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Abstract
A metabolic network can be described by a set of elementary modes or pathways representing
discrete metabolic states that support cell function. We have recently shown that in the most likely
metabolic state the usage probability of individual elementary modes is distributed according to
the Boltzmann distribution law while complying with the principle of maximum entropy
production. To demonstrate that a metabolic network evolves towards such state we have carried
out adaptive evolution experiments with Thermoanaerobacterium saccharolyticum operating with
a reduced metabolic functionality based on a reduced set of elementary modes. In such reduced
metabolic network metabolic fluxes can be conveniently computed from the measured metabolite
secretion pattern. Over a time span of 300 generations the specific growth rate of the strain
continuously increased together with a continuous increase in the rate of entropy production. We
show that the rate of entropy production asymptotically approaches the maximum entropy
production rate predicted from the state when the usage probability of individual elementary
modes is distributed according to the Boltzmann distribution. Therefore, the outcome of evolution
of a complex biological system can be predicted in highly quantitative terms using basic statistical
mechanical principles.
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Introduction
Mutations and genetic rearrangements enable an organism to adapt to environmental
conditions. A cell with optimal performance is expected to emerge from an evolutionary
process in which fittest cells are selected by the given cell environment (Ibarra et al., 2002;
Fong et al., 2003; Teusink et al., 2009). The optimality of a cell is achieved through a
redistribution of the flux pattern through the metabolic network by adjusting the expression
pattern of catalytic and regulatory proteins. A fundamental question in evolution is how the
flux distribution of a cell changes in response to selection conditions imposed by the
environment. Understanding the evolutionary optimization of cell metabolism requires
knowledge of the steady-state metabolic flux distribution. Such knowledge can be obtained
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through Elementary Mode Analysis (EMA) which decomposes the overall metabolism of a
cell into a set of unique, indivisible pathway fluxes called elementary modes (Pfeiffer et al.,
1999; Schuster et al., 2000). These pathway fluxes operate based on minimal sets of
enzymes and are considered the fundamental components determining cell physiology. The
functioning metabolism can be expressed as a weighted, linear combination of elementary
modes. Thus, analysis of elementary modes permits a quantitative evaluation of the
structure, capability and robustness of cell metabolism (Carlson and Srienc, 2004; Papin et
al., 2002; Stelling et al., 2002; Trinh et al., 2008; Unrean et al., 2010). A steady-state flux
distribution corresponding to the state of cellular metabolism can be reconstructed using a
combination of elementary modes and their usage probabilities (Srienc and Unrean, 2009;
Wlaschin et al., 2006). A cell’s metabolism is expected to adapt to a given condition by
varying the probabilities of these elementary modes to result in optimal fitness.

We previously developed a theoretical framework (Srienc and Unrean, 2009)to describe the
cell metabolism according to the principle of maximum entropy production (Martyushev and
Seleznev, 2006). Identical theoretical results can be obtained on the basis of statistical
thermodynamics when the set of elementary modes operating at steady state conditions is
viewed as a canonical ensemble of metabolic states analogous to an ensemble of quantum
states of a macroscopic system (for a detailed derivation see supplementary file). The theory
suggests that the cell metabolism operates at the most likely distribution of usage
probabilities of elementary modes when entropy production is distributed according to the
principle of ‘fair apportionment of outcomes’ in which the usage probabilities of individual
elementary modes are distributed according to the Boltzmann distribution law. We therefore
hypothesize that evolving cells would spontaneously redistribute their pathway fluxes by
optimizing the usage probabilities to reach the state where the total rate of entropy formation
of the cell is maximized. In such state, which represents the fully evolved metabolism, the
occupation number (usage probability) of the entropy contribution of individual elementary
modes is distributed according to the Boltzmann distribution law analogous to the
distribution of discrete energy states in a physical system. Thus, the redistribution of the rate
of entropy production represents a critical objective in the evolution of metabolic pathways
supporting cell function.

We validate here the theoretical predictions by analyzing the changes in metabolic flux
distributions of the metabolism of Thermoanaerobacterium saccharolyticum during adaptive
evolution in a serial dilution experiment in which the cell culture has been maintained at
exponential growth conditions for extended numbers of generations. We show that the
evolving mutant of T. saccharolyticum adjusts the metabolic flux distribution during
adaptive evolution in a direction of increasing rate of entropy production supporting the
previously proposed assertion that a metabolic network naturally evolves by redistributing
its fluxes to maximize the rate of total entropy production.

Materials and Methods
Bacterial strains and plasmids

A knockout mutant of T. saccharolyticum was constructed by homologous recombination
with a non-replicative knockout plasmid (Desai et al., 2004). The knockout plasmid which
contained upstream and downstream homology regions of targeted gene and the kanamycin
marker inserted between the homologous regions was made by in vivo recombination in S.
cerevisiae (Shanks et al., 2006). A T. saccharolyticum host cell was transformed with the
plasmid which integrated into the genome at the regions upstream and downstream of the
target gene. The knockout cell with the target gene being replaced by the resistance marker
was selected on kanamycin. The marker in the knockout was later removed by transforming
the cell with the two homologous flanking regions upstream and downstream of the target
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gene without selection marker. Markerless gene deletion was confirmed by PCR and gel
electrophoresis (Trinh et al., 2006).

Metabolic evolution
Evolution experiments were conducted in anaerobic shake tubes containing MTC medium
and 20 g/l of glucose. The evolution was carried out in an extended exponential growth
experiment accomplished through serial dilution where the seed culture was started from
frozen stock. The culture was allowed to grow exponentially to an OD600 of 0.8–1.0 before
being transferred to fresh medium using a 40 fold dilution. At each dilution step, cell growth
was monitored via optical density measurement. Two to three serial dilutions were
performed every day. Serial dilution was continued for 68 culture transfers.

Growth in bioreactors
Batch growth kinetics was measured in a 2l Braun bioreactor (Biostat MD, B. Braun Biotech
International, Melsungen, Germany) with a working volume of 1l. The temperature was kept
at 55°C and pH was controlled at 6.0 using N2-flushed 6M NaOH (Sigma, St. Louis, MO).
Agitation speed was set at 100 rpm. The fermentor was made anaerobic by sparging with
nitrogen for 6 hours or until the culture medium became colorless. The fermentation
contained MTC medium (10 g/l yeast extract, 5 g/l tryptone, 2 g/l C6H5O7K3·H2O, 1.25 g/l
C6H8O7·H2O, 1 g/l Na2SO4, 1 g/l KH2PO4, 2.5 g/l NaHCO3, 5 g/l CH4N2O, 1 g/l
MgCl2·6H2O, 0.2 g/l CaCl2·2H2O, 0.1 g/l FeCl2·4H2O, 1 g/l cysteine-HCl, 1 mg/l resasurin)
supplemented with 20 g/l sugar. The cell inoculum was an overnight culture grown in the
same medium. The batch bioreactor was inoculated with seed culture at initial OD600nm of
approximately 0.1. The culture samples and supernatants were periodically collected for
analysis.

Analytical techniques
Cell concentration was monitored via optical density at a wavelength of 600 nm in a 1 cm
cuvette using a Hewlett Packard 8453 Diode Array spectrophotometer (Palo Alto, CA).
Metabolite concentrations including glucose and other secreted byproducts were determined
using a HPLC system (Shimadz10A, Shimadzu, Columbia, MD) equipped with an
autosampler (SIL-10AF), a cation exchange column (HPX-87H, Biorad Labs, Hercules, CA)
and a UV–vis detector (SPD-10A) and a refractive index detector (RID-10A) in series. The
column was run in an isocratic mode at 65°C at a flow rate of 0.5 ml/min with 5 mM H2SO4
as the mobile phase. A calibration curve correlating peak area to concentration of
metabolites was used to determine the quantity of metabolites in the sample.

Elementary Mode Analysis
A T. saccharolyticum metabolic network was constructed as shown in Fig. 1. The model was
based on utilizing glucose or xylose as the carbon source. Cell growth in the metabolic
network is described through the production of biomass with a composition as previously
determined experimentally for thermophilic bacteria (Tang et al., 2009). The biomass
composition determines then the connection with the precursors in the central metabolism
(Carlson and Srienc, 2004). Elementary mode analysis has been carried out using
METATOOL software version 5.0 (von Kamp and Schuster, 2006).

Non-equilibrium Thermodynamics of open systems
Consider an open system such as a CSTR with constant volume V and operating at constant
temperature T and pressure p. The entering and outflowing material streams contain i
components. The variables associated with the incoming stream are marked with the suffix
‘in’. The outgoing stream is of the composition of the system since it is well mixed and
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homogeneous. Heat can be exchanged through the surface of the system. To simplify the
balances we assume that the entering stream has the same temperature as the system. In this
system cell growth occurs, and the incoming stream contains all the required nutrients and
the outgoing stream contains unreacted nutrients, cells and secreted products.

Material Balance—The material balance for such open system can be written for each
component as follows

(1)

where ṅi are the molar flow rates of each component i, ξ ̇ (moles/l sec) is the extent of
reaction and νi is the stoichiometry coefficient of each component as it appears in the growth
equation, and V is the reactor volume. Note that cells or biomass represent one of the
components in the system. They contain many metabolites that never cross the cell
membrane. These do not have to be explicitely accounted for since they are included in the
biomass. Only nutrients that are taken up by cells and products that are secreted by the cells
have to be considered in the balance to completely describe the system. This makes for a
convenient simplification since much of the complexity of the metabolism disappears as it is
contained within the cells.

Energy Balance—To obtain an expression for the enthalpy of reaction we can multiply
Equ. (1) with the molar component enthalpies hi and obtain for steady state conditions the
expression

(2)

If we sum up all component balance equations we obtain

(3)

We can define the enthalpy of reaction ΔHR

(4)

and substitute in (3) to obtain after rearrangement

(5)

This relationship defines the enthalpy of reaction as the difference of component enthalpies
of component flows in and out of the system.
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The energy balance under the assumed simplifying conditions can be written as

(6)

where H is the enthalpy content of the system, hi are the molar enthalpies of the individual
components, ṅi,in and ṅi are the molar flow rates in and out of the system and Q ̇ is the rate
of heat transfer to the environment. If we substitute (5) in (6) we obtain at steady state

(7)

Entropy Balance—To obtain an expression for the entropy of reaction we can multiply
the steady state material balance (1) with the molar component entropy si

(8)

If we sum up all component equations we obtain

(9)

We can define the entropy of reaction ΔSR

(10)

and substitute in (2) to obtain

(11)

We can subtract on both sides the total entropy flowing with the material into the system and
obtain after rearrangement

(12)

This relationship can be interpreted as the contributions to the entropy balance due to
material transport and conversion in the system. The left side of the equation represents the
difference between total entropy flowing in and out of the system, i.e the amount of entropy
accumulated in the system due to material flow. This amount is equal to the right side which
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has two contributions. The first is the amount of entropy generated due to the dilution of the
concentration in the incoming process stream to the concentration in the reactor. The second
is the amount due to material conversion in the reaction.

We can formulate a balance for entropy in a similar way as previously for the other
extensive quantities, except we have to consider that entropy of a component depends also
on its concentration. To account for this we can write

(13)

Here si,in (si) are the molar entropies of the individual components at the corresponding
concentrations transported in (out) of the system; Q ̇ is the rate of heat transfer through the
walls and Ṡprod is the rate of internal entropy production of the system due to the
irreversibility of the process. The first two terms on the right hand side represent the entropy
transported to the surroundings due to material transport and due to heat transfer,
respectively. From this expression one can see that in a steady state situation with zero
entropy accumulation, the internal entropy production term must be balanced by the
transport of entropy to the surroundings. Due to the second law, the internal entropy
production term must always be larger or equal to zero.

If we substitute in the entropy balance (13) the entropy transport term with (12) and the heat
transfer term with (7) we obtain at steady state the following expression for the rate of
entropy production

(14)

Thus, the rate of entropy production, reflecting the irreversibility of the process, consists of
three contributions. The first is due to the mixing of the incoming process stream with the
content of the system, the second is due to the heat of reaction, and the third is generated by
the chemical material conversion of the reaction.

If we substitute in the entropy balance (13) the rate of heat transfer with (7) and the rate of
entropy production with (14) the balance at steady state reduces to

(15)

Note that the entropy generated by the heat of reaction and the entropy transported by heat
transfer to the environment cancel each other in the entropy balance of the open system.
Furthermore, the entropy of mixing is inherently incorporated in this formulation of the
transport term in which only molar entropies of components in the system appear. Thus the
steady state of an open system is governed only by the molar component entropies of the
system involved in the entropy transport to the surroundings with the material flow and the
rate of internal entropy production due to the entropy of reaction. This result is derived here
from the entropy balance and is identical to (11) which has been obtained above based on
the material balance.
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The obtained relationships represent important results as they show that the open system can
operate isothermally at a steady state without accumulating any entropy. Furthermore, the
system is completely defined by the rate of entropy production due to the chemical
transformation, the entropy of reaction, which characterizes the irreversibility of the system.
The entropy production due to the heat of reaction does not appear in this expression and
thus does not appear to contribute to the amount of entropy transported to the surroundings
by material flow. To express it more directly, the system at this state does not ‘know’ that
heat is produced or transferred during this state of operation. The only thing that matters is
the entropy of reaction.

Statistical Thermodynamics of Metabolic Networks—The rate of internal entropy
production of the open system at steady state can be viewed as a weighted, linear
combination of entropies of reaction of individual elementary modes defining the metabolic
network

(16)

Here, νg is the stoichiometry coefficient of glucose in the growth reaction (we assume
glucose is the carbon and energy source), rg is the rate of glucose consumption. ΔSTOT is
identical with the entropy of reaction, but the new subscript indicates now that it represents
the total reaction entropy composed of reaction entropies Δsi of all n elementary modes
contributing with probabilities (or weights) pi.

We have previously shown that the entropy of reaction ΔSTOT is maximized when
probabilities are assigned such that the contributing elementary mode entropies are
distributed according to the Boltzmann distribution law (Srienc and Unrean, 2010). The
same result is obtained based on a standard statistical thermodynamics derivation which is
included as a supplementary file. It is shown that usage probabilities of elementary modes
are related to their entropies of reaction according to

(17)

such that

(18)

Since reaction entropies of individual elementary modes can be computed, the constant b
can be evaluated form the requirement that probabilities have to sum up to unity:

(19)
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Thus, the metabolic flux distribution in a metabolic network can be predicted based on the
knowledge of elementary modes. In the experimental part of this work it is shown that cells
indeed evolve towards such a predictable state.

Results and Discussion
T. saccharolyticum is an anaerobic, thermophilic, saccharolytic bacterium that is known to
ferment various biomass-derived sugars into ethanol (Desai et al., 2004; Shaw et al., 2008).
A metabolic network model of T. saccharolyticum for anaerobic growth on glucose or
xylose was constructed (Fig. 1), and was analyzed by elementary mode analysis to
determine all balanced pathways that are inherent in the cell metabolism. There exist 4,336
elementary modes for growth on glucose and 4,714 elementary modes for growth on xylose.
Multiple gene knockouts were implemented to limit the metabolic functionality of T.
saccharolyticum growing on glucose to a set of only 4 classes (families) of efficient ethanol-
producing pathways representing 42 elementary modes. Each family of modes has the same
overall reaction stoichiometry (Table 1). The targeted gene knockouts are PPP1 (zwf),
MGS1 (mgs), LDH (ldh), PFP3r (sbm), and PTA and ACK (pta-ack) which were identified
using a selection algorithm as previously described (Trinh et al., 2006).

The mutant strain AS411 which contained the predicted gene deletions was constructed
using previously described methods (Desai et al., 2004; Mai and Wiegel, 2000). The
predicted target gene sbm, which is part of the propionic acid synthesis pathway, is assumed
to be inactive because propionic acid has not been detected in the fermentation medium of
AS411. Therefore it has not been deleted. Gene knockouts in AS411 were verified via PCR
amplification using the wild type as a positive control (data not shown). The constructed
strain which can operate within the set of 4 pathway groups was allowed to evolve in a serial
dilution experiment for approximately 280 generations equivalent to 650 hrs of anaerobic
growth on glucose. Faster-growing mutants are expected to be selected during the evolution
experiment since strains with faster growth rate will eventually dominate the culture
replacing the slower-growing strains. This can be seen by a continuous increase in the
specific growth rate of the culture over the number of generations (Fig 2A). The specific
growth rate of the evolved mutant AS411E3 isolated after 280 generations of evolution, was
at 0.61 hr−1 compared to the growth rate of 0.11 hr−1 of the parent AS411 under identical
conditions. Due to the strong link between cell growth and ethanol synthesis in the 4
remaining pathways operating in AS411, the evolved mutant with an increased growth rate
also produced ethanol at a faster rate (Fig. 2B). AS411E3 converted glucose into ethanol
within 8 hr, while the original parent, AS411, fermented the same amount of glucose to
ethanol at around 36 hr (data not shown). The strict coupling between the two products is in
part due to redox constraints since the reducing and oxidizing equivalents NAD/NADH and
NADP/NADPH generated for growth of AS411 can only be disposed through ethanol
synthesis.

The minimized metabolic functionality of AS411 permits convenient metabolic flux
estimations of the strain from experimentally determined metabolite secretion patterns. The
probability for each set of pathways contributing to the overall metabolism of the strain was
computed from a completely determined algebraic system of mass balance equations based
on the measured secretion or consumption fluxes of glucose, ethanol and biomass and the
summation constraint of the probabilities. Analysis of the associated usage probabilities of
pathway groups for AS411 and the evolved strain AS411E3 suggests an increase in the
probabilities of the biomass-ethanol coproducing modes during the directed evolution. The
overall flux distribution for both mutants (Fig. 1), which was determined from the sum of
the products of the 4 family modes and the usage probabilities, reveals the adaptation
capability in the cell metabolism during evolution. The metabolism of AS411E3 has an
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increase in pentose phosphate pathway (PPP) flux which could be one of the main reasons
for improved cell growth observed in the evolved strain since the PPP is important for the
synthesis of several biomass precursors.

Analysis of the experimentally determined pathway probabilities of the evolving cells
suggests that the strain evolved by redistributing the probabilities of family modes towards
the state where the total entropy production is maximized and the usage probabilities are
according to the Boltzmann distribution law (Fig. 2C). Likewise, The total rate of entropy
production, which was calculated from the product of the uptake rate of glucose and the total
reaction entropy revealed a shift in the metabolic functional state of the evolving cells in a
direction of increasing rate of entropy generation (Fig. 2D). As shown in the Fig. 2C, the
metabolism of the evolved strain AS411E3 has not yet reached the predicted state of a fully
evolved metabolism. Hence, to verify that the predicted state of maximum entropy
production represents the metabolic state of a fully evolved cell, we fitted an exponential
function to the experimentally determined probabilities over evolution time and estimated
the asymptotic values of these probabilities from the fitting function (Fig. 3). These
asymptotic values represent the probabilities that the cell would ultimately reach at an
infinite evolution time. Thus, they represent the usage probabilities of the pathway families
in the fully evolved cell system. The asymptotic probabilities agree well with the predicted
probabilities (Table 2) suggesting that the fully evolved cell system functions at the state of
maximum entropy production where the distribution of the metabolic pathways follows the
distribution law. In addition, the fitting functions of probabilities can accurately predict the
entropy generation per mole of glucose and the total entropy production rate over evolution
time (Fig. 2D and 3). Based on the values of asymptotic probabilities, we computed the total
reaction entropy for the fully evolved strain to be 0.50 kJ/K-mole, which is in excellent
agreement with the predicted maximal entropy production value of 0.49 kJ/K-mole (Table
2).

We have demonstrated here that the steady-state flux distribution obtained through
elementary mode analysis provides a quantitative measure in the evolutionary optimization
of cell metabolism. The presented results suggest that a metabolic network evolves by
redistributing its metabolic pathway fluxes in order to maximize the rate of entropy
production. Thus, for a cell system that is not at the fully evolved state, the evolutionary path
towards the maximum entropy generating state can be predicted. The present work suggests
that the evolution of metabolic pathways is driven by the rate of entropy generation and that
the Boltzmann distribution law predicts the optimal metabolic flux distributions of the fully
evolved metabolism. The presented approach should be of considerable value in systems
biology as it relates physiological activities to basic thermodynamic principles. It is
interesting to note that a similar approach has been recently proposed to describe stochastic
fluctuations in biochemical reactions caused by a small number of molecules undergoing
observable transition trajectories (Pressé et al., 2010).

The total rate of entropy production σ = rgΔS has two contributions: the glucose uptake rate
and the amount of entropy produced per unit glucose consumed. The presented data suggest
that during evolution the total rate of entropy production approaches a maximum value.
During this process, the change in the rate of entropy production has clearly two distinct
contributions:
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The first term on the right hand side expresses the change due to the adjustment of the
metabolic network structure to reach the most likely distribution when the Boltzmann
distribution law for the pathway usage is satisfied. In this situation the entropy generation of
the network is maximized while complying with the principle of fair apportionment of
outcomes. The second term expresses the change in the glucose uptake rate. This rate is
proportional to the growth rate. Thus, this term reflects the selection process. It is expected
to be always positive because only faster growing cell variants can overtake a cell
population. The upper limit of the rate of glucose uptake is likely reached when some other
process such as perhaps the external mass transfer or internally a step such as DNA
replication, limits a further increase in the metabolic rates. The fully evolved state is then
reached when the two terms balance each other and the entropy production rate is
maximized.

The cellular metabolic flux distribution can be computed from nutrient uptake and
metabolite secretion rate data if the system of algebraic equations, defined by the molar
balances of internal and external metabolites, is completely determined. However there are
usually many more unknown intracellular reactions present than measurable reactions
resulting in underdetermined systems. In such cases an optimal flux distribution can be
estimated using linear programming assuming maximization of the growth yield as the
constraining objective function. While intuitively plausible, to our knowledge a theoretical
justification for the choice of such objective function has never been established.
Alternately, the metabolic flux distribution of a metabolic network can be computed as a
weighted average of all elementary modes defined by the network. Since elementary modes
can be exactly computed the problem is reduced to finding the unknown weights. In the
present work these weights (or probabilities) could be calculated from a completely
determined algebraic system of equations from the measured metabolite secretion and
nutrient uptake rates. And it is shown that the estimated weights converge during evolution
towards an optimal state predicted by the presented theory. Thus, the optimal metabolic state
can be directly computed from thermodynamic data without any constraints. While the
linear programming approach results in a single optimal flux distribution that maximizes
growth yield, in the presented approach such optimal solution is favored. However,
contributions from less efficient elementary modes choices are also included in the solution
since they are part of the most likely elementary mode distribution that the system attempts
to reach. But validation of these conclusions will require further research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Metabolic map of Thermoanaerobacterium saccharolyticum central metabolism. The
suggested targets gene deletions (indicated by the symbol X) in the designed strain AS411
are PPP1 (zwf), MGS1 (mgs), LDH (ldh), PFP3r (sbm), and PTA and ACK (pta-ack). The
sbm gene is assumed inactive in AS411 based on experimental measurements of
fermentation products. Metabolic fluxes in AS411 (Top) and in AS411E3 (Bottom) are
listed next to reactions. The fluxes are determined from the sum of the products of the
probabilities and the fluxes of the 4 families shown in Table 1. All metabolic fluxes are
normalized to the uptake rate of glucose. The zero fluxes are shown in grey.
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Figure 2.
Metabolic evolution of AS411 during anaerobic growth on glucose. (A) Change in specific
growth rate over evolution time during serial dilution. Filled symbols represent cultures that
have been evaluated in controlled bioreactor experiments. (B) Performance of the evolved
cells after an evolution time of 329 hrs (AS411E0); 487 hrs (AS411E1); 600 hrs (AS411E2);
642 hrs (AS411E3). Evolved cells have higher specific growth rates and ethanol production
rates in comparison to their parent, AS411. (C) Total reaction entropy for AS411 ( ) and
the evolved cell cultures ( AS411E1; AS411E3) as a function of probabilities of
elementary modes. The plot shows the shift in metabolic state of cells towards the predicted
state of a fully evolved system where the entropy is maximized and the usage probabilities
are according to the Boltzmann distribution law. The  symbol represents the fully evolved
system estimated from the asymptotic value of the fitting functions of probabilities shown in
Fig. 3 at infinite evolution time. (D) Change in rate of entropy generation, computed from
the product of the total reaction entropy and the uptake rate of glucose, as a function of
evolution time. Circles represent the experimentally determined rate of entropy production
while the line represents the rate of entropy production calculated from the fitting functions
of probabilities given in Fig. 3. The plot suggests that the cell system has a natural tendency
to evolve with time towards an asymptotic state with maximum rate of entropy production.
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Figure 3.
Change in usage probabilities of elementary mode families and total reaction entropy
production during metabolic pathway evolution. The probabilities of family mode 1 (A),
family mode 2 (B), family mode 3 (C), and family mode 4 (D) change over evolution time.
Circles represent the experimental values, while the lines represent the exponential fitting
functions. The parameters of the function have been determined by a least square method.
The fitting functions are W1 = 0.188·e(−0.001·t) + 0.214; W2 = 0.169·e(−0.001·t) + 0.233; W3 =
−0.186·e(−0.001·t) + 0.273; W4 = −0.212·e(−0.001·t) + 0.298. The total reaction entropy (kJ/K-
mole of glucose) over evolution time (E) is computed as a weighted sum of the probabilities
and the reaction entropies of individual modes. (F) The production rate of entropy of
individual modes as a function of the natural log of the usage probabilities of modes. The
rate of entropy production is computed from the product of reaction entropy of individual
modes and the asymptotic rate of glucose uptake (see supplementary information for detail).
The experimentally determined usage probabilities of elementary modes after an evolution
time of zero generations ( ), of 280 generations ( ), and the asymptotic values at infinite
evolution time ( ) are compared to the predicted probabilities based on the Boltzmann
distribution law (■). Over the evolution time the probabilities approach the predicted values.
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Table 2

Usage probabilities of elementary modes and reaction entropy for a fully evolved metabolism of AS411. The
pFi and pEi represent the probabilities of family modes and of individual modes within the corresponding
families respectively. The pEi value is computed from the pFi value by dividing by the number of elementary
modes in the family. The predicted probabilities are determined from the Boltzmann distribution law (see
supplementary file for detail). The asymptotic probabilities are estimated from experimental data using the
fitting functions given in Fig. 3. Total reaction entropy (kJ/K-mole) is determined from the weighted sum of
the probabilities and the reaction entropies of individual modes.

Family Predicted pFi Predicted pEi Asymptotic pFi Asymptotic pEi

1 0.214 0.071 0.214 0.071

2 0.242 0.016 0.233 0.016

3 0.264 0.015 0.273 0.015

4 0.279 0.047 0.298 0.050

ΔSTOT (kJ/K-mole) 0.49 0.50
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