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ABSTRACT – This study specifically investigated a range of vehicle-related factors that are associated with a lower risk of 
serious or fatal injury to a belted driver in a head-on collision. This analysis investigated a range of structural characteristics, 
quantities that describes the physical features of a passenger vehicle, e.g., stiffness or frontal geometry. The study used a data-
mining approach (classification tree algorithm) to find the most significant relationships between injury outcome and the 
structural variables. The algorithm was applied to 120,000 real-world, head-on collisions, from the National Highway Traffic 
Safety Administration's (NHTSA's) State Crash data files, that were linked to structural attributes derived from frontal crash tests 
performed as part of the USA New Car Assessment Program. As with previous literature, the analysis found that the heavier 
vehicles were correlated with lower injury risk to their drivers. This analysis also found a new and significant correlation between 
the vehicle’s stiffness and injury risk. When an airbag deployed, the vehicle’s stiffness has the most statistically significant 
correlation with injury risk. These results suggest that in severe collisions, lower intrusion in the occupant cabin associated with 
higher stiffness is at least as important to occupant protection as vehicle weight for self-protection of the occupant. Consequently, 
the safety community might better improve self-protection by a renewed focus on increasing vehicle stiffness in order to improve 
crashworthiness in head-on collisions. 

__________________________________ 
 

INTRODUCTION 
 
A range of vehicle structural attributes have been 
identified as possibly correlated with a lower risk of 
serious or fatal injury in crashes. This study analyzes 
these possible relationships through the correlation of 
a large number of real-world, head-on collisions, 
from NHTSA’s State Crash data files, with structural 
attributes derived from frontal crash tests performed 
in the USA New Car Assessment Program (NCAP). 
  
This study specifically investigated the likelihood of 
serious or fatal injury to a belted driver in a head-on 
collision. The analysis examined a wide range of 
possible explanatory, structural characteristics, 
including Average Height of Force (Digges and 
Eigen, 2000); Initial Stiffness; relative and absolute 
measures of total crush, crush in the engine 
compartment, crush in the occupant compartment, the 
Kw400 Crush-Work Stiffness metric (Mohan and 
Smith, 2007); vehicle body type; and vehicle weight. 
 

This analysis extends previous research that 
compared two groups of vehicles or two groups of 
restraint systems. Kahane, for example, compared 
NCAP test results with fatality risk in real-world 
crashes recorded in the FARS database (1994). He 
related the fatality risk with laboratory impact 
responses of two groups of vehicles. 
 
FARS does not generally describe the physical 
characteristics of vehicles. Kahane linked crash 
records to fundamental impact responses from the 
NCAP frontal tests, including HIC, femur force, and 
chest acceleration of the dummy occupants. Kahane 
then used a logistic regression model to analyze the 
linked data set. The dependent variable in the model 
was the probability of fatality for the driver. The 
analysis used two categories of independent 
variables:  driver and crash characteristics (e.g. 
vehicle weight, driver age, and driver gender) and 
NCAP laboratory measurements. 
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Later, Austin examined five years of police-reported 
crashes from seven states in the State Data System 
(2005). The state files give information on both 
drivers in a head-on collision, including injury 
severity, age, and gender in their records. State data 
files have little engineering information, but they 
have a large number of crash observations. Austin 
investigated the aggressivity of a vehicle, i.e. the 
extent to which a vehicle (striking vehicle) hits 
another vehicle (struck vehicle) and increases the 
fatality risk in the struck vehicle. 
 
As in the earlier Kahane study, the Austin paper used 
the NCAP laboratory tests to obtain structural 
attributes of passenger vehicles. Searching through 
the state crash files, Austin selected head-on crashes 
and side collisions that involved two of the vehicles 
for which he had structural attributes. While 
adjusting for confounding variables such as vehicle 
weight, driver age, and driver gender, Austin used 
logistic regression to study the effect of structural 
attributes on the fatality risk of the driver in the 
struck vehicle.  
 
A number of international studies rate the safety 
performance of passenger vehicles by analyzing the 
risk to the drivers of the vehicles in real-world crash 
data reported by police or insurance claims. A recent 
study by Newstead et al. (2007) reviewed many past 
studies and rated vehicles by an index based on 3.2 
million drivers in tow-away crashes in Australia. 
Using logistic regression, Newstead investigated a 
safety index that rates the relative performance of 
vehicles in self protection and protection of the other 
road user. The index was used to identify vehicles 
that had inferior or superior safety characteristics. 
The study also suggested that optimizing for self 
protection might lead to faster and greater gains than 
optimizing on vehicle-to-vehicle compatibility. 
 
In this study, the authors link the State Crash data 
files with the NCAP data files. The study uses a data-
mining approach (classification tree algorithm) to 
find the most significant relationships based on 
120,000 crash observations between injury outcome 
in real-world crashes and the structural characteristics 
from the laboratory crash tests.  
 
DATA 
 
The first set of data is derived from NCAP tests, 
which measure the dynamic crash performance of 
passenger vehicles in frontal collisions into a rigid 
wall (see Figure 1). The tests measure the forces 
transmitted into a rigid barrier, the longitudinal 

acceleration in the rear-seat area, and the static and 
dynamic crush of the vehicle (NHTSA 2001).  
 

 
Figure1: NCAP Crash Test into a Rigid Wall Barrier  

 
Structural attributes, including stiffness, occupant 
compartment crush, and so on, can be calculated 
from the NCAP data files. For example, the initial 
stiffness is defined as the initial slope of the force-
versus-crush curve of the barrier crash, shown as a 
dashed line in Figure 2. 
 

 
Figure 2: Initial Stiffness Derived from NCAP 

Crash Test 

Another example is the Average Height of Force 
(AHOF), shown in Figure 3. The forces at a given 
height about the ground are multiplied by the height, 
and the products are summed. AHOF is defined as 
that sum divided by the sum of all the forces 
measured at the wall.  
 

 
Figure 3: AHOF Derived from NCAP Data Set 



 

The second data set was derived from real-world 
crash data, collected by a number of states within the 
USA to provide basic information for a large number 
of crashes. Each state maintains a database that 
contains broad information about people, vehicles, 
and conditions written down in Police Accident 
Reports (PAR’s). Each state has different 
requirements for collection and reporting of crash 
data. Beginning in about 1980, NHTSA began 
collecting crash information based on information 
based on PAR’s. Currently, the NHTSA obtains data 
from twenty-nine states and compiles it into the State 
Data System. Most states use the KABCO injury 
severity code (K is killed and A is incapacitating 
injury while other injury categories are not severe). A 
measure of crash severity, such as Δv, is not available 
in the State Data System. 
 
This study uses state crash data from Florida for 1992 
to 2004, Illinois for 1990 to 2003, Maryland for 
1989-2001, Ohio for 1990 to 1999, and Pennsylvania 
for 1997 to 2001 and 2003 to 2004.  
 
METHODS 
 
The analysis of the real-world head-on collisions 
consisted of the following stages: 

1) Extraction of Vehicle-Specific Structural 
Variables from NCAP Frontal Tests 

2) Association of State Accident Data with 
NCAP Frontal Test Data 

3) Application of the Data Mining/ 
Classification Tree Algorithm 

 
Extraction of Vehicle-Specific Structural 
Variables from NCAP Frontal Tests 
 
A wide variety of structural attributes were extracted 
from the 1991-2006 NCAP frontal test data using 
NHTSA’s Load Cell Analysis software package. 
NCAP tests results were excluded from this analysis 
if the Load Cell Analysis program reported suspicious 
or faulty sensor data, unless there were no valid test 
results available for a given vehicle model from a 
different year. Eliminating the tests with questionable 
data resulted in 567 tests that were included in this 
study. 
  
These structural attributes include: 

• Average Height of Force (AHOF)  
• Initial Stiffness  
• Absolute and relative measures of crush, 

including 
• Total crush from front to back bumper 

• Crush from the front bumper to the 
firewall  

• Crush from the firewall to the back 
bumper  

• Crush from the steering wheel to the 
back bumper  

• Maximum crush distance  
• Vehicle body type (LTV versus passenger 

vehicle) 
• Vehicle weight 
• Crush-work stiffness 200, 300, and 400, 

measures of the work required to crush 200, 
300, and 400 mm, respectively, of a 
vehicle’s front end. 

 
Association of State Crash Data with NCAP 
Frontal Test Data  
 
The state crash data and NASS CDS data were linked 
to the NCAP test data using the vehicle VINs 
reported in both data sets. While a number of USA 
State Crash Data files were available, this analysis 
was limited to those states for which the VIN was 
recorded.  
 
The matching algorithm first attempts to link the real 
world crash data to NCAP data based only on the 
VIN. The algorithm first attempts to match based on 
the following characters in the VIN field: 

• Char 1: Country of Manufacture 
• Char 2: Manufacturer 
• Char 3: Manufacturing Division 
• Chars 4-8: Vehicle Features, e.g. body style, 

engine type, model, series, etc. 
 

If no match was found then, the algorithm would 
attempt to match by excluding the Country of 
Manufacture field. If multiple matches are found, the 
algorithm uses the latest NCAP test with a model 
year that is less than or equal to the model year of the 
crash vehicle. If there are no NCAP tests with earlier 
model years, then the algorithm selects the NCAP 
test closest to the model year of the vehicle in the 
collision. 
 
If the algorithm is unable to find a match based on 
the VIN field, it then attempts to match using the 
vehicle make and model as reported by the Insurance 
Institute of Highway Safety (IIHS) Vindicator 
program (HLDI, 2005). If this is unsuccessful, the 
authors then attempted to match using the crash 
observation with a vehicle sister or clone in the test 
data.  
 



  

The IIHS Vindicator program is a command line 
utility that takes as input a 16 digit VIN, and 
produces output including the vehicle make and 
model. The matching program uses Vindicator in an 
automated process to extract the makes and models 
of vehicles in the NCAP tests and the State crash 
data. Then, this information is used to create a match 
based on make and model between these two 
datasets. 
 
To make as many matches as possible between the 
two datasets, the algorithm uses a list of vehicle 
sisters and clones (Anderson, 2007). Vehicle sisters 
and clones are vehicles that are based on the same 
platform, e.g. the Chevrolet Celebrity 4-door and the 
Buick Century 4-door. 
 
For this analysis, the following selection criteria were 
used to select observations from the merged data file: 

1. Head-on collisions involving 2 vehicles; 
2. Driver reported to be belted;  
3. Structural parameters were known for the 

vehicle (i.e. the state crash record could be 
linked to a valid NCAP frontal test); 

4. One of the vehicles was towed or disabled, 
or the driver was seriously/fatally injured (in 
order to eliminate minor property-damage-
only crashes from the dataset).  

 
The State Crash data set included crashes where at 
least one vehicle was towed (which would include 
both groups of injury outcome: (1) fatalities/severe 
injuries and (2) moderate/light/no injuries) or crashes 
in which the driver was seriously/fatally injured 
(which would include only serious/fatal injuries). The 
first set of crash observations make up the bulk of the 
observations. There were very few observations in 
the second set that are not also in the first. In order 
not to lose any information about crashes with 
negative outcomes, the analysis included these 
records that appeared in only the second set. 
 
The effects of using a tow away threshold for crash 
analysis have been studied (HSIS, 1998). It turns out 
that, to combat reduction in funding, many state 
agencies no longer report property-damage-only 
(PDO) crashes. If some state agencies report PDO 
and some state agencies do not, researchers can not 
analyze the state data in the aggregate. A benefit of 
increasing the analysis threshold to tow-away crashes 
is a much greater consistency of crash rates among 
individual states, i.e., if the states have the same crash 
rates at the tow away threshold, then it may be 
possible to analyze all the combined state data set.  
 

Execution of the Classification Tree Algorithm 
 
The analysis of the linked data set was done by 
applying a data mining techniques, called decision 
tree classification. The decision tree used in this 
study was generated by the TreeDisc algorithm (SAS 
Institute, 1995). Given the large set of collision 
observations that were gathered, this classification 
algorithm enables an automated search for the most 
important structural characteristics. 
 
The approach has the following attributes: 

• It uses an automated process to select the 
most statistically important structural 
variables: the data mining algorithm begins 
by building Chi-Square contingency tables 
that measure the correlation between the 
injury risk dependent variable and each and 
every one of the dependent variables, 

• It automates the search for the values of 
these structural characteristics that produce 
the most significant outcome for the driver: 
the independent variable with the highest 
correlation to injury risk is selected, and the 
data set is then partitioned based on the 
values of that independent variable, 

• It does not assume that all structural 
variables are equally important for all 
vehicle types: adjacent categories with 
statistically indistinguishable injury risk are 
merged into a combined grouping, and 

• It offers an advantage over Logistic 
Regression in that it does not manually (or 
subjectively) determine which of the 
independent variables must be used by the 
model. 

 
The recursion in the algorithm terminates under one 
of two conditions. It will terminate if the minimum 
number of observations in a leaf node falls below a 
predetermined threshold or if the optimally merged 
predictor for the next level falls below a p-value of 
0.1.  
 



 

 

Figure 4: The Head-on Collision Classification Tree (Self-Protection) 
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n: 8,530
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n: 11,080
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Value ranges for each of the independent structural 
characteristics were established. These ranges were 
established by grouping vehicles into one of five 
quintiles based on each structural attribute. In other 
words, vehicles with values for a given variable less 
than or equal to the 20th percentile in the crash 
records, vehicles with values for a given variable that 
were greater than the 20th percentile but less than or 
equal to the 40th percentile, etc. In addition to these 
structural variables, the classification algorithm input 
included the vehicle body type (LTV versus car) and 
whether or not an airbag deployed. 
 
RESULTS 
 
The classification tree algorithm was applied to 
120,000 severe cases, in which both the vehicle 
structural parameters of a vehicle and the outcome to 
its driver were known. The minimum number of 
observations for a node to be expanded was 13,000, 
and the maximum number of levels was four.  
 
A number of potential independent variables yielded 
insignificant or inconsistent results, and were 
excluded from this analysis. These variables included 
the vehicle body type, relative and absolute measures 

of crush, and the Kw200 and Kw300 crush-work 
stiffness. 

As shown in Figure 4, the classification tree for 
vehicle self-protection first divided the cases by 
whether an airbag was present and deployed. When 
an airbag deployed and the driver was belted, the 
serious/fatal injury rate was 18.26% as opposed to 
12.14% when the driver was belted, but no airbag 
deployed or there was no airbag present. The higher 
injury rate when an airbag deploys is most likely 
indicative of more severe crashes in these cases.  

The remainder of the tree classified the cases based 
on structural parameters. The Kw400 Crush-Work 
Stiffness, Initial Stiffness, and Vehicle Weight were 
found to have a statistically significant correlation 
with injury risk to the driver of the struck vehicle. 

Vehicle Stiffness and Self-Protection 
This analysis considers the effect of the Kw400 
Crush-Work Stiffness and the Initial Stiffness in 
tandem. Due to the high degree of correlation 
between these two stiffness metrics, their effect can 
be synthesized into one view of a generic relationship 
between vehicle stiffness and injury risk 
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Both the Initial Stiffness and Kw400 Crush-Work 
Stiffness metrics were found to have a significant 
correlation with injury risk for all types of vehicles, 
with or without airbag deployment.  

The relationship between the stiffness metrics and 
injury risk was uniform throughout the tree. As 
stiffness increased, the risk of serious or fatal injury 
to the driver decreased. 

The degree of correlation between stiffness and 
injury risk is particularly striking when an airbag 
deployed. In these cases, initial stiffness had the 
strongest association with injury risk. This 
relationship may be due to the role that an airbag 
plays in managing the stress on the restraint system 
caused by higher initial stiffness.  

Figure 5 depicts the relationship between Initial 
Stiffness and injury risk for the portions of the 
classification tree. In all cases, as initial stiffness of 
the driver's car increases, the injury risk to the driver 
decreases. Moreover, each instance in the 
classification tree divides the vehicles into three 
groups.  

The improvement in safety between the least safe and 
safest groups was significant, ranging from 21.7% 
(when no airbag deployed and vehicle weight was 
between the 40th and 80th percentiles) to 25.4% (when 
an airbag deployed) to 32.6% (when no airbag 
deployed and vehicle weight was above the 80th 
percentile). 

Figure 6 depicts the relationship between the Kw400 
Crush-Work Stiffness and injury risk for the 
classification tree. As with the Vehicle Initial 
Stiffness, as the Kw400 Crush-Work Stiffness 
increases, the injury risk to the driver decreases.  

Again, each instance in the classification tree divides 
the vehicles into three groups. The threshold for the 
lowest, least safe group varies between the 20th and 
40th percentile, while the threshold for the highest, 
safest group was the 80th percentile. Note that there 
were no vehicles with a Kw400 stiffness below the 
40th percentile in the right-hand group of the figure.  

When no airbag deployed and vehicle weight was 
less or equal than the 40th percentile, we can also see 
an increase in safety with increased vehicle stiffness. 
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Vehicle Weight and Self-Protection 
In addition to vehicle stiffness, vehicle weight was 
also found to have a significant correlation with 
injury risk, as shown by the classification tree in 
Figure 4. When no airbag deployed, the relationship 
between vehicle weight and injury risk conforms to 
previous research results, i.e., increased vehicle 
weight has the most significant correlation with 
reduced injury risk.  

Figure 7 depicts the classic relationship between 
struck vehicle weight and injury risk predicted by 
previous research. When no airbag was present or the 
airbag did not deploy, increases in vehicle weight as 
associated with lower serious/fatal injury rates for the 
driver of that vehicle. Vehicles above the 80th 
percentile weight (> 1,944 kg) have an injury rate of 
9.56% compared to 13.85% for vehicles at or below 
the 40th percentile weight (<= 1,542 kg). 

However, when an airbag deployed, the relationship 
between vehicle weight and injury risk did not 
conform to these previous results. For these cases, 
initial stiffness had the most significant correlation 
with injury risk (see Figure 4).  

DISCUSSION 

This study specifically investigated the likelihood of 
serious or fatal injury to a belted driver in a head-on 
collision. A wide range of possible explanatory, 
structural characteristics were included in this 

analysis, including Average Height of Force 
(AHOF); Initial Stiffness; relative and absolute 
measures of total crush, crush in the engine 
compartment, and crush in the occupant 
compartment; the Crush-Work Stiffness Kw400 
metric of "stiffness"; vehicle body type; and vehicle 
weight. The study used a data-mining approach 
(classification tree algorithm) to find the most 
significant relationships between injury outcome and 
the structural characteristics.  

To a certain extent, the relationships between vehicle 
weight and stiffness (independent variables) and the 
injury outcome (dependent variable) conform to 
previous studies. Specifically, the analysis found that 
heavier and stiffer vehicles were associated with a 
lower injury risk to the driver. 

In addition, the analysis did yield two additional 
significant results. Vehicle stiffness was found to be 
more important than AHOF for self-protection. Given 
the potential issues of bumper mismatches, AHOF 
would have been expected to have a stronger 
correlation with injury risk. However, vehicle 
stiffness was found to have a universally significant 
correlation with injury risk, while AHOF was not 
found to be significant (at levels captured by this 
analysis). 
 
The relative importance of stiffness and weight 
depended on whether an airbag deployed. When an 
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airbag deployed, vehicle weight was not found to 
have a strong correlation, while initial stiffness did.  

Vehicle weight certainly is important in these 
collisions. However, one possible explanation is that 
the importance of the vehicle weight is mitigated by 
the occupant restraint (indicated by airbag 
deployment). At a higher initial stiffness, more stress 
is placed on the restraint systems in a head-on 
collision.  

Moreover, higher initial stiffness is associated with 
lower intrusion into the occupant cabin. Therefore 
these results suggest that lower intrusion into the 
vehicle cabin associated with higher stiffness is at 
least as important as vehicle weight. 

In a sense, this study is similar to earlier research in 
which frontal safety was only concerned with 
crashworthiness while leaving out aggressivity and 
vehicle-to-vehicle compatibility. In other words, this 
paper is a study of self protection at a time when 
contemporary studies focus on compatibility. Today, 
the safety community has determined that good 
structural interaction—between two impacting 
vehicles—is required for good compatibility 
(Edwards, 2003). Other researchers have investigated 
how well vehicle characteristics, such as AHOF, 
spread the structural loading over various load paths 
in vehicle-to-vehicle compatibility studies (Mohan, 
2007). 

The authors believe that an engineering approach 
(e.g., pre-tensioners in the safety belts or balancing 
energy transfer in a collision) is a prudent leg of 
underpinning to automotive safety. There is another 
important leg of underpinning to automotive safety: 
A large number of real-world crashes show that the 
approach taken in the laboratory experiments results 
in thousands fewer deaths and severe injuries. The 
authors believe that this other branch must be studied 
further. 

Initially, the authors considered applying logistic 
regression for this study. However, the analytical 
difficulties inherent in logistic regression limited its 
usefulness. The difficulties included the need to 
manually (or subjectively) determine which of the 
independent variables should be used by the model 
and the need to partition the values in an independent 
variable group. 

The classification tree algorithm used here addresses 
these difficulties to a large extent. This methodology 
is able to process vast real-world crashes without the 
analysts subjectively directing the steps. The 
methodology proceeded purely on identifying the 

primary correlate with injury risk. At the next lowest 
branch of the tree, the methodology proceeded purely 
on the next primary correlate that was not a surrogate 
for the previously selected independent variable. 

Limitations of the Analysis 

The data sets used in this analysis presents limitations 
that should be kept in mind when interpreting results.  

The structural attributes from the NCAP data may not 
correlate with real-world attributes because of their 
generation under laboratory conditions. For example, 
in these frontal tests, vehicles collide with a planar 
barrier. Consequently, the amount of intrusion due to 
bumper mismatches would not be captured in the 
NCAP tests. 

The State Accident Databases contain no engineering 
measure of crash severity (e.g. ΔV). To mitigate this 
limitation, this study considers attempts to limit 
consideration to the most severe in which one of the 
vehicles required towing or the driver experienced a 
serious or fatal injury. Moreover, the significant 
number of cases used in this study mitigates this 
limitation through the law of large numbers. 

Future Plans 

In addition to the limitations inherent in the data, this 
analysis of vehicle self-protection, which does not 
take into account the properties of the striking 
vehicle, can provide only part of the explanation for 
the crash outcomes. Nonetheless, the data mining 
techniques described here provide a powerful tool to 
investigate more of these factors, most notably from 
the perspective of vehicle compatibility. 

In addition to expanding this analysis to include 
additional collision types (e.g. front to side 
collisions), future work is planned to examine crash 
outcomes from the following perspectives: 

• Vehicle Aggressivity: An analysis of a 
dataset comprised of crash observations in 
which we know the structural parameters of 
the other vehicle and the injury outcome for 
the driver of this vehicle. This dataset can 
provide information about the structural 
parameters that are likely to cause injury to 
the drivers of other vehicles. 

• Vehicle Compatibility: An analysis of the 
dataset comprised of crash observations in 
which we know the structural parameters of 
both vehicles and the injury outcome for the 
driver. This dataset can provide information 
in two key areas. First, the dataset could 
elucidate the relative importance of the 



  

structural parameters of the striking versus 
the struck vehicle. This dataset can also be 
used to analyze under what circumstances 
struck vehicle parameters provide protection 
(e.g. when struck by a heavy or light 
vehicle). 

The analysis will also be expanded through the 
examination of additional state data sources to further 
substantiate the relationships discovered in the 
current analysis.  

CONCLUSION 

A data mining analysis of State Data Files and NCAP 
frontal test results found statistically significant 
relationships between the risk of serious or fatal 
injury to a driver in a head-on collision and a number 
of vehicle structural parameters measured in the 
NCAP tests. These structural parameters are 
quantities that describe the physical features of a 
passenger vehicle, e.g., stiffness or frontal geometry.  

The classification tree analysis of these real-world 
collisions produced the following major conclusions: 

• As found in previous literature, the struck 
vehicle weight is correlated with lower 
injury risk in many cases.  

• However, when an airbag deployed in the 
struck vehicle or when the striking vehicle 
weight is above the 40th percentile, the 
struck vehicle’s stiffness has the most 
statistically significant correlation with 
injury risk.  That is, the drivers in the stiffer 
vehicles had the lower injury rate. 

This analysis, therefore, suggests that the safety 
community might better improve self-protection by a 
renewed focus on increasing the stiffness of their 
vehicles in order to improve their crashworthiness in 
head-on collisions. 
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