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Abstract
As a chronic inflammatory disease of the liver, the pa-
thogenic mechanisms of autoimmune hepatitis (AIH) 
have not yet been elucidated, with prognosis and diag-
nosis remaining unsatisfied. Currently the only viable 
treatments of AIH are immunosuppressant application 
and liver transplantation. It is considered that lack of 
good animal AIH models is the main reason for the 
shortage of a simple and efficient cure. The Concana-
valin A (Con A) model is a typical and well established 
model for investigating T-cell and macrophage de-
pendent liver injury in mice, which closely mimics the 
pathogenesis mechanisms and pathological changes 
of patients, and is regarded as the best experimental 
model for AIH research so far. In this paper we eluci-

dated the pathogenic mechanisms of AIH and the evo-
lution of relative animal models. We go on to further 
focus on Con A-induced liver injury from the point of 
immunological mechanisms and the change of cytokine 
levels. Finally, we manifested the clinical significance of 
the AIH animal models and the challenges they would 
meet during their future development.
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INTRODUCTION
Autoimmune hepatitis (AIH) is a chronic inflamma-
tory disease of  the liver, characterized by a loss of  self-
tolerance leading to the appearance of  autoantibodies, 
pathological changes and dysfunctions (the detailed 
pathogenic mechanisms of  which still remain vague). 
According to different antibodies profiles, AIH is clas-
sified into three categories: AIH type 1 is characterized 
by the presence of  antibodies to nuclear antigens (ANA) 
and/or anti-smooth muscle antigen (SMA) antibodies; 
AIH type 2 is characterized by anti-liver kidney micro-
somal (LKM)-1 and low level of  LKM-3 antibodies 
(with or without ANA or SMA antibodies); AIH type 3 
is characterized by autoantibodies against soluble liver 
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antigen/liver pancreas (with or without ANA or SMA 
antibodies)[1]. 

Around the world, the incidence of  AIH is 0.1-1.9 
cases out of  100 000 persons per year, which is not 
very high[2]. However, the prevalence of  autoimmune 
hepatitis in Europe is in the range of  11.6-16.9 cases 
per 100 000 persons[2], and in the United States, the pro-
portion of  hepatitis among patients with liver cancer is 
about 11%[3]. Incidence is also different between men 
and women. It was reported that women are more vul-
nerable to AIH[2,4,5]. 

Unfortunately, we do not have any better choice of  
medicines other than immunosuppressants, which can 
be classified into four generations[6,7]. In the 1950s, the 
first generation immunosuppressants were limited to 
azathioprine and steroids, which were enriched by poly-
clonal anti-lymphocyte and anti-thymocyte globulins 
in the 1960s[6]. For this generation, 70%-80% patients 
might relapse after withdrawal of  treatment[8]. More se-
riously, they have many side effects[9]. Corticosteroids, 
Tacrolimus and Cyclosporine are typical of  the second 
generation[6]. In the early 1990s a broad range of  third-
generation immunosuppressants emerged[6], most of  
which are monoclonal anti-lymphocyte and anti-thymo-
cyte globulins followed by the fourth generation, such 
as the IL-2 monoclonal antibody with its highly specific 
sites of  action[7,10]. The second and the third generation 
immunosuppressants are in most cases successfully used 
for treatment of  AIH[11,12]. But long term applications of  
these immunosuppressive drugs carries serious risks[13] 

and sustained remission[9], even at low doses. Non-
system steroids may be the best candidates[14]. Patients 
with liver failure or fulminant presentation who fail to 
improve under immunosuppressive therapy should be 
considered as candidates for liver transplantation. With-
out treatment, nearly 50% of  patients with severe auto-
immune hepatitis die in approximately 5 years[15]. Taking 
this into consideration, it is significantly important to 
develop new specific drugs. Animal models are the ba-
sis of  drug discovery and development. Up to the time 
of  writing, there are still no universal animal models of  
AIH which can be used as pathogenic models as well as 
therapeutic ones. 

As the most important AIH research model, the Con 
A animal model plays a key role in AIH drug develop-
ment. In this article we attempt to review the evolution 
of  the Con A animal model of  AIH, to sum up the 
mechanisms of  Con A-induced liver injury, and to illus-
trate its statue in AIH drug development. Furthermore, 
the future challenges of  the animal model are also dis-
cussed.

EVOLUTION OF AIH MODEL
AIH models have evolved from crude liver homogenates 
and adjuvants to the genetic engineering level, which 
can be classified into five phases[16]. The first phase was 
in 1972 when Buschenfelde et al[17] induced chronic ac-

tive hepatitis in rabbits immunized with human liver 
proteins combined with complete Freund’s adjuvant. 
This work built a solid foundation for AIH models. 
The second phase began in 1983, when Mihas et al[18] 
established transient hepatitis in mice by immunization 
with syngeneic liver proteins together with the polysac-
charide of  Klebsiella pneumoniae. In the third phase, 
taking place from 1987 to 1990, many scientists used 
inbred or neonatal thymectomy mice to establish the 
T-cell reactive AIH model. They induced transient hepa-
titis by immunizing C57BL/6 mice with the supernatant 
of  liver syngeneic liver homogenates with complete 
Freund’s adjuvant and used adoptive transfer technol-
ogy to study the roles of  T-cell, which allowed studies 
of  the pathogenesis of  AIH[19]. The fourth phase, from 
1992 to 2003, had endotoxin and plant lectin-induced 
hepatitis models receive extensive attention. Three types 
of  inducers were wildly used during this period: Con 
A[20], D-galactosamine (GalN) with low dosage of  lipo-
polysaccharides (LPS)[21], and high dosage of  LPS[22]. In 
the fifth phase, from 2002 to 2008, the application of  
genetic engineering technology accelerated the develop-
ment of  AIH model[23]. From one aspect, gene knockout 
and transgenic animals facilitated the study of  the func-
tions of  certain genes[24]. From the other, production of  
designated antibodies using genetic engineering methods 
made it possible for scientists to get specific types of  
autoantibodies[25], and also made it possible for the Con 
A models to mimic a specific subtype of  AIH. Signifi-
cantly, the production of  designated autoantibodies is 
based on known antigens. Scientists have now clarified 
the antigens to the following autoantibodies: the antigen 
to LKM-1 is cytochrome P450 2D6[26,27], the antigen to 
LKM-2 is cytochrome P450 2C9[1], the antigens to Liver 
Microsomal are cytochrome P450 1A2 and cytochrome 
P450 2A6[1]. The animal models of  type 2 AIH[28] have 
been reported, but obviously type Ⅰ animal models have 
more clinical significance than type Ⅱ[2]. As is widely 
known, it is difficult to find the antigen of  autoantibod-
ies, which is the limitation of  the gene engineering AIH 
model. The features and parameters of  the three models 
are listed in Table 1[29].

From the information in Table 1, it is obvious that 
the Con A-induced hepatitis model possesses more ad-
vantages than the other two. Firstly, the Con A model 
includes only one inducer, making it easier to be estab-
lished compared with the GalN/LPS model. Secondly, 
there is no significant change of  the level of  transami-
nase, which is considered a valid index of  the severity 
of  liver injury, in the LPS model, while such change is 
remarkable in the Con A model. Thirdly, in the Con A 
model, the serum level of  many cytokines relevant to 
inflammation change dramatically, which is favorable for 
the study of  the pathogenic mechanisms of  AIH[29]. Fur-
thermore, besides AIH, Con A animal models with dif-
ferent parameters are adaptable to many clinical diseases, 
such as fulminant hepatitis[30], virus hepatitis[31], hepa-
totoxin[32,33] and alcoholic liver diseases[34]. In summary, 
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Con A AIH model is easy, convenient, inexpensive and 
repeatable, as well as a T-cell activated model and could 
greatly facilitate the study of  the mechanisms of  AIH-
induced liver injury.  

IMMUNOLOGICAL MECHANISMS OF 
CON A-INDUCED LIVER INJURY
Con A is one kind of  lectin, which is purified from 
Canavalia brasiliensis[35]. Tiegs et al[20] injected Con A, Suc-
cinyl Con A with no agglutination activity, and Vicia 
faba lectin with strong agglutination activity to nuclear 
magnetic resonance imaging mice via tail vein, respec-
tively. The results showed that only Con A could induce 
liver injury, which indicated that the in vitro agglutina-
tion activity of  this lectin does not correlate with its 
hepatotoxic potential in vivo. They also studied the cor-
relation between the hepatotoxic potential of  Con A 
and its sugar-binding site[20]. Con A has specific sugar-
binding sites, whose ligands are α-D-mannoside, methyl 
α-D-mannopyranoside, α-D-glucose, and methyl-α-
D-glucose[36]. They co-administrated Con A with α-D-
mannoside or methyl α-D-mannopyranoside to mice, 
which prevented the induction of  hepatic injury by the 
lectin[20]. This suggested that free sugar-binding sites are 
indispensible for the induction of  liver injury by lectin. 
Sato et al[37] also confirmed that Con A/glycogen mul-
tilayer films can be decomposed by exposing them to 
sugar solutions (D-glucose, D-mannose, methyl-alpha-
D-glucose and methyl-alpha-D-mannose), as a result of  
the displacement of  sugar residues of  glycogen from 
the binding sites of  Con A by the free sugar added in 
the solution. This suggested that sugar-binding sites 
are prerequisites of  activated Con A. But among Con 
A, Succinyl Con A and Vicia faba lectin, which have the 
same sugar-binding site, only Con A can lead to high 
level of  transaminase[20]. These two results indicated that 
the hepatotoxic potential of  Con A is not determined 
by its agglutination activity or sugar-binding site. Other 
mechanisms may exist.

The mechanisms of  the Con A model have inter-
ested many scientists. Previews papers describe that 
the aminotransferase of  mice in thymus[38] and CD4[39] 

neutralized groups decreased significantly compared 
with the control group, while the CD8 neutralized group 
show no significant change. What is more, after injection 
of  Con A, the blood level of  interleukin 2 (IL-2), IL-4 
and interferon gamma (IFN-γ) all increased dramati-
cally[40]. This suggested that the CD4+ T helper (Th) 
cell was involved in the liver injury[40]. It is reported that 
CD4+-positive Th cells recognize the Con A-modified 
major histocompatibility complex (MHC) structures of  
macrophages and become activated, followed by an in-
flammation reaction and the release of  IL-1 and IL-2 to 
the blood[41]. In the experiment of  CD8 neutralization, 
there was a minor decrease of  the transaminase level, 
which suggested that the target cell lysis by cytotoxic 
CD8+ T lymphocyte (CTL) also contributes to liver in-
jury, but not as the major factor. In conclusion, the main 
mechanism of  the Con A model is that Th cell activation 
increases the relevant cytokine level, which leads to liver 
injury. Meanwhile, the CTL mediated target cell lysis may 
be the secondary mechanism.

In the liver, lymphocytes, sinusoid endothelial cells 
(SECs), Kupffer cells (KCs) and stellate cells are all in-
volved in the immune response[42]. Lymphocytes can be 
classified into two groups, exogenous and endogenous[43]. 
Exogenous lymphocytes originate from the thymus[44], 
bone marrow[44,45], intestinal tract[46], spleen[47] and lymph 
gland[48], and enter the liver through circulation. Endog-
enous lymphocytes are enriched in the portal area of  the 
liver, which count for 25% of  non-parenchyma cells in 
the liver[49]. The endogenous lymphocytes are mainly T 
cells, while B cells only count for 5% of  them. This is 
why lymphocyte infiltration is mainly focused in the por-
tal area[50].

For a long time, there have been debates about whe-
ther KCs or SECs plays a major role in immunological 
liver injury[51-53]. Knolle et al[52] established the spontane-
ous and LPS activated cell model, and found that SECs 
and KCs both secreted IL-1 and IL-6, which suggested 
that SECs are also key cells in liver injury. It has been 
found that fifteen minutes after intravenous injection 
of  Con A, Con A binds to SECs first; 4 h later, Con A 
begins to bind to the KCs[52]. Using Scanning Electron 
micrograph, it is clearly seen that 4 h after intravenous 
injection of  Con A, blood cell endothelium attaches to 
the SECs first[52]. Then lymphocytes or neutrophils are 
trafficked into the hepatocytes, leading to inflamma-
tion[52]. We can conclude that SECs and KCs are both 
important, but they play their roles in the different phas-
es. After injection, Con A binds to the mannose gland in 
the SECs surface first, leading to the breakdown of  the 
SECs membrane, bleb formation and cytoplasm disap-
pearance[30]. SECs detachment facilitates the binding of  
Con A to the KCs. CD4+ Th cells recognize the MHC 
class Ⅱ and T cell receptor of  KCs modified by Con 
A and are then activated[30]. Such liver injury is mainly 
mediated by T helper cells, including Th1 and Th2 cells. 
Figure 1 depicted the mechanisms of  T cell activated 
liver injury.
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  Con A[29]   GalN/LPS[29]   LPS[29]

  Animal BALB/c-mice BALB/c-mice BALB/c-mice
(6-8 wk) (6-8 wk) (6-8 wk)

  Inducer Con A GalN/LPS LPS
  Dosage 20 mg/kg LPS: 5: 55 μg/kg 10 mg/kg

GalN: 700 mg/kg
  Application method Tail vein Subcutaneous Subcutaneous
  Transaminase level 
  (max)

8 h 8 h No significant 
change

Table 1  The features of the autoimmune hepatitis model in-
duced by endotoxins and plant lectins

Con A: Concanavalin A; GalN: D-galactosamine; LPS: Lipopolysaccharides.
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CHANGES IN THE EXPRESSION LEVELS 
OF RELEVANT CYTOKINES
Some major cytokines involved in the Con A-induced 
liver injury are IFN-γ[54-55], IL-2[55], IL-4[56], IL-656] and tu-
mor necrosis factor α (TNF-α)[56], of  which TNF-α and 
IFN-γ are the major ones.

Figure 2 shows the time when different cytokines 
reach their peak level in the plasma and liver. In the 
plasma, TNF-α and IL-10[29,57] first reach their peak level 
after 1 h, followed by IL-4 after 2 h. IFN-γ, IL-2 and 
IL-6[29,57] reach their peak after 3 h, followed by IL-12. 
However, in the liver, TNF-α, IFN-γ, IL-4[29,57] reach 
their peak level in 1 h, followed by IL-2 and IL-12. There 
is no significant change for IL-6[57] and IL-10[29,57] in the 
liver. Especially, the level of  IL-10[29] is very low in the 
liver compared with that in the plasma, which suggested 
that IL-10 might originate from other tissues, such as 
the spleen. But one previous paper reported that IL-10 
expression in the liver is higher than that in the spleen[57]. 
As yet, where IL-10 originates remains unanswered.

Comparing the acute and chronic animal models, 
the expression profiles of  IL-10 are quite different. For 
example, in the acute model induced by Con A, TNF-α, 
IFN-γ and IL-12 levels increased to 2.11, 1.92 and 8.30 
times of  their normal level, respectively, after neutraliza-
tion of  IL-10. Reversely, administration of  recombinant 
IL-10 prior to injection of  Con A decreased by 47%, 
47% and 80% of  TNF-α, IFN-γ and IL-12 expression 
levels respectively. IL-10 is considered to be an anti-
inflammatory cytokine in a murine model of  Con A[58]. 
Kato et al[59] described that the IL-10 level is increased at 
12 h after the Con A injection. After neutralizing anti-
bodies to IL-10, it was intraperitoneally injected into ani-

mals of  the same model at 6 h before Con A treatment, 
with serum alanine aminotransferase level being sig-
nificantly higher than in the control group. Histological 
studies showed spotty necrosis in the group treated with 
anti-IL-10 antibodies. These results suggest that IL-10 
has an inhibitory effect on liver injury in a murine model 
of  Con A-induced experimental liver injury mediated by 
cellular immunity[58]. These studies suggested that both 
endogenous and exogenous IL-10 can protect the liver 
from acute injury[59]. 

However, there is evidence indicating that IL-10 could 
accelerate liver injury in the chronic model[60]. When Con 
A was administrated intravenously to BALB/c mice once 
a week, the IL-10 expression level in plasma increased 
to 7 times higher 20 wk later. Accordingly, in this model, 
inflammatory infiltration also lasted for 20 wk and acti-
vated stellate cells also dramatically increased[60]. All these 
results suggested that IL-10 aggravated liver injury in the 
chronic Con A model. 

Paradoxically, IL-10 does not play the same role in all 
chronic models. For example, in the CCl4 chronic model, 
IL-10 slows down the process of  fibrosis[61]. This may 
be due to the fact that the mechanisms of  liver injury 
in these two models are different, and the latter does 
not involve T cell activation. In the acute Con A model, 
IL-10 may inhibit macrophages and Th1 cells from re-
leasing inflammatory cytokines, which explains why it 
plays an anti-inflammation role in the acute model[58]. 
Though IL-10 can inhibit the secretion of  anti-inflam-
mation cytokines, secretion of  IFN-γ is also inhibited[62]. 
Some previous studies reported that, to some extent, 
IFN-γ may relieve liver fibrosis. Therefore, a long dura-
tion of  IFN-γ deficiency may aggravate fibrosis. As for 
the CCl4 model, liver injury is mediated only by free 
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Figure 1  Mechanisms of Concanavalin A induced T cell activated liver 
injury. Con A: Concanavalin A; KC: Kupffer cell; SEC: Sinusoid endothelial cell; 
MHC: Major histocompatibility complex.
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Figure 2  Different cytokines levels within 24 h. A: Plasma level; B: Liver 
level. TNF: Tumor necrosis factor; IFN: Interferon; IL: Interleukin.
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radicals, which is not relevant to the activation of  the 
immune response and the release of  inflammation cyto-
kines. In conclusion, the expression profiles in different 
models, even with the same inducer, are not the same. 
The various mechanisms, cell types and micro-environ-
ments should be taken into consideration in experimen-
tal design and execution. 

CON A MODEL AND NEW DRUG 
DEVELOPMENT
In recent years, based on the Con A animal model, many 
new therapeutic antibodies or proteins have been de-
veloped to attenuate liver injury in experimental models 
(Table 2)[63-66]. 
    Fan et al[63] humanized a murine monoclonal antibody 
23C3 against human osteopontin by a complementary-
determining region grafting method based on computer-
assisted molecular modeling, denoted as Hu23C3. They 
demonstrated that Hu23C3 could have the potential 
for attenuating Con A-induced liver injury through the 
nuclear factor kappa B (NF-κB) pathway.

Nakano et al[64] intraperitoneally injected a polyclonal 
antibody against histone H1 immediately after Con A 
injection; they found that injection of  anti-histone H1 
antibodies could reduce Con A-induced liver damage, 
also via the NF-κB pathway. 

It is reported that Con A-induced hepatitis was at-
tenuated by the administration of  apolipoprotein A-
Ⅱ, which is the second major apolipoprotein of  high-
density lipoprotein[65]; this inhibited leukocytes infiltra-
tion and the expression of  T-cell related cytokines and 
chemokines. 

The survival rate of  mice was markedly enhanced 
by the administration of  CpG-containing oligodeoxy-
nucleotides (CpG ODN)[66]. This is because CpG ODN 
pretreatment inhibits the DNA binding ability of  NF-
κB, leading to the decrease of  systemic/liver levels of  
TNF-α and IFN-γ. These results suggest that CpG 
ODN pretreatment protects the mice from Con A-in-
duced liver injury, also via NF-κB pathway.

CONCLUSION
In this article we reviewed the evolution of  the AIH 

model and emphasized the importance of  the Con A 
AIH model. Based on the previous papers, we summa-
rized the mechanisms of  Con A-induced liver injury, its 
pathogenic changes and cytokines expression levels. The 
Con A animal model, which is a typical T cell dependent 
model, can mimic the mechanisms of  clinical AIH dis-
eases. Therefore, we think that it is a good and conve-
nient model for studying the mechanisms of  AIH and 
developing new therapeutic drugs.
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