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Sphingobium sp. strain SYK-6 is able to grow on an extensive variety of lignin-derived biaryls and monoaryls, and the catabolic
genes for these compounds are useful for the production of industrially valuable metabolites from lignin. Here we report the
complete nucleotide sequence of the SYK-6 genome which consists of the 4,199,332-bp-long chromosome and the 148,801-bp-
long plasmid.

Lignin is a complex heteropolymer produced from hydroxycin-
namyl alcohols through radical coupling (13). Due to the fact

that lignin is the most abundant aromatic substance in nature, the
potential for obtaining industrially valuable chemicals from lignin
is exceptionally high (1, 12). Microbial catabolic functions de-
grading lignin-derived aromatics are crucial in establishing pro-
cesses for effective utilization of lignin.

Sphingobium sp. strain SYK-6 (NBRC 103272) is a unique bac-
terium capable of utilizing various types of lignin-derived biaryls
and monoaryls as the sole source of carbon and energy (11). In this
strain, lignin-derived biaryls are degraded by a wide variety of
specific enzymes to syringate and vanillate. Then, syringate is con-
verted to 3-O-methylgallate, and vanillate is converted to proto-
catechuate. The resulting metabolites are further degraded
through the multiple ring cleavage pathways (7, 8). A significant
portion of the SYK-6 genes involved in the catabolism of lignin-
derived aromatics has been isolated and characterized thus far
(11). In addition to our previous results, information on the
whole-genome sequence of this bacterium will provide a more
complete understanding of a bacterial lignin catabolic system.

DNA shotgun libraries with inserts of 1.5 and 5.0 kb in pUC118
and a fosmid library with inserts of 40 kb in pCC1FOS (Epicentre
Biotechnologies, Madison, WI) were constructed. These clones
were end sequenced using dye terminator chemistry on an ABI
Prism 3730 sequencer, and the sequences of ca. 48,192 reads were
assembled using the PHRED/PHRAP/CONSED software (3–5).
Fosmid clones that link two contigs were selected and sequenced
by primer walking to close any gaps. The prediction of open read-
ing frames (ORFs) was performed using Glimmer 3 (2). Putative
nontranslated genes were identified using the Rfam (6),
tRNAscan-SE (10), and ARAGORN (9) programs.

The genome of SYK-6 consists of a circular chromosome
(4,199,332 bp; 65.57% G�C; 3,913 ORFs) and a circular plasmid,
pSLGP (148,801 bp; 64.40% G�C; 150 ORFs). The chromosome
has two copies of rRNA operons and 50 tRNA genes. Comparisons
between the genomes of SYK-6 and six other sphingomonad
strains, Sphingobium japonicum UT26S, Sphingomonas wittichii
RW1, Sphingobium chlorophenolicum L-1, Novosphingobium aro-
maticivorans DSM 12444, Novosphingobium sp. strain PP1Y, and
Sphingopyxis alaskensis RB2256, revealed no synteny, but approx-

imately 48 to 57% of total ORFs in strain SYK-6 were orthologous
to those of other strains. Interestingly, ca. 120 ORFs on pSLGP
were almost identical to those on chromosome 1 of strain UT26S,
suggesting a plasmid-mediated gene transfer between sphin-
gomonads. Genes involved in the catabolism of lignin-derived
aromatics are located on the chromosome and scattered through-
out at least 10 different loci. A significantly higher number of
major facilitator superfamily transporters were predicted for
strains SYK-6, RW1, and PP1Y (66 to 70 transporters), whereas
the remaining four strains were predicted to have between 31 and
46 transporters. This may reflect that SYK-6 requires a large num-
ber of transporters to take up an extensive variety of lignin-derived
aromatics.

Nucleotide sequence accession numbers. The nucleotide se-
quences of the Sphingobium sp. strain SYK-6 chromosome and
pSLGP were deposited in the DDBJ/EMBL/GenBank databases
under accession numbers AP012222 and AP012223, respectively.
The annotated genome sequence is also available in the DOGAN
genome database (http://www.bio.nite.go.jp/dogan/Top).
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