown to be a curling type (Fig. 1). On the other 
hand, no wavy or curling root morphology was presented in dark 
conditions either in 1.5% or 2% Phytagel-containing medium 
(Fig. 1). These results showed that root-Phytagel interaction 
could not directly induce the significant wavy or curling root 
morphology under dark growth conditions, but it could modify 
the light-stimulated helical growth and conduct the curling root 
morphology.
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SHORT COmmUNICATION

Photomorphology of the seminal roots was diverse among rice 
varieties. Our previous data showed light-induced wavy roots 
could not be conducted in TNG67 rice cultivar.3 Here, we also 
observed the root growth of TNG67 rice seedlings on Phytagel-
containing plates, and the results showed the straight root mor-
phology in both light and dark conditions (data not shown). 
These results indicated that the phenomena of touch-stimulated 
curling roots were also rice variety-dependent.

Based on above mentioned results, it was suggested that mech-
anisms of root-gel interaction for conducting curling phenotype 
was highly correlated with the transduction pathway of light sig-
nal to induce root waving. This hypothesis was supported by the 
observation on physiological mechanisms of light-induced wavy 
roots in rice plants and the obstacle-touching stimulated wavy 
roots in Arabidopsis. Our previous observation in rice plants sug-
gested that auxin polar transport was essential for light-induced 
root waving and fatty acid oxygenation was involved to the 
mechanism of root waving in light.3 In Arabidopsis, auxin polar 
transport was also indicated to play a role in obstacle-touching 
stimulated root waving.8,9 In addition, wavy roots of Arabidopsis 
could be induced by several products of fatty acid oxygenation, 
i.e., ketols, ketones and hydroxides.10

In conclusion, both light signal and touch stimuli were the 
important environmental cues to guide root growth and determine 
root morphology. Touch stimuli were able to modify the trajectory 
of light-induced root waving. Phenomena of both light-induced 
wavy roots and touch-stimulated curling roots were rice variety-
dependent. Furthermore, it was suggested that touch-induced sig-
naling may be associated with the light-induced signal pathway to 
conduct curling phenotype in seminal roots of rice seedlings.
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Figure 1. Effect of the interaction between light signals and touch 
stimuli on seminal root growth in rice seedlings. The TCN1 rice seeds 
were germinated in dark for 2 d and then germinated seeds were 
transferred to 1.5% and 2% Phytagel-containing plates for continuously 
growing. The root morphology was investigated after 3 d of Phytagel-
culture under light and dark conditions.
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