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Introduction
Accurate protein counts are crucial for building structural and 
mathematical models and reconstituting multiprotein com­
plexes. Quantitative fluorescence microscopy is used to de­
termine stoichiometries in live cells (Hirschberg et al., 2000; 
Dundr et al., 2002; Wu and Pollard, 2005; Joglekar et al., 2006, 
2008). For example, Wu and Pollard (2005) used immuno­
blotting to calibrate fluorescence intensity measurements of 28  
cytoskeletal and signaling proteins in fission yeast. Joglekar et al. 
(2006) used an internal protein standard to count molecules in 
budding yeast kinetochores.

Centromeres (CENs) specify the sites to assemble ki­
netochores that mediate attachment of chromosomes to the 
spindle microtubules (MTs). Centromeric nucleosomes contain 
the histone H3 variant CENP-A/CenH3/Cse4 (Palmer et al., 
1987; Sullivan et al., 1994; Stoler et al., 1995). In budding 
yeast, one MT attaches to each kinetochore (Winey et al., 
1995) assembled at the point CEN (120 bp). Cse4 is essen­
tial for kinetochore assembly (Collins et al., 2005). Chromatin 
immunoprecipitation (ChIP) shows that each CEN contains 

only one Cse4 nucleosome (Furuyama and Biggins, 2007), 
whereas another study suggests a wider range of Cse4 binding 
(Riedel et al., 2006).

The CENs and kinetochores of all 16 chromosomes are 
clustered throughout the cell cycle in budding yeast. Assuming 
a Cse4 dimer at each nucleosome, an anaphase cluster is pre­
sumed to contain 32 Cse4 molecules (Joglekar et al., 2006;  
Camahort et al., 2009), although the nucleosome structure at 
CENs is still disputed (Dalal et al., 2007; Mizuguchi et al., 
2007; Furuyama and Henikoff, 2009; Black and Cleveland, 
2011; Xiao et al., 2011). This value was used as a standard to 
count the kinetochore proteins and to build an architectural 
model of kinetochores (Joglekar et al., 2006, 2009). However, 
whether anaphase clusters contain only CEN-associated Cse4 
has not been evaluated (Westermann et al., 2007).

In contrast to budding yeast, fission yeast and most other 
eukaryotes have regional CENs that span several kilobases to 
megabases and contain many CENP-A nucleosomes (Partridge  
et al., 2000; Takahashi et al., 2000; Irvine et al., 2004).  
A major question is whether the kinetochore assembled on 
point CENs represents a conserved subunit of each kineto­
chore-MT attachment site in regional CENs. To address this 

The stoichiometries of kinetochores and their constit-
uent proteins in yeast and vertebrate cells were de-
termined using the histone H3 variant CENP-A, 

known as Cse4 in budding yeast, as a counting standard. 
One Cse4-containing nucleosome exists in the centro-
mere (CEN) of each chromosome, so it has been assumed 
that each anaphase CEN/kinetochore cluster contains  
32 Cse4 molecules. We report that anaphase CEN clusters 
instead contained approximately fourfold more Cse4 in 
Saccharomyces cerevisiae and 40-fold more CENP-A 

(Cnp1) in Schizosaccharomyces pombe than predicted. 
These results suggest that the number of CENP-A mole-
cules exceeds the number of kinetochore-microtubule 
(MT) attachment sites on each chromosome and that 
CENP-A is not the sole determinant of kinetochore as-
sembly sites in either yeast. In addition, we show that  
fission yeast has enough Dam1–DASH complex for ring 
formation around attached MTs. The results of this study 
suggest the need for significant revision of existing CEN/
kinetochore architectural models.

CENP-A exceeds microtubule attachment sites in 
centromere clusters of both budding and fission yeast

Valerie C. Coffman,1 Pengcheng Wu,1 Mark R. Parthun,2 and Jian-Qiu Wu1,2

1Department of Molecular Genetics and 2Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210

© 2011 Coffman et al.  This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the first six months after the pub-
lication date (see http://www.rupress.org/terms). After six months it is available under a 
Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, 
as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y



JCB • VOLUME 195 • NUMBER 4 • 2011� 564

et al., 2009; Laporte et al., 2011). We used the Wu and Pollard 
(2005) sum intensity method (see Materials and methods) to 
compare fluorescence intensity of cytokinesis node proteins 
with Cnp1 anaphase clusters. Based on the prediction of 15 
molecules of Cnp1 per cluster, each visible cytokinesis node 
contained <0.2 molecules of Cdc12 and 1 molecule of 
myosin-II heavy chain Myo2 or its light chain, Rlc1 (Fig. 1,  
A and B). These results contrast the reported levels of 4 
molecules of Cdc12 and 40 molecules of Myo2 and Rlc1 
per cytokinesis node (Wu and Pollard, 2005) and suggest  
either severe quenching of tagged node proteins or more 
Cnp1 at anaphase clusters.

We hypothesized that if quenching could make several 
Cdc12 molecules appear to be <0.2 molecules, nodes in dip­
loid cells expressing one tagged and one untagged copy of 
Cdc12 should display an intensity similar to nodes in hap­
loids. Instead, nodes in diploids were about half as intense 
as in haploids (Fig. 1, C and D), suggesting that quench­
ing was not significant. Cytoplasmic speckles of Cdc12 are 
the dimmest visible structure and are assumed to contain at 
least a dimer because formins dimerize with strong affinity 
(Moseley et al., 2004; Xu et al., 2004; Coffman et al., 2009). 
Consistent with this assumption, we observed fewer cyto­
plasmic speckles in the diploid cells (Fig. 1 D). Cdc12 nodes 
appeared two to three times as bright as Cdc12 speckles  
(Fig. 1 E), indicating at least four to six Cdc12 molecules 
per node (Laporte et al., 2011). Moreover, the intensities of 
Cnp1 clusters and Sad1 at spindle pole bodies were similar 
(Fig. 1 F). These data suggest >450 Cnp1 per cluster (Wu and 
Pollard, 2005) and indicate that another standard is needed to 
resolve the discrepancy.

question, Joglekar et al. (2008) compared kinetochore protein 
intensities in Schizosaccharomyces pombe with Cse4-GFP. 
They reported that the S. pombe CENP-A/Cnp1 is present in 
approximately two to three nucleosomes per CEN and con­
cluded that numbers of CENP-A nucleosomes do not scale 
with CEN lengths. They also found that the ratio of kineto­
chore proteins is conserved on each MT attachment site (two 
to four per CEN in S. pombe) except for too few Dam1–DASH 
complexes to form a ring (Joglekar et al., 2008). Numerous 
other studies have also used a standard based on Cse4 to deter­
mine stoichiometry of cellular structures (Gardner et al., 
2008; Moore et al., 2008; Yeh et al., 2008; Anderson et al., 
2009; Markus et al., 2009; Ribeiro et al., 2009; Shimogawa 
et al., 2009; Tang et al., 2009; Thorpe et al., 2009; Gao et al., 
2010; Johnston et al., 2010; Lin et al., 2010).

Here, we used independent standards to count molecules 
in CEN/kinetochore clusters. We found that each anaphase 
cluster contains 680 Cnp1 and 122 Cse4 molecules, much 
higher than the earlier studies. Thus, CENP-A copy number 
scales to CEN lengths in fission yeast and exceeds MT attach­
ments in both yeasts. Our data present several challenges to the 
current CEN/kinetochore models.

Results and discussion
Visible cytokinesis nodes contain less than 
one Cdc12 molecule?
Cytokinesis nodes, discrete protein clusters at the equato­
rial plasma membrane during the G2/M transition (Fig. 1, A  
and D), are precursors of the contractile ring in fission yeast 
cytokinesis (Wu et al., 2006; Vavylonis et al., 2008; Coffman 

Figure 1.  Relative quantification of Cnp1 and 
S. pombe cytokinesis proteins. (A) Differential 
interference contrast (DIC) and fluorescence  
image of S. pombe cells showing Cdc12-3YFP 
nodes (strain KV346; open arrowhead) or 
Cnp1-mYFP anaphase clusters (strain JW1469; 
closed arrowheads). (B) Box plots (see Materi-
als and methods) of the number of molecules in 
individual 3YFP- or mYFP-tagged cytokinesis 
nodes using Cnp1 as a standard (set at 15 
Cnp1 molecules/anaphase cluster, n = 60 clus-
ters; strain JW1469). From left to right, strains 
KV346, JW1110, and JW949 are shown.  
(C) Relative intensity of individual Cdc12-3YFP 
nodes in a heterozygous diploid strain and a 
haploid strain (JW1404-1). au, arbitrary unit. 
(D) DIC and fluorescence images of cells quan-
tified in C. Arrowheads mark cells with nodes. 
Asterisks on the DIC images mark interphase 
cells with speckles (haploid) or without speckles 
(diploid). (E) Quantification of Cdc12-3YFP in 
nodes and speckles in haploid cells. (F) Micro-
graphs and quantification of spindle pole body 
protein Sad1 (JW1141) and Cnp1 (JW1469) 
during anaphase. Dashed lines on micrographs 
show cell boundaries. Bars, 5 µm.
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methods; Fig. 2 B). We repeated the bleaching experiments of 
Leake et al. (2006) to obtain the fluorescence intensity of each 
EGFP molecule. We calculated the average step size of intensity 
loss during bleaching and divided the initial intensity of the MotB 
motors by that value to find 22.5 ± 3.4 molecules per MotB motor  
(Fig. 2 C). Quantification of molecules in individual nodes of  
six cytokinesis proteins using MotB as a standard (Fig. 2 D) re­
produced the previously estimated values (Wu and Pollard, 2005). 
However, each anaphase cluster had 680 ± 119 Cnp1-mEGFP  

Anaphase CEN clusters harbor  
additional CENP-A
The intensity of EGFP-MotB in Escherichia coli flagellar mo­
tors is 22 times the intensity of a single EGFP molecule, deter­
mined by stepwise bleaching (Leake et al., 2006). Cytokinesis 
nodes of monomeric EGFP (mEGFP)–Myo2 were similar to  
EGFP-MotB in intensity, whereas Cnp1-mEGFP was much 
brighter (Fig. 2 A). The mEGFP was 14% brighter than EGFP,  
and we used this number to correct our data (see Materials and 

Figure 2.  Quantification of node proteins and 
CENP-As using MotB as a reference. (A) Micro
graphs of Myo2 nodes (JW1109; open arrow
head), Cnp1 anaphase clusters (JW1470; 
closed arrowheads), and MotB motor of E. coli 
(JPA750; arrows) with the same imaging set-
tings and contrast adjustment. (B) Comparison 
of EGFP (MLP198) and mEGFP (JW948) inten-
sity (mean ± SD). au, arbitrary unit. (C) Quantifi-
cation of the intensity of a single EGFP molecule 
and MotB molecules in each motor using step-
wise bleaching experiments. (top) A representa-
tive bleaching trace of EGFP-MotB. Each plateau 
ranges from 10 to 50 frames. The yellow line 
shows raw data after background subtraction, 
whereas the blue line shows Chung-Kennedy 
filtered data. (bottom left) The histogram shows 
the step sizes from 20 bleaching traces. (bottom 
right) The number of EGFP-MotB molecules per 
motor calculated from the measured step size. 
The arrows indicate the peak (9.52 units [left] 
and 22.5 ± 3.4 molecules [right]). (D) Molecules 
measured in individual cytokinesis nodes and 
Cnp1 anaphase clusters (JW1470) compared 
with the MotB motor. Red diamonds indicate 
published mean values (Wu and Pollard, 2005; 
Leake et al., 2006; Joglekar et al., 2008).  
(E) Quantification of Mid1-mECitrine (JW1790) 
in interphase nodes using stepwise bleaching as 
in C from eight bleaching traces. The arrows in-
dicate the peak. (F) Number of Mid1 molecules 
in interphase nodes using the bleaching method 
(left) or intensity ratio to the MotB motor (right). 
(G, left) Comparison of Cnp1 (JW1469) and 
Cse4 (JW2686-2) in anaphase clusters using  
MotB as a standard. (right) Cells expressing 
mYFP-tagged CENP-As in the same field for com-
parison. Dashed lines on micrographs show cell 
boundaries. Bars, 5 µm.
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These data and the new Cse4 copy numbers explain the 40-
fold underestimation of Cnp1 and show that Cnp1 occupancy 
is proportional to CEN sizes as observed in Candida albicans 
and vertebrates (Irvine et al., 2004; Joglekar et al., 2008; Sullivan 
et al., 2011).

Cnp1 and Cse4 display similar dynamics  
at anaphase
Next, we investigated whether all CENP-A molecules at ana­
phase clusters are stably associated with chromosomes. Cse4 
is incorporated into CEN nucleosomes during DNA replica­
tion and remains stably bound throughout most of the cell 
cycle in budding yeast (Pearson et al., 2004; Camahort et al., 
2007). Cnp1 anaphase clusters (two per cell) and nuclei con­
tained 61 ± 6 and 98 ± 8% of total Cnp1 intensity, respec­
tively, whereas Cse4 anaphase clusters and nuclei contained 
41 ± 8 and 91 ± 21% of total Cse4, respectively (Fig. 3 A).  
These data suggest that molecules could be available in the nucleus 
to exchange with those in the anaphase clusters. Cnp1 inten­
sity increased during septum formation (Fig. 3 B; Takayama 
et al., 2008), which began 25 min after the start of anaphase 
(Wu et al., 2003). Cse4 recovered little in anaphase clusters, 
as reported (Pearson et al., 2004) using FRAP assays. Sim­
ilarly, Cnp1 clusters bleached at early anaphase B did not 
recover much until 25 min later, nor did the unbleached 
clusters lose intensity (Fig. 3, C and D). This large immobile 
fraction (>80%) suggests that Cnp1 stably associates with nu­
cleosomes and kinetochores.

Some Cse4 bound to 2-µm circles and other 
locations outside CENs in budding yeast
Most laboratory budding yeast (but not fission yeast) strains 
contain 60–100 parasitic plasmids per cell, called 2-µm cir­
cles (2-µm), that partition using Cse4, cohesin, and other pro­
teins (Velmurugan et al., 2000; Mehta et al., 2002, 2005; Hajra 
et al., 2006; Ghosh et al., 2007). The plasmids incorporate Cse4 
nucleosomes and cluster near CENs (Velmurugan et al., 2000; 
Hajra et al., 2006), but it is unknown how many Cse4 molecules 
bind to 2-µm (Yeh and Bloom, 2006; Huang et al., 2011). Com­
pared with 122 Cse4 molecules in YEF473a, the strain used 
above, each anaphase cluster contained 105 ± 13 Cse4 mole­
cules in a cir0 strain (cured of 2-µm) and 121 ± 19 molecules in 
the isogenic cir+ strain (Fig. 4, A and B). Thus, 2-µm plasmids 
can bind 16 Cse4 molecules.

In budding yeast, MTs are attached to kinetochores 
throughout the cell cycle except briefly at S phase (Pearson  
et al., 2004; Westermann et al., 2007). Thus, Cse4 remains 
bound to CEN DNA during G1 phase. Cells in G1 phase from 
asynchronous cultures or after -factor treatment had 40–50% 
Cse4 intensity in each CEN cluster compared with anaphase 
cells. The intensity was further reduced in prolonged G1 arrest 
(Fig. 4, C and D), suggesting that most Cse4 molecules are lost 
from the cluster in G1 phase.

Collectively, Cse4 molecules in each anaphase clus­
ter are almost fourfold higher than the assumed 32 molecules  
(Joglekar et al., 2006). Some of the additional Cse4 associates with  
2-µm plasmids (Fig. 4). However, the sizeable discrepancy 

molecules (Fig. 2 D), which is much higher than the reported 
15 Cnp1 molecules (Joglekar et al., 2008). Counting Mid1 
by stepwise bleaching in S. pombe yielded a similar result to 
the ratio measurements (Fig. 2, E and F). When S. pombe and 
Saccharomyces cerevisiae were observed together, each ana­
phase cluster contained 680 ± 100 Cnp1 and 122 ± 24 Cse4 
molecules, respectively (Fig. 2 G).

We explored the discrepancy with published ratios using 
molecular tools. PCR and sequencing revealed that the Cnp1-
GFP(S65T) strain (YWY277) used in Joglekar et al. (2008) 
has cnp1-GFP(S65T) inserted at the Cnp1 locus upstream of 
the native gene that lacks the start codon (Fig. S1 A). We  
hypothesized that the native gene is translated from the ATG 
for amino acid 7. This untagged Cnp1 likely inserts at CENs 
in strain YWY277 based on the N-terminal truncation data 
(Takayama et al., 2008). In a strain (JW3523) with cnp1-
GFP(S65T) completely replacing the native gene, anaphase clus­
ters were 4.4-fold as bright as in YWY277 cells (Fig. S1, B and C). 

Figure 3.  Cnp1 displays similar dynamics to Cse4 at anaphase clusters. 
(A) Percentage of total cellular CENP-A intensity (mean ± SD) contained 
in anaphase clusters or the nucleus of S. pombe (JW1469) and S. cerevi-
siae (JW2687) cells. (B) Quantification of Cnp1 at early anaphase B, late 
anaphase, and G1/S phase (JW1469) with cellular features diagrammed 
below the graph (see Materials and methods). (C) FRAP is plotted as the 
percentage of recovery (left axis), whereas the unbleached cluster’s intensity 
is plotted as the percentage of prebleach intensity (right axis; mean ± SEM). 
One CEN cluster in each cell was bleached at early anaphase B, and the 
recovery was monitored with a 30-s delay for Cnp1 (JW1470) and 1 min 
for Cse4 (KBY7006). The change in intensity of the unbleached cluster was 
also monitored. (D) A kymograph of a representative bleached cell express-
ing Cnp1-mEGFP. The arrowhead marks the bleach point. Bar, 5 µm.

http://www.jcb.org/cgi/content/full/jcb.201106078/DC1
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How to specify the sites for  
kinetochore assembly?
Our data raise several challenging questions. Where are the 
additional Cse4 and Cnp1 molecules located? As each chromo­
some has one to a few MT attachment sites, how do cells 
select kinetochore assembly sites among the CENP-A nu­
cleosomes? Could kinetochores assemble on several CENP-A  
nucleosomes instead of only one, as proposed in previous 
models (Joglekar et al., 2006, 2008)? What are the architec­
tures of kinetochores from yeast to vertebrate cells based on 
the revised numbers of molecules?

In fission yeast, a temperature-sensitive allele of Mis6, 
which is required to recruit Cnp1 to CENs, displays nearly 
100% minichromosome loss (Takahashi et al., 1994, 2000). In 
contrast, Fft3 deletion causes a 2.7× reduction in Cnp1 binding 
and only 11% minichromosome loss (Strålfors et al., 2011), 

suggests that the original conclusion of one Cse4 nucleosome 
per CEN may need further verification. This value derives from 
elegant ChIP experiments performed on micrococcal nuclease 
(MNase)–digested chromatin (Furuyama and Biggins, 2007).  
A critical assumption in these experiments is that terminal cen­
tromeric chromatin fragments generated by MNase digestion 
are mononucleosomes. The MNase-resistant fragment contain­
ing CEN DNA was >200 bp (Furuyama and Biggins, 2007), 
but recent biochemical analyses of nucleosomes constructed in 
vitro indicate that Cse4-containing nucleosomes only protect 
115–130-bp DNA (Cole et al., 2011; Dechassa et al., 2011; 
Kingston et al., 2011). Thus, the size of the native MNase- 
resistant centromeric fragment is similar to a Cse4-containing 
dinucleosome. In addition, these experiments did not include 
a cross-linking step, so some less stably associated Cse4 at or 
near the CEN could have been lost. Alternatively, the additional 
Cse4 may bind to DNA surrounding the CENs and/or proteins 
at kinetochores (Akey and Luger, 2003; Riedel et al., 2006; 
Yong-Gonzalez et al., 2007), and these Cse4 may dissociate 
during G1 (Fig. 4, C and D).

Fission yeast kinetochores have sufficient 
Dam1–DASH complex to form a ring
Because of the underestimation of Cse4, the copy numbers of 
kinetochore components need to be adjusted accordingly and 
the architecture revisited to account for the additional proteins. 
The Ndc80 and Dam1–DASH complexes cooperate to proces­
sively maintain the kinetochore-MT attachment and produce 
force (Lampert et al., 2010; Tien et al., 2010). The Ndc80 com­
plex binds the inner kinetochore at one end and MTs at the other 
(Wei et al., 2005; McIntosh et al., 2008; Powers et al., 2009). 
In vitro, Dam1 complexes can assemble into MT-binding rings 
with 16-fold symmetry (Miranda et al., 2005; Westermann  
et al., 2005), which harness the forces produced from de­
polymerizing MT ends and function as processivity factors for  
kinetochore-MT binding (Grishchuk et al., 2005; Asbury et al., 
2006; Efremov et al., 2007; Burrack et al., 2011).

Previous data indicated that the Dam1 complexes at  
S. pombe kinetochores are insufficient to form rings around the 
MTs (Joglekar et al., 2008). Calculations using our data yield 
enough Dam1 complexes at each MT attachment site to form 
one ring in fission yeast and several in budding yeast. Indeed, 
occupancy of Dam1 complex proteins was 120 ± 33 Dam1 and 
141 ± 40 Ask1, whereas Ndc80 was 351 ± 49 at each anaphase 
cluster (Fig. 5, A and C). Dam1 and Ask1 also formed foci on 
the spindle with 14 ± 4 Dam1 molecules each (Fig. 5 B). As 
a control, the ratio between Cse4 and Cnp1 was unchanged 
(Fig. 5, A and C). S. pombe has three chromosomes with two 
to four MT attachment sites each. Thus, enough Dam1 com­
plexes exist at kinetochore-MT attachment sites to form rings. 
Single Dam1 complexes and small oligomers can interact with 
MTs with load-bearing capacity, but the cooperative binding of 
Dam1 complexes suggests a tendency toward oligomerization 
(Gestaut et al., 2008; Grishchuk et al., 2008; Gao et al., 2010; 
Lampert et al., 2010; Tien et al., 2010). Dam1 complex rings 
have not been observed in vivo (McIntosh, 2005), so the struc­
ture of Dam1 complexes requires further studies.

Figure 4.  Some Cse4 in S. cerevisiae binds to 2-µm, and most is lost from 
the CEN cluster during G1 phase. (A) Molecules in each anaphase cluster 
in Cse4-linker-mYFP strains with and without 2-µm. From left to right, strains 
JW2687, JW2679, and JW2683 are shown. (B) Maximum and sum  
intensity projections of representative anaphase clusters of the strains in A. 
Dashed lines on micrographs show cell boundaries. (C) Cells expressing 
Cse4-linker-mYFP (JW2687) imaged with the same settings and contrast 
adjustments. (D) Molecules in each CEN cluster for cells, color coded as in C. 
Prolonged G1 arrest is defined as cells with a long shmoo. Bars, 5 µm.
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Collectively, our experiments challenge the idea that in 
yeast, each CENP-A nucleosome directs the assembly of one 
kinetochore-MT attachment. Instead, CENP-A occupancy ex­
ceeds the number of kinetochore-MT attachment sites in yeast 
as it does in higher eukaryotes. Our experiments also highlight 
the importance of understanding how kinetochore assembly 
sites are selected on CENP-A chromatin.

Materials and methods
Strains and growing conditions
Table S1 lists the E. coli, S. pombe, and S. cerevisiae strains used in this 
study. All tagged yeast genes were integrated at their native chromosomal 
loci under the control of endogenous promoters using pFA6a modules as 
previously described (Bähler et al., 1998; Longtine et al., 1998). The dip-
loid strain expressing one copy of cdc12-3YFP was constructed using com-
plementary ade6 mutant alleles by crossing strain JW81 to JW1404-1 and 
maintained in YE5S adenine using standard genetic methods (Moreno  
et al., 1991). We found that all the tags for Cnp1, Cse4, and kinetochore 
proteins were free of mutations by sequencing genomic DNA after gene 
targeting. The cnp1 locus of strain YWY277 cnp1-GFP(S65T) was ampli-
fied and sequenced, which led to the discovery of the insertion and dupli-
cation at that locus (Fig. S1 A).

Because tagged histones are often less functional (Takayama et al., 
2008), we tagged Cse4 in several strains using a flexible linker of 24 
amino acids between the cse4 ORF and the monomeric YFP (mYFP) tag 
(Sandblad et al., 2006). The linker made the tagged Cse4 strains healthier 
than strains without a linker from 25 to 32°C, although we observed no 
obvious difference in growth rates at 25°C (Fig. S1, D and E). The linker 
strains also had no more than a 10% difference in anaphase cluster inten-
sity from those without it, suggesting that the functionality of Cse4 makes 
little difference in its incorporation at 25°C. The strains did not show in-
creased sensitivity to 20 µg/ml nocodazole (Fig. S1 E), suggesting that 
the tagged Cse4 is functional at 25°C but not fully functional at higher 
temperatures. Most of the tagged Cnp1 strains were functional, with the 
exceptions of the GFP(S65T)-tagged strains (Fig. S1 G), perhaps as a result 
of the thermosensitivity of GFP(S65T) itself. Cnp1 tagged at its N terminus 
under the endogenous promoter (Pcnp1 from 717 to +6 bp with respect 
to the ATG) affects its expression and level at CENs either with or without 
the kanMX6 marker (Fig. S1 F; Takayama et al., 2008).

Yeast cells were restreaked from 80°C stocks, grown 2–3 d 
on plates at 25°C, and then inoculated into 5–15 ml of liquid media. 
S. pombe cells were grown in YE5S and S. cerevisiae in yeast peptone 
dextrose (YPD) at 25°C. Cells were grown in liquid media at exponential 
phase for 48 h before microscopy (Wu et al., 2006). E. coli cells were 
streaked from 80°C stock, grown overnight on lysogeny broth plates, 
and then inoculated into 10 ml of liquid tryptone broth. Liquid cultures were 
grown overnight in tryptone broth at 30°C and washed into motility buffer 
at room temperature (10 mM potassium phosphate and 0.1 mM EDTA, pH 
7.0) for imaging (Leake et al., 2006).

Microscopy
Yeast cells for microscopy were collected from liquid cultures. For some ex-
periments, cells of different strains were mixed together just before collection 
to image under identical conditions. Cells were centrifuged at 5,000 rpm 
for 30 s and then washed into EMM5S or synthetic dextrose medium for 
imaging. Live-cell microscopy of S. pombe was performed using a thin layer 
of EMM5S liquid medium with 20% gelatin and 0.1 mM n-propyl-gallate 
and observed at 23–25°C as previously described (Wu et al., 2006). Live-
cell microscopy of S. cerevisiae was performed either on synthetic dextrose 
medium plus 2% agar pads or on EMM5S with 20% gelatin with S. pombe 
cells to prevent clumping while immobilizing the cells. For synchronization, 
S. cerevisiae cells were treated with 8 µg/ml -factor for 3 h (approximately 
one generation) at 25°C and imaged on agar pads containing 8 µg/ml 
-factor. S. pombe cells for FRAP experiments were treated with 20 mM 
hydroxyurea for 4 h at 25°C to synchronize in S phase and were then 
released for 3 h before FRAP to ensure that all bleached cells and cells used 
for corrections were at similar cell cycle phases. E. coli cells were observed 
on bare slides under a coverslip sealed with Valap to observe rotational 
motility and to verify the functionality of EGFP-MotB motors (Leake et al., 
2006) and were then were imaged immediately on motility buffer plus 20% 
gelatin to immobilize the cells for quantification. To calculate the full width 

suggesting that loss of some Cnp1 is tolerated. In human cells, 
10% of the normal CENP-A level is sufficient to drive kineto­
chore assembly (Liu et al., 2006). Recent studies indicate that 
the constitutive CEN-associated network components CENP-
C, -N, and -T are crucial for kinetochore assembly in fission 
yeast and other cells (Hori et al., 2008; Tanaka et al., 2009; 
Trazzi et al., 2009; Carroll et al., 2010; Gascoigne et al., 2011; 
Przewloka et al., 2011). In human and chicken cells, targeting 
CENP-C and -T to ectopic loci results in MT-attached kineto­
chores in the absence of CENP-A (Gascoigne et al., 2011). 
Drosophila melanogaster CENP-A and -C are interdependent 
for CEN localization (Erhardt et al., 2008). Based on these 
data, we hypothesize that a subset of CENP-A might recruit 
constitutive CEN-associated network components to assem­
ble kinetochores in regional CENs. Distinguishing these as­
sembly sites may be related to the mechanism of neo-CEN 
formation among ectopic CENP-A deposition sites (Heun  
et al., 2006; Zeitlin et al., 2009; Olszak et al., 2011). Thus, 
the CEN environment and interaction partners of CENP-As 
may both be necessary to direct kinetochore assembly at  
specific sites.

Figure 5.  Fission yeast kinetochores have sufficient Dam1–DASH complex 
to form a ring. (A) Molecules of Dam1 (JW3667), Ask1 (JW3666), Ndc80 
(JW3668), and Cnp1 (JW1469) in anaphase clusters using Cse4-mYFP in 
the same field as a standard. (B) Quantification of Dam1 foci along the 
spindle. (C) Representative images of budding and fission yeast anaphase 
cells used for quantification in A and B. The arrowhead marks a Dam1 
structure as quantified in B. Dashed lines on micrographs show cell bound-
aries. Bar, 5 µm.
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Chung-Kennedy filter that preserves the edges of steps (Leake et al., 2006; 
Engel et al., 2009). In brief, starting at the tenth frame, the mean and SD 
of two consecutive sets of 10 points (up to and just after the tenth frame) 
were determined, and the mean of the set with the lower SD was used at 
that frame. Some of the beginning and ending data are lost in this filter. In 
essence, the filter is a rolling mean that does not cross step boundaries. Thus, 
a lower SD suggests that the dataset lies on a plateau, whereas a higher SD 
suggests that the dataset crosses a boundary and is not reported. On the plot 
of filtered data, the discrete changes in fluorescence are more obvious and 
thus easier to measure. The fluorescence of a single molecule is determined 
by fitting the step sizes to a  distribution, and the starting intensity is divided 
by the step size to get the number of molecules.

Molecules in cytokinesis nodes and anaphase CEN/kinetochore 
clusters were counted based on fluorescence intensity. Z sections spaced 
at 0.4 µm (except where noted) were collected for strains expressing 
mYFP- or mEGFP-tagged proteins in S. pombe and S. cerevisiae. Intensities 
of cytokinesis node proteins were obtained from the sum of two to three 
consecutive sections and compared with the sum intensity of anaphase 
clusters in five to six consecutive sections to obtain the mean number of 
each protein in individual structures. Intensities of Cnp1-mEGFP in ana-
phase clusters and mEGFP-tagged node proteins (Mid1 [strain JW1088], 
Rng2 [JW1112], and Myo2 [JW1109]) were compared with the intensity 
of EGFP-MotB motors, with a slight correction for the difference in inten-
sity between EGFP and mEGFP. Ratios between Cnp1 and the three node 
proteins were the same using both mEGFP and mYFP tags (Mid1 [strain 
JW1089], Rng2 [JW1761], and Myo2 [JW1763]), verifying the consis-
tency of the method. Additional node proteins were measured using mYFP 
(Rlc1 [strain JW1757-2], Cdc12 [JW1404-1], and Cdc4 [JW1797-2]). 
The 3YFP intensity of Cdc12-3YFP is corrected to the intensity of mYFP 
for comparison (Wu and Pollard, 2005). Then, Cse4- and Cnp1-mEGFP 
strains were imaged under the same conditions to extrapolate the MotB 
standard for Cse4 using the Cnp1 value. The ratios between Cnp1 and 
Cse4 were the same for mYFP- and mEGFP-tagged proteins or by compar-
ing only the best focal plane.

In Fig. 3 B, the cell cycle stages of the cells were estimated as fol-
lows from the left to right: early anaphase B, with two CEN clusters  
3–6.5 µm apart; late anaphase, with clusters >6.5 µm apart; and G1/S 
phase, with a septum that has begun to form. The first two stages (with-
out a septum) were used to quantify anaphase clusters and were not 
significantly different by the t test. The Student’s two-tailed t test was 
used to calculate p-values.

FRAP analysis
FRAP was performed using the photokinesis unit on the (UltraView ERS) con-
focal system as previously described (Coffman et al., 2009; Laporte et al., 
2011). In brief, the data were gathered using the Track-It function in the soft-
ware (UltraView ERS) to find anaphase clusters in focus before bleaching. 
We collected at least three prebleach stacks (four z sections spaced at 0.3 µm) 
of anaphase clusters and 50 postbleach stacks at 30-s or 1-min intervals. 
For clusters that remained in focus during the movie, an ROI was selected at 
each site that was bleached >50% of the original signal. Unbleached cells 
at the same cell cycle stage as bleached cells were used for photobleach-
ing corrections. Background corrections were performed using extracellular 
areas, and the data were normalized to the mean prebleach intensity set to 
100% (Coffman et al., 2009). The intensity immediately after bleaching was 
set to 0% for the FRAP curves so that the graph shows the percentage of re-
covery. The plane with the maximum intensity from four sections was used for 
analysis at each time point, which is more accurate because the anaphase 
clusters do not always stay in the same focal plane. The unbleached Cnp1 
cluster was also analyzed for loss of fluorescence because the S. pombe 
nuclei remained connected for most of the duration of our imaging. We  
attempted to fit the data to a single exponential curve equation given by  
y = m1  m2  exp(m3  x), in which m3 equals the off rate (Laporte et al., 
2011), but the fit was not good as a result of the lack of recovery.

Online supplemental material
Fig. S1 shows that the abnormal cnp1 locus affects the intensity of Cnp1-
GFP anaphase CEN clusters in strain YWY277 and effects of different tags 
on CENP-A intensity and function. Fig. S2 shows a comparison of ratio 
measurement methods. Table S1 lists the E. coli, S. pombe, and S. cerevi-
siae strains used in this study. Online supplemental material is available  
at http://www.jcb.org/cgi/content/full/jcb.201106078/DC1.

We thank Michael Chest, Huanyu Wang, and Mengzi Zhang for help with 
experiments and data analyses; Judith Armitage, Erfei Bi, Kerry Bloom, Makkuni 
Jayaram, and Matt Lord for strains; and members of the Wu laboratory for 

half maximum (FWHM), we imaged 0.1-µm fluorescent beads (TetraSpeck 
microspheres; Invitrogen) at 0.05-µm spacing and calculated the FWHM of 
a Gaussian fit to the point spread function in the z axis.

We used a 100×/1.4 NA Plan-Apo objective lens (Nikon) on a  
spinning-disk confocal microscope (UltraView ERS [PerkinElmer] with a 
CSU22 confocal head on an Eclipse TE2000-U microscope [Nikon]) with 
488- and 514-nm argon ion lasers and a cooled charge-coupled device 
camera (ORCA-AG; Hamamatsu Photonics). Image analyses were per-
formed using ImageJ (National Institutes of Health). Images of yeast and  
E. coli cells in figures are maximum intensity projections of z sections 
spaced at 0.4 µm unless otherwise noted. We found no obvious signal 
variation as a result of focal plane depth, as previously reported (Joglekar 
et al., 2006), using our imaging system, perhaps because our imaging 
starts away from the coverslip (Fig. S2 A).

Comparison of the methods for measuring fluorescence intensity
A sum of intensity from multiple z sections spaced at the FWHM of the 
point spread function along the z axis was consistent with immunoblotting 
(Wu and Pollard, 2005), whereas a comparison of only the maximum in-
tensity section was used to count molecules in kinetochores (Joglekar et al., 
2006). We tested whether there is a difference in the quantification using 
these two methods.

We determined that the maximum intensity section does not repre-
sent the same fraction of the total intensity for structures with different ap-
parent sizes by comparing S. pombe cells expressing fluorescent-tagged 
cytokinesis node proteins or Cnp1 and S. cerevisiae cells expressing 
Cse4-GFP (Fig. S2, B and C). Under our imaging conditions, 90% of 
the intensity in the maximum intensity plane of each CENP-A anaphase 
cluster was contained in a 0.5-µm2 (25 pixel) region of interest (ROI), 
whereas each node was contained in a 0.2-µm2 (9 pixel) ROI. The maxi-
mum z section of each node protein contained 51–65% of the sum in-
tensity (Fig. S2 C), whereas anaphase clusters of Cnp1 and Cse4 had 
46–48% in the maximum section. Comparing the maximum section of 
node and CEN cluster intensities yields a different ratio of fluorescence 
than the sum intensity ratio (Fig. S2 D). Because the maximum section 
contains a different fraction of the total intensity, the sum method is more 
accurate for comparing structures with different apparent sizes. Thus, 
throughout the manuscript, the data represented are the sum intensity of 
all 0.4-µm–spaced z sections that contain intensity above background for 
a given structure except where noted.

Counting proteins by ratio fluorescence imaging and bleaching
Uneven illumination was corrected using images of purified 6His-mYFP  
solution as previously described (Wu and Pollard, 2005; Wu et al., 2008). 
In brief, at least 10 images of purified YFP were averaged after offset 
subtraction and then divided by the maximum value in the field using the 
ImageJ Math process to get an image with intensity values ranging from 
0.5 to 1. Offset-subtracted images of cells were divided by this correction 
image in ImageJ before measurements were taken. The offset is an image 
taken without laser lights. Background corrections were implemented as 
previously described (Wu and Pollard, 2005; Joglekar et al., 2006). In 
brief, an ROI size was chosen for each tagged protein that included at 
least 90% of the intensity (± two SDs of a Gaussian fit along two axes). 
The ROI sizes depended on the imaging conditions, but, in general, Cnp1 
ROI was greater than Cse4 ROI, which was greater than cytokinesis node 
ROI. The same relationship exists between the numbers of z sections each 
protein occupied. Cnp1 and Cse4 were also compared with the same size 
ROI, and the ratio between their sum intensities was unchanged. Thus, 
as long as each ROI is chosen so that at least 90% of the intensity in the 
maximum plane is included, the ratios are consistent whether the ROIs are 
the same or different. The background intensity from a concentric ROI twice 
the size was calculated and subtracted from the measuring area in each 
imaging plane. All molecule number plots show the ratio of sum intensity 
except where noted. In box plots, the box contains the middle 50% of the 
data, the line in the box is the median, and circles above or below repre-
sent outliers. Outliers are defined by KaleidaGraph software based on the 
height of the box. Points >1.5× the box height above or below the box are 
defined as outliers.

The EGFP-tagged MotB structure in E. coli was verified to contain 22 
molecules by imaging the cells in a single plane continuously with a 200-ms 
exposure for each frame and then quantifying the fluorescence intensity for 
each GFP molecule (Leake et al., 2006). Mid1-mECitrine nodes in inter-
phase S. pombe cells were imaged continuously with a 100-ms exposure 
to verify the ratio comparison between fluorophores expressed in E. coli 
and S. pombe. The background-subtracted data were fit with a modified 
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