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Abstract

Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of 

the maternal allele of the ubiquitin protein ligase E3A (Ube3a)1–3. In neurons, the paternal allele 

of Ube3a is intact but epigenetically silenced4–6, raising the possibility that Angelman syndrome 

could be treated by activating this silenced allele to restore functional UBE3A protein7,8. Using an 

unbiased, high-content screen in primary cortical neurons from mice, we identified twelve 
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topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a 

allele. These drugs included topotecan, irinotecan, etoposide, and dexrazoxane (ICRF-187). At 

nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from 

maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a 

antisense transcript that overlaps the paternal copy of Ube3a9–11. These results suggest that 

topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When 

administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the 

nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal 

cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at 

least twelve weeks after cessation of topotecan treatment, suggesting transient topoisomerase 

inhibition can have enduring effects on gene expression. While potential off-target effects remain 

to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but 

dormant allele of Ube3a in patients with Angelman syndrome.

No effective therapies exist for Angelman syndrome (AS)—an imprinting disorder caused 

by mutations or deletions in the maternal allele of Ube3a1–3. Ube3a is biallelically 

expressed in most tissues of the body; however, in rodents and humans, most neurons 

express Ube3a only from the maternally-inherited allele4,12–14. This unique epigenetic 

pattern of regulation suggested that it might be possible to unsilence the dormant paternal 

Ube3a allele in neurons7,8.

To test this possibility, we developed a 384-well high-content screen using primary mouse 

cortical neurons from Ube3a-Yellow Fluorescent Protein (Ube3a-YFP) knockin mice15, and 

searched for drug-like molecules that could unsilence the paternal Ube3a-YFP allele (Fig. 

1a). This screen was based on our observation that the imprinting of Ube3a-YFP was 

maintained in vitro in cultured embryonic cortical neurons. Notably, Ube3a-YFP expression 

was undetectable (silenced) in cultured neurons when paternally inherited (Ube3am+/pYFP), 

but was expressed when maternally inherited (Ube3amYFP/p+) (Fig. 1b), with expression 

increasing from 4 to 10 days in vitro (DIV) (Fig. 1c). This significant difference between 

maternal and paternal UBE3A-YFP protein levels provided a large screening window and a 

Z’-factor score of 0.58 (determined by statistically comparing antibody-enhanced 

fluorescence intensities and variations between maternal and paternal UBE3A-YFP signals 

at DIV10), making our high-content platform suitable for unbiased screening.

To perform the screen, we cultured Ube3am+/pYFP neurons for 7 days and then treated these 

neurons with compounds (10 µM for 72 hours) from multiple small molecule libraries (Fig. 

1d, Supplementary Fig. 1). In total, we screened 2,306 small molecules in quadruplicate, 

normalizing values to vehicle-treatment (0.2% DMSO) (for full methods see Supplementary 

Methods; for list of all compounds tested see Supplementary Table 1). While methylation 

and other epigenetic marks are thought to control imprinting of Ube3a9,16–18, to our 

surprise, none of the commonly used compounds that target the epigenome, including 

chromatin remodeling drugs and DNA methyltransferase inhibitors, unsilenced the paternal 

Ube3a-YFP allele. A number of compounds were identified as false positives (gray 

compounds in Fig. 1d) due to their intrinsic fluorescence (Supplementary Fig. 2). Our initial 

screen identified one compound—irinotecan, an FDA-approved camptothecin-based 
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topoisomerase type I inhibitor. Irinotecan lacked intrinsic fluorescence and upregulated 

UBE3A-YFP fluorescence (Fig. 1d,e and Supplementary Fig. 3). Irinotecan (10 µM) also 

upregulated paternal UBE3A-YFP protein (Fig. 1f) and endogenous UBE3A protein (Fig. 

1g) in neuronal cultures from Ube3am+/pYFP and Ube3am–/p+ mice (AS model mice13), 

respectively.

Many topoisomerase I inhibitors, including irinotecan and the related FDA-approved drug 

topotecan, are derived from the natural product camptothecin (CPT)19. To explore structure 

activity relationships, we tested CPT analogs and other topoisomerase inhibitors (Fig. 2a; 

Supplementary Figs. 4–10), all of which lack inherent fluorescence (Supplementary Fig. 3). 

We found that irinotecan and topotecan upregulated paternal UBE3A-YFP in a dose-and 

time-dependent manner in cultured neurons, with topotecan being 20× more potent than 

irinotecan (Fig. 2a,b; Supplementary Fig. 11). In contrast, an inactive analog of CPT (lactam 

E-ring-CPT) that does not inhibit topoisomerases20 failed to unsilence the paternal Ube3a-

YFP allele (Fig. 2a; Supplementary Fig. 4). Ten additional topoisomerase I inhibitors 

unsilenced Ube3a-YFP in a dose-dependent manner, including CPT analogs and structurally 

distinct indenoisoquinolines (Table 1 and Supplementary Figs. 4–7). Furthermore, four 

structurally distinct topoisomerase II inhibitors (etoposide, dexrazoxane, ICRF-193, and 

amsacrine) also unsilenced the paternal Ube3a-YFP allele (Table 1 and Supplementary Figs. 

8–10). Thus, our data with 16 topoisomerase inhibitors and one inactive analog strongly 

suggest that inhibition of topoisomerase I or II can unsilence the paternal Ube3a allele.

We focused our remaining studies on the topoisomerase I inhibitor topotecan because it is 

approved for use in humans, it unsilenced Ube3a in the low nanomolar range, and topotecan 

(300 nM, 72 h) restored UBE3A protein to wild-type levels in cultured neurons from 

Ube3am–/p+ mice (Fig. 2c).

Many topoisomerase inhibitors, including topotecan, covalently link topoisomerases to 

DNA, forming stable DNA-enzyme complexes that are separable from free topoisomerase 

enzymes19. Since topotecan inhibits topoisomerase I (TOP1) and Top1 is expressed at high 

levels in the developing and adult brain19,21, we focused our subsequent analysis on this 

enzyme. We found that topotecan (300 nM, 72 h) significantly reduced the amount of free 

TOP1 (Fig. 2d) in cultured neurons, indicating that topotecan engages its known molecular 

target at doses that unsilence the paternal Ube3a allele.

UBE3A is a HECT (homology to E6 carboxyl terminus) domain E3 ligase that forms a 

thioester-ubiquitin intermediate in the presence of E1 and E2 enzymes22. This thioester-

ubiquitin intermediate is required for HECT domain E3 ligases to mono- and 

polyubiquitinate their substrates23. Interestingly, we noticed that topotecan (300 nM, 72 hr) 

upregulated UBE3A protein in Ube3am–/p+ cultures along with a higher molecular weight 

form (resolved after running gels for longer times; Fig. 2e). This high molecular weight 

band was also seen in wild-type (Ube3am+/p+) cultures and was lost upon addition of the 

reducing agent dithiothreitol (DTT) (Fig. 2e). These data suggest that the unsilenced 

paternal copy of UBE3A is catalytically active and competent to form a thioester-ubiquitin 

intermediate, just like wild-type, maternal-derived UBE3A23.
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To further demonstrate that UBE3A was catalytically active, we immunoprecipitated 

UBE3A from cultured wild-type and Ube3am–/p+ neurons (+/− topotecan), then tested these 

samples for a gel-mobility-shift in the presence or absence of the ubiquitin E2 UBCH724. 

Both wild-type (maternal-derived) and topotecan-unsilenced (paternal-derived) UBE3A 

underwent mobility shifts in the presence of UBCH7 plus free ubiquitin that were abolished 

by DTT (Fig. 2f). This observation indicates the mobility shift was due to addition of 

covalent ubiquitin, and demonstrates that topotecan can upregulate a functional UBE3A 

enzyme.

Ube3a is repressed in cis by a large antisense transcript (Ube3a-ATS) that overlaps the 

paternal allele of Ube3a (Fig. 2g)9,10. Ube3a-ATS is expressed exclusively from the paternal 

allele as a result of allele-specific methylation of an imprinting center that overlaps the 

Ube3a-ATS and Snurf/Snrpn transcription start site25. We next sought to determine if 

topotecan regulated Ube3a expression through changes in Ube3a-ATS expression or altered 

methylation at the imprinting center. We found that topotecan upregulated expression of 

Ube3a in cultured neurons from Ube3am–/p+ mice while concomitantly downregulating 

expression of Ube3a-ATS and Snrpn (Fig. 2h). However, topotecan did not alter methylation 

at the imprinting center (Fig. 2i, Supplementary Fig. 12). Taken together, these data suggest 

that topotecan unsilences paternal Ube3a by reducing transcription of a regulatory antisense 

RNA without appreciably affecting genomic methylation at the imprinting center.

We then sought to determine if topotecan could unsilence the paternal Ube3a allele in vivo. 

We first identified a dose that was well tolerated, meaning there were no significant 

decreases in body weight between the beginning and end of the drug treatments 

(Supplementary Fig. 13). We then administered topotecan (3.74 µg/h) unilaterally into the 

lateral ventricle of Ube3am+/pYFP or Ube3am-/p+ mice by intracerebroventricular (i.c.v.) 

infusion for two weeks and then sacrificed the mice either immediately or 5 hr after drug 

cessation. Strikingly, topotecan unsilenced paternal Ube3a in the hippocampus, striatum, 

and cerebral cortex of the infused hemisphere, but had only a modest effect on the 

contralateral (non-infused) hemisphere with no effect in the cerebellum (Fig. 3a–e, 

Supplementary Figs. 14–15). Pharmacokinetic analyses demonstrated that a significant 

amount of topotecan was detectable in the infused hemisphere immediately following 

treatment whereas low levels were present in the contralateral (non-infused) hemisphere and 

in cerebellum (Fig. 3a, Supplementary Fig. 14). However, a higher dose of topotecan (21.6 

µg/h for five days) did unsilence the paternal allele of Ube3a in Purkinje neurons of the 

cerebellum (Supplementary Fig. 16). No significant difference in topotecan levels was 

detected in blood between drug- and vehicle-treated mice (data not shown). Topotecan 

concentrations significantly declined five hours after cessation of i.c.v. drug delivery (Fig. 

3a), indicating that topotecan does not persist and is rapidly removed/metabolized in the 

brain. Taken together, these pharmacokinetic and pharmacodynamic data suggest that the 

degree to which topotecan unsilences the paternal Ube3a allele is directly correlated with 

drug concentrations in the brain. Moreover, our data indicate topotecan has the potential to 

unsilence the paternal Ube3a allele throughout the nervous system.

Genomic imprinting is thought to be established only during prescribed germline and 

embryonic periods of development and imprinted genes typically remain epigenetically 
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regulated throughout life26. Thus, we next sought to determine if topotecan had transient or 

long-lasting effects on paternal Ube3a expression. To test this possibility, we turned to an 

intrathecal (i.t.) delivery protocol (Fig. 3f) because topotecan (Fig. 3g) and irinotecan (not 

shown) unsilenced paternal Ube3a in a sparse population of lumbar spinal neurons, allowing 

us to quantify all UBE3A-YFP-positive neurons. Moreover, i.t. delivery has been used to 

deliver topotecan to the brain in humans27. We found that topotecan (50 nmol/5 µL i.t. once 

daily, for 10 of 14 days) was well tolerated (Supplementary Fig. 13) and significantly 

increased the number of paternal UBE3A-YFP-positive cells in the lumbar spinal cord of 

mice (Fig. 3g,h, Supplementary Fig. 17a). The vast majority (>93%) of these UBE3A-YFP-

positive cells were NeuN+ neurons (Supplementary Fig. 17a,b), indicating topotecan 

unsilences Ube3a primarily in neurons in vivo. Moreover, the unsilenced paternal UBE3A-

YFP protein was expressed at levels comparable to maternal UBE3A-YFP controls 

(Supplementary Fig. 17c). Remarkably, the number of UBE3A-YFP-positive spinal cord 

neurons remained elevated 12 weeks following cessation of drug treatment (Fig. 3g,h), much 

longer than the elimination of topotecan from tissue (Fig. 3a). These results indicate that 

topotecan can enduringly unsilence paternal Ube3a in a subset of spinal neurons and suggest 

that a single course of drug treatment has the capacity to permanently modify expression of 

Ube3a.

In conclusion, we found that topoisomerase inhibitors can unsilence the paternal allele of 

Ube3a and the paternally-derived protein is functional. These findings suggest that 

topoisomerase inhibitors have the potential to rescue molecular, cellular, and behavioral 

deficits associated with loss of UBE3A7,13,28. Ube3a expression is modestly upregulated in 

the brain of Top2b knockout mice29, providing genetic support that topoisomerases regulate 

Ube3a expression. We also found that topotecan reduced expression of paternal Snrpn and 

Ipw, a genomic region whose deletion is associated with Prader-Willi syndrome7,17. To what 

extent topotecan regulates expression of other genes in the brain, including Igf2r, Kcnq1, 

and Gnas imprinted gene clusters, and whether long-term treatments with topoisomerase 

inhibitors produce a Prader-Willi-like condition are unknown. However, topotecan and 

irinotecan are approved for use in patients with cancer, penetrate into the central nervous 

system, and are well-tolerated when administered chronically to both adult and pediatric 

patients27,30. Importantly, patients treated with topoisomerase inhibitors do not display 

symptoms associated with Prader-Willi syndrome. Ultimately, our study indicates that 

topoisomerase inhibitors regulate gene expression through a transcriptional mechanism and 

could be used to treat symptoms associated with AS.

Methods Summary

All animal procedures were approved by the University of North Carolina at Chapel Hill 

Animal Care and Use Committee. We used male and female Ube3a-YFP knockin mice15, 

Ube3am–/p+ mice13, and their age-matched, wild-type controls. High-content screening was 

performed on a BD Pathway 855 system. UBE3A-YFP was detected for drug screening with 

an anti-GFP antibody (Novus Biologicals, NB600-308; 1:1000) because intrinsic YFP 

fluorescence levels were low in cultured neurons and tissue sections. All data are presented 

as mean ± s.e.m., with sample sizes (n) shown in figures or stated in text. Statistical analyses 

were performed using SigmaPlot 11 (Systat Software). Normality tests (Shapiro-Wilk) and 
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equal variance tests were run and passed (P>0.05) before parametric statistical analyses 

were run.

Full methods accompany this paper as supplementary material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A small-molecule screen identifies a topoisomerase inhibitor that unsilences the 
paternal allele of Ube3a in neurons
a, High-content screen flowchart. E15.5 cortical neurons with a paternally inherited Ube3a-

YFP allele were cultured in 384-well plates and treated with small molecules from DIV7–

DIV10. Active compounds that unsilence the paternal Ube3a-YFP allele were detected with 

antibody-enhanced fluorescence and high-content imaging. b, High-content imaging of 

DIV7 neurons that inherited Ube3a-YFP maternally (mYFP/p+) or paternally (m+/pYFP). 

Nuclei were stained with DAPI. Scale bar = 50 µm. c, Mean ± s.e.m. levels of UBE3A-YFP 
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fluorescence in neurons cultured from maternal Ube3a-YFP (mYFP/p+) or wild-type (m+/p+) 

mice, normalized to levels in age-matched neurons cultured from paternal Ube3a-YFP mice 

(m+/pYFP). Two-way ANOVA revealed main effects of genotype, duration, and a genotype-

duration interaction (P<0.001); Bonferroni post hoc test examined comparisons between 

maternal and paternal Ube3a-YFP mice from DIV4 to DIV10, *P<0.001; n=2–6 culture 

wells/day. d, Pie chart depicting categories of the 2,306 screened compounds and graph 

summarizing presumptive UBE3A-YFP in arbitrary fluorescence units (A.F.U.) after small 

molecule treatments. Small molecules that were subsequently found to be autofluorescent 

(Supplementary Fig. 2) are depicted in gray. The initial screen identified one active 

compound, irinotecan (red). e, High magnification view of wells treated with vehicle (0.2% 

DMSO) or 10 µM irinotecan for 72 hr. Neuron density and health is similar in vehicle- and 

irinotecan-treated cells as evidenced by counterstaining with the nuclear marker DAPI. 

Scale bar = 100 µm. f,g Western blots of cultured cortical neurons probed with GFP or 

UBE3A antibodies, respectively, ± irinotecan (10 µM for 72h). f, *P<0.05; two-tailed t-test, 

n=3/group. g, *P<0.001, one-way ANOVA with Bonferroni post hoc, n=7–8/group. All data 

are presented as means ± s.e.m.
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Figure 2. Topotecan unsilences the paternal allele of Ube3a and the unsilenced protein is 
catalytically active
a, Dose-response curves for unsilencing paternal Ube3a-YFP. Inactive = lactam E ring-

camptothecin. n=4/data point. b, UBE3A-YFP levels in neurons from Ube3am+/pYFP mice 

increase with duration of topotecan (300 nM) or irinotecan (1 µM) treatment. *P<0.05, 

oneway ANOVA with Bonferroni post hoc tests relative to day zero, n=4–8/group. 

A.F.U.=arbitrary fluorescence units. c, Western blots and quantification of UBE3A and the 

loading control actin. *P<0.05, one-way ANOVA with Bonferroni post hoc tests, n=4/
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group. d, Quantification of unbound TOP1 and representative western blots. β-tubulin was 

used as a loading control. One-way ANOVA with Bonferroni post hoc tests, *P<0.05; n=3/

group. e, Western blot from vehicle- and topotecan-treated neurons from wild-type (m+/p+) 

and maternal Ube3a-deficient (m–/p+) mice. f, Western blots examining UBE3A ubiquitin-

thioester formation following immunoprecipitation with an anti-UBE3A antibody and in 

vitro ubiquitination in the presence or absence of the ubiquitin conjugating enzyme (E2), 

UBCH7. All data are presented as means ± s.e.m. g, Schematic demonstrating location of 4 

primer sets used to probe mRNA expression shown in h. h, Normalized mRNA levels in 

cultured Ube3am–/p+ neurons following vehicle or 300 nM topotecan. Expression is given as 

a ratio of expression in drug treated cells to vehicle treated cells, normalized to the 

housekeeping gene RPL22. *P<0.05 compared to 0 hr, Kruskal-Wallis one-way ANOVA 

followed by post hoc tests, n=4–5 cultures/data point. i, Schematic summarizing methylation 

status of the Snrpn promoter region on the maternal and paternal chromosome following 

treatment with vehicle or 300 nM topotecan (see complete primer 1 data set in 

Supplementary Fig.12). Average methylation status is indicated using a grayscale.
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Figure 3. Topotecan enduringly unsilences the paternal allele of Ube3a in vivo
a, Unilateral delivery of topotecan (i.c.v.) using a mini-osmotic pump into the lateral 

ventricle of Ube3am+/pYFP mice in vivo. Two weeks of topotecan infusion (3.74 µg/h) 

unsilenced the paternal Ube3a-YFP allele in the hippocampus of the infused hemisphere 

near the site of drug delivery, while only modestly unsilencing Ube3a-YFP in the 

contralateral (non-infused) hemisphere. Scale bar = 500 µm. Pharmacokinetic analyses 

measuring topotecan levels in the infused and non-infused hemisphere immediately (t=0) or 

five hours (t=5) after cessation of drug delivery. *P<0.05, one-way ANOVA with 
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Bonferroni post hoc test, n=5–9/group. b, Representative sections and c, quantification of 

optical intensity of UBE3A-YFP in hippocampal regions (CA1, CA2/3, and dentate 

gyrus=DG) of the topotecan-infused hemisphere or the hemisphere of vehicle-treated mice. 

*P<0.05, Mann-Whitney rank sum test, n=5/group. d, Representative sections and e, 

quantification of paternal UBE3A-YFP in the striatum following i.c.v. infusion of topotecan. 

*P<0.05, two-tailed t test, n=4/group. f, Schematic depicting schedule for i.t. delivery of 

topotecan (50 nmol/day for 10 of 14 days) and endpoints (arrows) immediately, 4 weeks, 

and 12 weeks after cessation of drug. g,h Topotecan (i.t.) increased the number of UBE3A-

YFP-positive spinal neurons compared to vehicle, and the unsilencing of Ube3a-YFP was 

maintained for at least 12 weeks. *P<0.001, one-way ANOVA with Bonferroni post hoc 

test, n=7–8/group.
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Table 1

Efficacies and potencies of topoisomerase inhibitors for unsilencing the paternal allele of Ube3a-YFP in 

cultured neurons.

Compound Potency
EC50 (nM)

Efficacy
Emax

(fold over
vehicle)

Camptothecin derivatives

     7-Ethyl-Camptothecin (7-Ethyl-C PT) 7.2 ± 2.3 1.70 ± 0.04

     7-Ethyl-10-H ydroxy-CPT 11 ± 3.2 1.99 ± 0.06

     10-H ydroxy-CPT 14 ± 5.7 1.82 ± 0.08

     Belotecan (CKD 602) 19 ± 4.4 1.88 ± 0.05

     Camptothecin (CPT) 21 ± 3.8 2.11 ± 0.05

     Topotecan* 54 ± 3.4 2.25 ± 0.05

     Rubitecan (9-Nitro-CPT) 62 ± 18 2.09 ± 0.09

     Irinotecan* 994 ± 13 2.17 ± 0.05

     Silatecan (DB67) 2,244 ± 171 1.65 ± 0.05

     Lactam E ring-CPT (inactive) inactive inactive

Indenoisoquinoline derivatives

     NSC725776 10 ± 1.6 1.76 ± 0.03

     NSC706744 11 ± 3.2 1.84 ± 0.07

     NSC724998 14 ± 2.2 1.69 ± 0.03

Podophyllotoxin derivative

     Etoposide* 1,600 ± 980 1.68 ± 0.04

Bis-dioxopiperazine derivatives

    ICRF-193 205 ± 70 2.21 ± 0.09

     Dexrazoxane (ICRF-187)* 2,0470 ± 1,450 1.82 ± 0.05

Aminoacridine derivative

    Amsacrine 27 ± 5.2 1.74 ± 0.06

*
FDA-approved compounds
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