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Resistance of MLL–AFF1-positive acute lymphoblastic leukemia to tumor necrosis
factor-alpha is mediated by S100A6 upregulation
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Mixed-lineage leukemia (MLL)–AFF1 (MLL–AF4)-positive acute
lymphoblastic leukemia (ALL) is associated with poor prog-
nosis, even after allogeneic hematopoietic stem cell transplan-
tation (allo-HSCT). The resistance to graft-versus-leukemia
(GVL) effects may be responsible for the poor effect of allo-
HSCT on MLL–AFF1-positive ALL. Cytotoxic effector mechan-
isms mediated by tumor necrosis factor-alpha (TNF-a) was
reported to contribute to the GVL effect. We showed that
MLL–AFF1-positive ALL cell lines are resistant to TNF-a. To examine
the mechanism of resistance to TNF-a of MLL–AFF1-positive
leukemia, we focused on S100A6 as a possible factor.
Upregulation of S100A6 expression and inhibition of the
p53–caspase 8–caspase 3 pathway were observed only in
MLL–AFF1-positive ALL cell lines in the presence of TNF-a. The
effect of S100A6 on resistance to TNF-a by inhibition of the
p53–caspase 8–caspase 3 pathway of MLL–AFF1-positive ALL
cell lines were also confirmed by analysis using small
interfering RNA against S100A6. This pathway was also
confirmed in previously established MLL–AFF1 transgenic
mice. These results suggest that MLL–AFF1-positive ALL
escapes from TNF-a-mediated apoptosis by upregulation of
S100A6 expression, followed by interfering with p53–caspase
8–caspase 3 pathway. These results suggest that S100A6 may
be a promising therapeutic target for MLL–AFF1-positive ALL in
combination with allo-HSCT.
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Introduction

Rearrangements of the mixed-lineage leukemia (MLL) gene
located at 11q23 are common chromosomal abnormalities
associated with acute leukemia, especially infant leukemia and
secondary leukemia, following treatment with DNA topoiso-
merase II inhibitors. In addition, 11q23/MLL abnormalities are
now widely recognized as important prognostic factors in acute
leukemia. Over 70 chromosomal partners of 11q23 have been
identified to date, at least 50 of which have been cloned and
characterized at the molecular level.1 The prognosis of leukemia
patients with MLL rearrangement varies widely, depending upon
the partner gene, leukemia cell lineage, age of the patient and the
treatment administered.2 The most prevalent MLL rearrangement

in acute lymphoblastic leukemia (ALL) generates the
MLL–AFF1 (MLL/AF4) fusion gene due to a t(4;11)(q21;q23)
chromosomal translocation. Despite recent improvements in the
overall treatment outcome for ALL patients, MLL–AFF1-positive
ALL is still associated with a poor prognosis, one reason for which
is the ineffectiveness of allogeneic hematopoietic stem cell
transplantation (allo-HSCT).2 Considering this clinical course,
MLL–AFF1-positive ALL may acquire some mechanisms to escape
from graft-versus-leukemia (GVL) effects after allo-HSCT. Donor
CD4þ , CD8þ and natural killer cells have been reported to
mediate the GVL effect.3 Although the mechanism underlying the
GVL effect mediated by these cells is not completely understood,
cytotoxic effector mechanisms mediated by tumor necrosis factor-
alpha (TNF-a) were reported to be one of the most important
factors associated with the GVL effect.3

S100A6 is a 10.5-kDa calcium (Ca2þ )-binding protein that
belongs to the S100 protein family and contains two EF-hand
motifs responsible for binding of Ca2þ .4 Binding of Ca2þ

induces a conformational change in the S100A6 molecule,
which increases its overall hydrophobicity and allows for
interaction with target proteins.4 Recently, induction of
S100A6 was reported to limit the TNF-a-induced myocyte
apoptosis by associating with the tumor suppressor protein p53.5

S100A6 has also been implicated in many cellular processes
and is often upregulated in many cancer cells.6 In addition, we
previously showed that synergistic enhancement of S100A6
expression by MLL–AFF1 fusion and FLT3-TKD has an important
role in MLL–AFF1-associated leukemogenesis.7

The present study was performed to determine whether the
TNF-a resistance of MLL–AFF1-positive ALL is mediated by
inactivation of the p53 pathway by upregulation of S100A6.

Materials and methods

Cell culture
The MLL–AFF1-positive ALL cell lines SEM and RS4;11 were
purchased from American Type Culture Collection (ATCC;
Manassas, VA, USA). The additional MLL–AFF1-negative
human-leukemia cell lines used in this study ; MOLT4, Raji,
H9, NAMALWA and HS-Sultan were also purchased from
ATCC. The SEM cells were maintained in Dulbecco’s modified
Eagle’s medium-high glucose (Sigma, St Louis, MO, USA)
supplemented with 10% fetal bovine serum (PAN Biowest,
Nuaillé, France) at 37 1C and 5% CO2. All other cell lines were
cultivated in RPMI 1640 (Sigma) supplemented with 10% fetal
bovine serum at 37 1C and 5% CO2. These leukemia cell lines
were incubated with or without TNF-a (5 ng/ml) for 48 h before
counting and collecting cells to examine the effect of TNF-a on
leukemia cells as described previously.5
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Cell count ratio (TNF-a(þ )/TNF-a(�)) was calculated as
cell count under TNF-a (5 ng/ml)/cell count without TNF-a
(5 ng/ml).

Western blotting analysis
Western blotting analysis was performed as described
previously.8 Equal aliquots of lysate from cell lines or homo-
genized mouse spleen were subjected to 10% SDS-polyacrylamide
gel electrophoresis, transferred onto polyvinylidene difluoride
membranes and immunoblotted with the following primary
antibodies: anti-s100A6 (calcyclin; Santa Cruz Biotechnology,
Santa Cruz, CA, USA), anti-p53 (Santa Cruz, Biotechnology),
anti-acetyl-p53 (Millipore, Billerica, MA, USA), anti-TNF R1,
anti-cleaved caspase 8 and anti-cleaved caspase 3 (Cell Signal-
ing Technology Japan, Tokyo, Japan), or anti-b-actin (Millipore).
Can Get Signal (Toyobo, Tokyo, Japan) was used to promote the
reaction between primary antibody and antigen. Images were
captured using a Konica SRX-201 (Konica, Tokyo, Japan).
Densitometry measurements were carried out on selected
scanned Western blot images, using the CS analyzer version 3
(ATTO, Tokyo, Japan). The quantified bands were normalized
by b-actin expression.

Small interfering RNA (siRNA) for MLL–AFF1 and
S100A6
Synthetic sense and antisense oligoribonucleotides were synthe-
sized by Takara (Shiga, Japan). The sequences of MLL–AFF1
siRNA targeting MLL–AFF1 fusion site in SEM or RS4;11 and
S100A6 siRNA targeting S100A6 were as described pre-
viously.7,9 We used the mismatch control SNC1 as a negative
control siRNA (Takara). The SEM and RS4;11 were transfected
with 50 nM (final concentration) of siRNA using TransIT-TKO
transfection reagent (Mirus Bio, Madison, WI, USA) according to
the manufacturer’s instructions. After siRNA transfection, we
determined the mRNA expression of MLL/AFF1 or S100A6 by
real-time quantitative PCR to confirm the silencing of mRNA
expression.

Real-time quantitative PCR analysis of MLL–AFF1,
S100A6 and b-actin
We determined the levels of MLL–AFF1 and S100A6 mRNA
expression in leukemia cells. Total RNA was extracted and the
RNAs were treated with DNase using an RNeasy Mini kit and
RNase-Free DNase set (Qiagen, Germantown, MD, USA) and
converted to cDNA using an RNA PCR kit (Takara). Portions of
unamplified cDNA were subjected to PCR with SYBR Green PCR
Core Reagents (PE Applied Biosystems, Foster City, CA, USA).
Incorporation of the SYBR Green dye into the PCR products was
monitored in real-time with an ABI PRISM 7700 sequence
detection system (PE Applied Biosystems), thereby allowing
determination of the threshold cycle at which exponential
amplification of PCR products began. The threshold cycle values
for cDNAs corresponding to b-actin and target genes were used
to calculate the abundance of the target transcripts relative to that
of b-actin mRNA. The oligonucleotide primers of MLL/AFF1 and
S100A6 were as described previously.7,9

Apoptosis of leukemia cell line
To examine apoptotic events, the DeadEnd Colorimetric TUNEL
System (Promega, Madison, WI, USA) was used according to the
manufacturer’s instructions. Apoptotic rates (%) were calculated as
follows: number of apoptotic cells relative to number of all cells.

MLL–AFF1 transgenic mice
MLL–AFF1 transgenic mice, which show lymphoma at a latest
age of 12 months, at which time lymphoma cells have infiltrated
the liver, lung and spleen, were established previously.10 We
used three MLL–AFF1 transgenic mice at the age of 14 months
for histopathology and western blotting analysis.

Statistical analysis
The results of the cell growth and gene expression assays were
analyzed by Student’s t-test, assuming unequal variances and
two-tailed distributions. Data from all experiments represent the
mean values±s.d. of at least triplicate samples.
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Figure 1 The comparison of sensitivity to TNF-a between MLL–AFF1-
positive ALL cell lines and MLL–AFF1-negative ALL cell lines. (a) Cell
count ratio (TNF-a(þ )/TNF-a(�)) of MLL–AFF1-negative cell line
(SEM and RS4;11) and MLL–AFF1-negative cell line (MOLT4, Raji, H9,
NAMALWA, Hs Sultan). TNF-a (5 ng/ml) significantly inhibited the
proliferation of cell lines only in MLL–AFF1-negative cell lines
(Po0.001). (b) Inhibition rate by TNF-a (5 ng/ml) of leukemia cell
line. The apoptotic rate of MLL–AFF1-positive ALL cell lines 48 h after
addition of TNF-a (5 ng/ml) were significantly lower than those of
MLL–AFF1-negative leukemia cell lines.
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Results

MLL–AFF1-positive cell lines show resistance to TNF-a
We analyzed the sensitivity to TNF-a of the MLL–AFF1-positive ALL
cell lines SEM and RS4;11, along with the MLL–AFF1-negative
leukemia cell lines MOLT4, Raji, H9, NAMALWA and HS-Sultan.

First of all, we examined the effect of TNF-a on proliferation
of these cell lines. TNF-a (5 ng/ml) significantly inhibited the
proliferation of cell lines only in MLL–AFF1-negative cell lines
(Po0.001; Figure 1a). Next, we examined the effect of TNF-a on
apoptosis of above cell lines. The apoptotic rate of MLL–AFF1-
positive ALL cell lines by TNF-a (5 ng/ml) were significantly
lower than those of MLL–AFF1-negative leukemia cell lines
(7.32±1.03% vs 27.41±1.96%, Po0.001; Figure 1b).

S100A6 was upregulated and the p53–caspase
8–caspase 3 pathway was downregulated in MLL–AFF1-
positive ALL cell lines in the presence of TNF-a
We focused on S100A6 and the p53 pathway as possible factors
involved in the mechanism of resistance to TNF-a of MLL–AFF1-
positive ALL cells. Western blotting analysis showed upregula-
tion of S100A6 expression only in MLL–AFF1-positive ALL cell
lines in the presence of TNF-a (5 ng/ml; Figure 2). Although the
acetyl-p53/p53 expression ratio, the cleaved caspase 3 and the
cleaved caspase 8 increased in MLL–AFF1-negative ALL cell
lines in the presence of TNF-a (5 ng/ml), none of them increased
in MLL–AFF1-positive ALL cell lines in the presence of TNF-a
(5 ng/ml; Figure 2). Western blotting analysis also showed there
were no differences of TNF receptor 1 expression in the absence
or presence of TNF-a (Figure 2).

MLL–AFF1 is essential for upregulation of S100A6 in the
presence of TNF-a and S100A6 is downstream of
MLL–AFF1 in MLL–AFF1-positive ALL cell lines
To confirm the relation between MLL–AFF1 and the upregula-
tion of S100A6 observed in the presence of TNF-a in MLL–AFF1-
positive cell lines, we examined the expression of S100A6
mRNA and MLL–AFF1 mRNA in the MLL–AFF1-positive cell
lines treated with siRNA against MLL–AFF1 or S100A6. Real-
time quantitative PCR analysis showed that S100A6 mRNA
expression was significantly inhibited by both MLL–AFF1 siRNA
(SEM, P¼ 0.04; RS4;11, P¼ 0.04) and S100A6 siRNA (SEM,
P¼ 0.04; RS4;11, P¼ 0.02) in comparison with control siRNA
(Figure 3a). Real-time quantitative PCR analysis also showed
that MLL–AFF1 mRNA expression was significantly inhibited by
MLL–AFF1 siRNA in comparison with control siRNA (SEM,
P¼ 0.006; RS4;11, Po0.001), but MLL–AFF1 expression was
not inhibited by S100A6 siRNA in comparison with control
siRNA (SEM, P¼ 0.76; RS4;11, P¼ 0.11; Figure 3a). These
results showed that MLL–AFF1 is essential for the upregulation
of S100A6 in the presence of TNF-a, and S100A6 is downstream
of MLL/AF4 in MLL–AFF1-positive ALL cell lines.

Upregulation of S100A6 is essential for resistance of
MLL–AFF1-positive ALL cell lines to apoptosis induced
by TNF-a
To confirm the effect of S100A6 on the resistance of MLL–AFF1-
positive ALL cell lines to TNF-a, we examined the apoptosis rate
of MLL–AFF1-positive ALL cell lines treated with siRNA against
MLL–AFF1 or S100A6 in the presence of TNF-a (5 ng/ml). The
apoptotic rate of MLL–AFF1-positive ALL cell lines treated with
siRNA against MLL–AFF1 in the presence of TNF-a was
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Figure 2 Western blotting analysis of lysate from leukemia cell lines. (After 48 h of addition or no addition of TNF-a (5 ng/ml)). All the band were
quantified and normalized by b-actin. Normalized densities of SEM cells without TNF-a were standardized as 1.00. Upregulation of S100A6
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significantly higher than those treated with control siRNA.
(SEM, 59.85±4.85% vs 21.00±1.0%, P¼ 0.016; RS4;11,
75.20±6.00%1 vs 18.6±3.60%, P¼ 0.015; Figure 3b). The
apoptotic rate of MLL–AFF1-positive ALL cell lines treated with
siRNA against S100A6 in the presence of TNF-a was signifi-
cantly higher than those treated with mismatch control siRNA
(SEM, 69.85±5.15% vs 21.00±1.00%, P¼ 0.011; RS4;11,
65.85± 3.35% vs 18.60±3.60%, P¼ 0.015; Figure 3b).

Downregulation of S100A6 leads MLL–AFF1-positive
ALL cell lines to apoptosis through the p53–caspase
8–caspase 3 pathway under TNF-a
Western blotting analysis showed that all of s100A6, acetyl-p53/
p53 ratio, cleaved caspase 8 and cleaved caspase 3 expression

were increased in cells treated with s100A6 siRNA in
comparison with those treated with control siRNA in the
presence of TNF-a, but MLL–AFF1 expression was not inhibited
by s100A6 siRNA (Figure 4). Western blotting analysis also
showed that all of S100A6, acetyl-p53/p53 ratio, cleaved
caspase 8 and cleaved caspase 3 expression were increased in
cells treated with MLL–AFF1 siRNA in comparison with those
treated with control siRNA in the presence of TNF-a (Figure 4).

S100A6 is upregulated and the p53–caspase 8–caspase
3 pathway is downregulated in lymphoma of MLL–AFF1
transgenic mice
To examine whether S100A6 is upregulated and the
p53–caspase 8–caspase 3 pathway is downregulated in vivo,
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Figure 3 Effect of S100A6 siRNA or MLL–AFF1 siRNA on MLL–AFF1-positive cell lines. (a) Real-time quantitative PCR analysis of S100A6 mRNA
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control siRNA. MLL–AFF1 mRNA expression was significantly inhibited by MLL–AFF1 siRNA in comparison with control siRNA, but MLL–AFF1
expression was not significantly inhibited by S100A6 siRNA. (b) Apoptotic rate by S100A6 siRNA or MLL–AFF1 siRNA or control siRNA in the
presence of TNF-a (5 ng/ml) of MLL–AFF1-positive cell lines (SEM and RS4;11). The apoptotic rate of MLL–AFF1-positive ALL cell lines treated with
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we performed western blotting analysis of the lysate from the
spleens of MLL–AFF1 transgenic mice highly infiltrated by
lymphoma cells (Figure 5a). Upregulation of S100A6 and
downregulation of the p53–caspase 8–caspase 3 pathway were
also confirmed in this mouse model (Figure 5b).

Discussion

This study showed that MLL–AFF1-positive ALL has tremendous
system to escape from TNF-a-induced apoptosis, which is a key
factor of GVL effect after allo-HSCT. In MLL–AFF1-negative ALL
cell lines, our results showed that TNF-a leads to apoptosis
through caspase 8–caspase 3 pathway or p53–caspase 8–caspase 3
pathway (Figure 6a). However, our results showed that
MLL–AFF1-positive ALL cell lines are resistant to TNF-a by
upregulation of S100A6 via inhibition of upregulation of the
p53–caspase 8–caspase 3 pathway (Figure 6b). The resistance to
GVL after allo-HSCT through this mechanism may be one of the
reasons for the poor prognosis of MLL–AFF1-positive ALL
patients despite undergoing allo-HSCT.2

A previous study indicated that MLL fusion protein suppresses
p53-mediated responses to DNA damage.11 Another study
showed that MLL-positive leukemia is resistant to tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL), which has
also been reported to have an important role in cytotoxic
effector mechanisms,12–18 including the GVL effect.19 The
downregulation of the p53–caspase 8–caspase 3 pathway by

the upregulation of S100A6 may suggest the mechanism
underlying the results described in these papers.

The interaction with p53 is a common feature of S100
proteins, including S100A6.20–24 Previous studies showed
that members of the S100 protein family bind to the
tetramerization domain of p53 when it is uncovered in the
monomer, and so, binding can disrupt the tetramer.21–28

Transcriptional activities of genes mediated by p53 change as
a result of alterations in p53 conformation.21–28 Our results that
MLL–AFF1-positive ALL cell lines are resistant to TNF-a by
upregulation of S100A6 via inhibition of upregulation of the
p53–caspase 8–caspase 3 pathway may be mediated by this
interaction between S100A6 and p53. One of the emphases of
this study is that we did not use severe combined immunode-
ficiency mice-transplantation model, but used MLL–AFF1 Tg
mice model whose immune systems are basically normal. So the
relations between S100A6 and p53–caspase 8–caspase 3
pathway under immune factors of mice, such as TNF-a could
be examined in vivo model.

Interestingly, a recent study showed that S100B, which is a
member of the S100 family, downregulates p53 and apoptosis in
malignant melanoma. Upregulation of S100A6 in pancreatic
cancer, cholangiocarcinoma, cutaneous melanoma, malignant
melanoma, gastric cancer, craniopharyngioma and squamous
cell carcinoma of the mouth were also reported.4 The S100
family is an attractive target of p53-mediated apoptosis of many
carcinoma. On the contrary, in some carcinoma such as
hepatocellular carcinoma and breast cancer, S100A6 was
reported to be decreased.6 Joo et al.29 showed that S100A6
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enhances the sensitivity to apoptosis via the upregulation of
caspase 3 activity in one of the hepatocellular carcinoma cell
line, Hep3B, in spite of our results. This discrepancy of effect of
S100A6 expression in different carcinoma may be illustrated by
the model proposed by van Diecket al.28 that the binding of
S100 proteins to p53 that can explain both activation and
inhibition of p53-mediated transcription by alteration of the
balance between monomeric p53 and tetrameric p53, depend-
ing on the concentration of p53 and the S100 proteins.

The incidence of MLL–AFF1-positive ALL shows a major peak
in early infancy that accounts for over 50% of ALL cases in
infants less than 6 months of age; 10–20% of cases occur in
older infants, 2% in children, and up to 7% in adults.30–33

Although 5-year overall survival of childhood ALL patients has
improved to as much as 90% due to progress in chemotherapy
and other supporting therapeutic modalities, including allo-
HSCT,34 the prognosis is still poor for the remaining 10% of the
cases, which consist mainly of MLL–AFF1-positive ALL and
Philadelphia chromosome-positive ALL. As use of BCR-ABL
tyrosine kinase inhibitors targeting Philadelphia chromosome-
positive ALL has been explored, MLL–AFF1-positive ALL is the
greatest obstacle to overcoming childhood ALL.

S100A6 may be a promising therapeutic target for MLL–AFF1-
positive ALL in combination with allo-HSCT, because inhibition
of S100A6 confers sensitivity on MLL–AFF1-positive ALL to the
TNF-a-mediated GVL effect.
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Figure 5 Examination of S100A6 expression in MLL–AFF1 transgenic (Tg) mouse. (a) Histopathological findings from 14-month-old wild-type
(WT) and MLL–AFF1 Tg mice (original magnification �4). Comparison of their spleens shows infiltration of lymphoma cells and destruction of the
normal organ structure in the MLL–AFF1 Tg mouse. (b)Western blotting analysis of lysate from spleen of WT or MLL–AFF1 Tg mice. Upregulation
of S100A6 and inhibition of upregulation of the p53–caspase 8–caspase 3 pathway were also confirmed in this mouse model. Densitometry
measurements were standardized by those of WT.
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Figure 6 Working hypothesis of the effect of TNF-a on MLL–AFF1-positive ALL cell lines and those on MLL–AFF1-negative ALL cell lines.
(a) Working hypothesis of the effect of TNF-a on MLL–AFF1-negative cell lines. TNF-a seems to lead leukemia cells to apoptosis through caspase
8–caspase 3 pathway or p53–caspase 8–caspase 3 pathway. (b) Working hypothesis of the pathway of MLL–AFF1-positive cell lines to be resistant
to TNF-a. MLL–AFF1-positive ALL cell lines seem to be resistant to TNF-a by upregulation of S100A6 via inhibition of upregulation of the
p53–caspase 8–caspase 3 pathway.
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