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Long chain bases or sphingoid bases 
are building blocks of complex sphin-

golipids that display a signaling role in 
programmed cell death in plants. So far, 
the type of programmed cell death in 
which these signaling lipids have been 
demonstrated to participate is the cell 
death that occurs in plant immunity, 
known as the hypersensitive response. 
The few links that have been described 
in this pathway are: MPK6 activation, 
increased calcium concentrations and 
reactive oxygen species (ROS) genera-
tion. The latter constitute one of the 
more elusive loops because of the chemi-
cal nature of ROS, the multiple possible 
cell sites where they can be formed and 
the ways in which they influence cell 
structure and function.

A new transduction pathway that leads to 
programmed cell death (PCD) in plants 
has started to be unveiled.1,2 Sphingoid 
bases or long chain bases (LCBs) are the 
distinctive elements in this PCD route 
that naturally operates in the entrance 
site of a pathogen as a way to contend its 
spread in the plant tissues.2,3 This defense 
strategy has been known as the hypersen-
sitive response (HR).4,5

As a lately discovered PCD signaling 
circuit, three connected transducers have 
been clearly identified in Arabidopsis: the 
LCB sphinganine (also named dihydro-
sphingosine or d18:0); MPK6, a mito-
gen activated kinase and superoxide and 
hydrogen peroxide as reactive oxygen 
species (ROS).1,2 In addition, calcium 
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transients have been recently allocated 
downstream of exogenously added sphin-
ganine in tobacco cells.6

Contrary to the signaling lipids derived 
from complex glycerolipid degradation, 
sphinganine, a metabolic precursor of 
complex sphingolipids, is raised by de 
novo synthesis in the endoplasmic reticu-
lum to mediate PCD.1,2 Our recent work 
demonstrated that only MPK6 and not 
MPK3 (commonly functionally redun-
dant kinases) acts in this pathway and is 
positioned downstream of sphinganine 
elevation.2 Although ROS have been 
identified downstream of LCBs in the 
route towards PCD,1 the molecular sys-
tem responsible for this ROS generation, 
their cellular site of formation and their 
precise role in the pathway have not been 
unequivocally identified. ROS are pro-
duced in practically all cell compartments 
as a result of energy transfer reactions, 
leaks from the electron transport chains, 
and oxidase and peroxidase catalysis.7

Similar to what is observed in pathogen 
defense,3 increases in endogenous LCBs 
may be elicited by addition of fumonisin 
B1 (FB1) as well; FB1 is a mycotoxin that 
inhibits ceramide synthase. This inhibi-
tion results in an accumulation of its sub-
strate, sphinganine and its modified forms, 
leading to the activation of PCD.1,2,8 The 
application of FB1 is a commonly used 
approach for the study of PCD elicitation 
in Arabidopsis.1,2,9-11

An early production of ROS has been 
linked to an increase of LCBs. For exam-
ple, an H

2
O

2
 burst is found in tobacco cells 
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ROS are involved in the same way in 
Arabidopsis, since defense gene expression 
is also induced by FB1 in Arabidopsis.9 
In this case, it will be important to 
define how the early ROS that are DPI-
insensitive could contribute to the PCD 
manifestation mediated by sphinganine.

The generation of ROS (4–60 min) 
found in Arabidopsis was associated to 
three conditions: the addition of sphinga-
nine (Fig. 1A), FB1 (Fig. 1A) or patho-
gen elicitors.15 This is consistent with the 
MPK6 activation time, which is down-
stream of sphinganine elevation and 
occurs as early as 15 min of FB1 or sphin-
ganine exposure.2 All of them are events 
that appear as initial steps in the relay 
pathway that produces PCD.

In order to explore a possible partici-
pation of ROS at more advanced times 
of PCD progression, we detected in situ 
H

2
O

2
 formation in Arabidopsis seedlings 

previously exposed to FB1 for 48 h. As 
shown in Figure 1B, formation of the 
brown-reddish precipitate corresponding 
to the reaction of H

2
O

2
 with 3,3'-diami-

nobenzidine (DAB) was only visible in 
the FB1-exposed wild type plants, as com-
pared to the non-treated plants. However, 
when lcb2a-1 mutant seedlings were used, 
FB1 exposure had a subtle effect in ROS 
formation. This mutant has a T-DNA 
insertion in the gene encoding subunit 
LCB2a from serine palmitoyltransferase 
(SPT), which catalyzes the first step in 
sphingolipid synthesis18 and the mutant 
has a FB1-resistant phenotype.2 These 
results indicate that mutations in the 
LCB11 and LCB2a2 genes (coding for the 
subunits of the heterodimeric SPT) that 
lead to a non-PCD phenotype upon the 
FB1 treatment, are unable to produce 
H

2
O

2
. In addition, they suggest that high 

levels of hydrogen peroxide are produced 
at advanced times in the PCD mediated 
by LCBs in Arabidopsis.

Exposure of Arabidopsis to an aviru-
lent strain of Pseudomonas syringae pro-
duces an endogenous elevation of LCBs 
as a way to implement defense responses 
that include HR-PCD.3 In this condition, 
we clearly detected H

2
O

2
 formation inside 

chloroplasts (Fig. 2A). When ultrastruc-
ture of the seedlings tissues exposed to 
FB1 for 72 h was analyzed, integrity of the 
chloroplast membrane system was severely 

Arabidopsis, superoxide formation was 
unaffected by diphenyliodonium (DPI), 
a NADPH oxidase inhibitor (Fig. 1A). It 
is possible that the latter oxidative burst 
is due to an apoplastic peroxidase,15 or 
to intracellular ROS that diffuse out-
wards.16,17 These results also suggest that 
both tobacco and Arabidopsis cells could 
produce ROS from different sources.

It has been suggested that the H
2
O

2
 

burst associated with the sphinganine sig-
naling pathway leads to the expression of 
defense-related genes but not to the PCD 
itself in tobacco cells.12 It is possible that 

after 2–20 min of sphinganine supplemen-
tation,12 and superoxide radical augmented 
in the medium 60 min after FB1 or sphin-
ganine addition to Arabidopsis protoplasts 
(Fig. 1A). In consonance with this timing, 
both superoxide and H

2
O

2
 were detected 

in Arabidopsis leaves after 3–6 h exposure 
to FB1 or LCBs.1 However, the source of 
ROS generation associated with sphinga-
nine elevation seems to not be the same in 
both species: in tobacco cells, ROS forma-
tion is apparently dependent on a NADPH 
oxidase activity, a ROS source consis-
tently implicated in the HR,13,14 while in 

Figure 1. ROS are produced at early and long times in the FB1-induced PCD in Arabidopsis thaliana 
(Col-0). (A) Superoxide formation by Arabidopsis protoplasts is NADPH oxidase-independent and 
occurs 60 min after FB1 or sphinganine (d18:0) exposure. Protoplasts were obtained from a cell 
culture treated with cell wall lytic enzymes. Protoplasts were incubated with 10 μM FB1 or  
10 μM sphinganine for 1 h. Then, cells were vacuum-filtered and the filtrate was used to deter-
mine XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide, disodium 
salt] reduction as described in references 28 and 29. DPI was used at 50 μM. (B) H2O2 formation 
in Arabidopsis wt and lcb2a-1 mutant in the presence and absence of FB1. Arabidopsis seedlings 
were exposed to 10 μM FB1 and after 48 h seedlings were treated with DAB (3,3-diaminobenci-
dine) to detect H2O2 according to Thordal-Christensen et al.30
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affected in Arabidopsis wild-type seed-
lings exposed to FB1.2 Therefore, we sug-
gest that ROS generation-LCB induced in 
the chloroplast could be responsible of the 
observed membrane alteration, as noted by 
Liu et al. who found impairment in chlo-
roplast function as a result of H

2
O

2
 forma-

tion in this organelle from tobacco plants. 
Interestingly, these plants overexpressed 
a MAP kinase kinase that activated the 
kinase SIPK, which is the ortholog of the 
MPK6 from Arabidopsis, a transducer in 
the PCD instrumented by LCBs.2

In addition, we have detected altera-
tions in mitochondria ultrastructure as a 
result of 72 h of FB1 exposure (Fig. 2B). 
These alterations mainly consist in the 
reduced number of cristae, the membrane 
site of residence of the electron trans-
port complexes. In this sense, it has been 
shown that factors that induce PCD such 
as the victorin toxin, methyl jasmonate 
and H

2
O

2
 produce alterations in mito-

chondrial morphology.20-22 In fact, some 
of these studies propose that ROS are 
formed in the mitochondria and then dif-
fuse to the chloroplasts.22-24

It is reasonable to envisage that dam-
age of the membrane integrity of these 
two organelles reflects the effects of vast 
amounts of ROS produced by the electron 
transport chains.25,26 Recent evidence sup-
ports the destruction of the photosynthetic 
apparatus associated to the generation of 
ROS in the HR.26 At this time of PCD 
progression, ROS could be contributing 
to shut down the energy machinery in the 
cell, which ultimately would become the 
point of no-return of PCD27 as part of the 
execution program of the cell death medi-
ated by LCBs.

In conclusion, we propose that ROS 
can display two different functional roles 
in the PCD process driven by LCBs. These 
roles depend on the time of ROS expres-
sion, the cellular site where they are gener-
ated, the enzymes that produce them, and 
the magnitude in which they are formed.
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Figure 2. Conditions of LCBs elevation produce H2O2 formation in the chloroplast and perturba-
tion in the membrane morphology of mitochondria. (A) Exposure of Arabidopsis leaves to the 
avirulent strain Pseudomonas syringae pv. tomato DC3000 (avrRPM1) (or Pst avrRPM1) induces 
H2O2 formation in the chloroplast. Arabidopsis leaves were infiltrated with 1 x 108 UFC/ml Pst 
avrRPM1 and after 18 h, samples were treated to visualize H2O2 formation with the DAB reaction. 
Controls were infiltrated with 10 mM MgCl2 and then processed for DAB staining. Then, samples 
were analyzed in an optical photomicroscope Olympus Provis Model AX70. (B) Effect of FB1 on 
mitochondria ultrastructure. Wild type Arabidopsis seedlings were treated with FB1 for 72 h and 
tissues were processed and analyzed according to Saucedo et al.2 Ch, chloroplast; M, mitochon-
dria; PM, plasma membrane. Arrows show mitochondrial cisternae. Bars show the correspondent 
magnification.
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