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Leaf size and shape are determined by spatial and temporal 
regulation of cell division and cell expansion. Members of class 
II TCP family of transcription factors regulate leaf morpho-
genesis1-3 by controlling the timing of proliferation to differen-
tiation switch in a developing leaf.4 Loss of TCP function leads 
to bigger, crinkly leaves due to uncontrolled growth1,2 whereas 
enhanced TCP activity gives rise to smaller, cup-shaped leaves 
resulting from premature cessation of cell division.5 The mecha-
nism of TCP activity and their downstream targets are poorly 
known.

Several phytohormones act independently, redundantly 
or interactively to affect many aspects of organ growth. 
Gibberellic acid (GA) and brassinosteroids (BR) are involved 
in cell division as well as expansion.6-9 Both auxin and cyto-
kinin promote cell division during shoot growth.10,11 Abscisic 
acid (ABA) performs a major role in growth inhibition under 
stress, but ethylene can also induce cell cycle arrest in young 
leaves under osmotic stress.12,13 Since class II TCP proteins, 
such as TCP4, 2, 3, 10 and 24 in Arabidopsis, are negative 
regulators of leaf growth, we have investigated if these proteins 
modulate the function of any phytohormone to control leaf 
morphogenesis.

Transcriptional Profile of TCP4:VP16-C  
Significantly Overlaps with that of ABA, MeJA  

and Auxin-Treated Plants

We performed genome-wide transcript analysis to identify 
genes that are differentially-expressed in TCP4:VP16-C in 
comparison with tcp4-1.5 A total of 1,335 genes were identified, 
of which 581 were upregulated and 754 were downregulated 
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(fold change ≥2). We compared these genes with the sets of 
genes that are regulated by seven phytohormones—auxin, 
GA, Brassinolide (an active BR), ABA, cytokinin, 1-amino-
cyclopropane-1-carboxylic acid (ACC, a precursor of ethyl-
ene) and methyl jasmonate (MeJA).14 Results of this analysis 
are shown in Table 1. TCP4:VP16-C-upregulated genes over-
lapped with genes downregulated by ABA and MeJA, whereas, 
TCP4-VP16-C-downregulated genes overlapped with those 
upregulated by these two hormones, suggesting that hyper-
activation of TCP4 produces an effect on the transcriptome 
that mimic the deficiency of ABA and MeJA. The antagonistic 
relationship between TCP4 and MeJA is unexpected as TCPs 
promote MeJA biosynthesis15 and TCP4:VP16-C plants dis-
play advanced senescence, a process controlled by MeJA.5 The 
analysis also revealed a similarity in transcriptome changes 
on auxin application and TCP4 activation. Interestingly, two 
auxin-induced small auxin-up RNA (SAUR) genes, At4g38850 
(SAUR-AC1) and At5g18060, were upregulated ~5- and 
~2.3-fold, respectively, in TCP4:VP16-C. Though the molecu-
lar function of SAURs is unknown, SAUR39 in rice negatively 
regulates auxin synthesis and transport.16 Further, a recent 
study has shown that TCP3 drives the expression of SAUR39 
homolog in Arabidopsis.17 Thus, TCP4 activation is expected 
to downregulate auxin response. This is supported by the fact 
that TCP4:VP16-C leaves lack serrations, a marginal struc-
ture induced by auxin action.5 TCP4:VP16-C-downregulated 
genes showed overlap with those downregulated by ethylene, 
while cytokinin-upregulated genes overlapped with both 
TCP4:VP16-C upregulated and downregulated genes. We did 
not observe any significant overlap with GA- and BR-regulated 
genes.
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TCP4 makes leaf cells more responsive to ABA-induced growth. 
The role of ABA in leaf is restricted to stomatal closure and promo-
tion of senescence. It exerts an inhibitory effect on plant growth 
under stress, acting antagonistically to other growth stimulators 
such as GA, IAA and cytokinin. An exception is ABA-deficient 
mutant aba1, where reduced level of ABA causes stunted growth 
with smaller leaves,18 suggesting that ABA acts as growth pro-
moter under normal conditions. It is possible that TCP4 acts to 
suppress ABA level/response, which is rescued by exogenous ABA 
application.

Though MeJA application did not affect the size of the wild 
type leaves, it enhanced leaf size in TCP4:VP16-C significantly. 
This result is surprising since effect of JA in leaf morphogenesis 
has not been reported. However, external application of MeJA 
in cultured cells results in G

2
→M arrest,19 whereas TCP4 blocks 

G
1
→S progression, upon expression in yeast,20 indicating that 

both JA and TCP4 function as cell-division inhibitors. Yet JA 
application on the TCP4:VP16-C leaves increased leaf size and 
a set of MeJA-induced genes is downregulated by TCP4 activity. 
This apparent contradicting result cannot be explained with our 
current knowledge on TCP function. In case of BR, all plants 
showed a small but steady decrease in leaf size and there was no 
difference in the response of wild type and TCP4:VP16-C.
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Rescue of Growth Defect in TCP4:VP16-C Leaves  
by Application of Hormones

Enhanced activity of TCP4 leads to reduced leaf size due to 
advanced onset of differentiation.4,5 In order to directly determine 
the relationship between TCP4 activity and hormone function, we 
measured the growth of TCP4:VP16-C leaves in the presence of 
exogenously-supplied hormones (Fig. 1). Response to GA

3
 applica-

tion was significantly higher in the TCP4:VP16-C leaves compared 
to wild-type leaves. At 10 μM concentration, GA

3
 increased leaf 

size by ~3.5 times in the transgenic line, compared to ~2 times 
increase in wild type. This demonstrated that TCP4 hyper-activa-
tion makes leaf cells more sensitive to GA, possibly placing TCP4 
downstream to GA-signaling. Similar GA-dependent response was 
observed in the cotyledons.5 As GA

3
-treated TCP4:VP16-C coty-

ledons had larger cells than wild type, it is likely that the partial 
rescue in leaf growth resulted from enhanced cell expansion. In 
contrast to GA, the TCP4:VP16-C leaves showed reduced sensi-
tivity to Naphthalene acetic acid (NAA). Unlike the wild-type, 
the size of TCP4:VP16 leaves remained unchanged. This auxin-
resistivity may be due to increased level of the putative negative 
regulators of auxin response such as SAUR.

Although wild type leaves did not respond to ABA, the 
TCP4:VP16-C leaves grew larger at the highest concentration  
(0.1 μM) of ABA (>0.1 μM ABA led to loss of seed germina-
tion). This suggests that, as in the case of GA, hyper-activity of 

Table 1. Comparison of TCP4:VP16-C-regulated and hormone-responsive genes

Number of genes upregulated by
Overlap with TCP4:VP16-C  

upregulated genes
Overlap with TCP4:VP16-C 

downregulated genes

Abscisic acid 1440 38 (37) 128 (49)a

1-amino-cyclopropane-1-carboxylic acid 167 8 (4) 5(6)

Brassinolide 264 9 (7) 15 (9)

Cytokinin 332 33 (9)a 24 (11)a

Auxin 430 25 (11)a 14 (15)

Methyl jasmonate 806 20 (21) 67 (27)a

Gibberellic acid 40 1 (1) 2 (1)

Number of genes downregulated by
Overlap with TCP4:VP16-C 

upregulated genes
Overlap with TCP4:VP16-C 

downregulated genes

Abscisic acid 1476 100 (38)a 52 (50)

1-amino-cyclopropane-1-carboxylic acid 365 11 (9) 28 (12)a

Brassinolide 383 18 (10) 11 (13)

Cytokinin 163 9 (4) 8 (6)

Auxin 355 9 (9) 31 (12)a

Methyl jasmonate 701 31 (18)a 39 (24)

Gibberellic acid 82 2 (2) 4 (3)

The list of genes upregulated/downregulated by TCP4:VP16-C was compared with those differentially expressed upon hormone treatments by using 
Microsoft Access. Significance of the overlap in each case was determined by using χ2 test. Bonferroni correction was applied for stringency. Number 
in parentheses indicates overlap expected by chance. ap <0.01. A significant overlap between the TCP4-upregulated and hormone-upregulated genes/
TCP4-downregulated and hormone-downregulated genes would indicate that TCP4 acts to upregulate the level or signaling of the hormone. On the 
other hand, overlap in the complementary combinations would indicate an antagonistic relationship between TCP4 activity and the hormone level/
response.
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Figure 1. Comparison of hormone-sensitivity of TCP4:VP16-C and Col-0. Graph showing the response of Col-0 (black bar) and TCP4:VP16-C (white bar) 
to different hormones with regard to leaf growth. Seeds were germinated on MS-agar plates containing increasing concentrations of the following 
hormones: GA3, NAA, ABA, MeJA and Brassinolide (an active Br) and the area of the first leaf was determined after 21 days (GA3, ABA, NAA) or 17 days 
(Br, MeJA) for 20 plants. Average area of hormone-treated leaves was expressed as percentage of that of untreated leaves. Error bars are not shown. 
n.d. denotes not determined.
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