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Purpose: Prior image constrained compressed sensing (PICCS) is an image reconstruction frame-

work which incorporates an often available prior image into the compressed sensing objective func-

tion. The images are reconstructed using an optimization procedure. In this paper, several

alternative unconstrained minimization methods are used to implement PICCS. The purpose is to

study and compare the performance of each implementation, as well as to evaluate the performance

of the PICCS objective function with respect to image quality.

Methods: Six different minimization methods are investigated with respect to convergence speed

and reconstruction accuracy. These minimization methods include the steepest descent (SD)

method and the conjugate gradient (CG) method. These algorithms require a line search to be per-

formed. Thus, for each minimization algorithm, two line searching algorithms are evaluated: a

backtracking (BT) line search and a fast Newton-Raphson (NR) line search. The relative root mean

square error is used to evaluate the reconstruction accuracy. The algorithm that offers the best con-

vergence speed is used to study the performance of PICCS with respect to the prior image parame-

ter a and the data consistency parameter k. PICCS is studied in terms of reconstruction accuracy,

low-contrast spatial resolution, and noise characteristics. A numerical phantom was simulated and

an animal model was scanned using a multirow detector computed tomography (CT) scanner to

yield the projection datasets used in this study.

Results: For k within a broad range, the CG method with Fletcher-Reeves formula and NR line search

offers the fastest convergence for an equal level of reconstruction accuracy. Using this minimization

method, the reconstruction accuracy of PICCS was studied with respect to variations in a and k.

When the number of view angles is varied between 107, 80, 64, 40, 20, and 16, the relative root mean

square error reaches a minimum value for a � 0.5. For values of a near the optimal value, the spatial

resolution of the reconstructed image remains relatively constant and the noise texture is very similar

to that of the prior image, which was reconstructed using the filtered backprojection (FBP) algorithm.

Conclusions: Regarding the performance of the minimization methods, the nonlinear CG method

with NR line search yields the best convergence speed. Regarding the performance of the PICCS

image reconstruction, three main conclusions can be reached. (1) The performance of PICCS is

optimal when the weighting parameter of the prior image parameter is selected to be near a¼ 0.5.

(2) The spatial resolution measured for static objects in images reconstructed using PICCS from

undersampled datasets is not degraded with respect to the fully-sampled reconstruction for a near

its optimal value. (3) The noise texture of PICCS reconstructions is similar to that of the prior

image, which was reconstructed using the conventional FBP method. VC 2012 American Association
of Physicists in Medicine. [DOI: 10.1118/1.3666946]
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I. INTRODUCTION

Iterative image reconstruction (IR) algorithms were pro-

posed at the inception of x-ray computed tomography (CT),

but were quickly superseded by the more computationally

inexpensive filtered backprojection (FBP) reconstruction

method. However, the appeal of iterative image reconstruc-

tion has never completely disappeared. Its intrinsic flexibility

can account for variations in scanner geometry, detector

response, noise propagation, beam hardening, and Compton

scattering. In recent years, rapid advances in computer tech-

nology and the potential to reconstruct x-ray CT images with

higher spatial resolution and/or lower radiation dose have

revived the interest in iterative image reconstruction.

Let us denote the value of a continuous CT image object

at Cartesian position r as X(r). One may digitize the image

into a pixel representation X 2 RM�N with [X]ij¼Xij where

i and j are image elements indices. In lexicographic ordering,

one may write x 2 RMN�1 with [x]n¼ xn¼iþMj¼Xij. It is

possible to model the digitization as follows:

XðrÞ �
X

j

xjBjðrÞ; (1)

where Bj(r) is the basis function of the pixel representation.

Using this representation, x-ray projection measurements y,

which are line integrals of the attenuation coefficients X(r),

can be modeled as a linear system

66 Med. Phys. 39 (1), January 2012 0094-2405/2012/39(1)/66/15/$30.00 VC 2012 Am. Assoc. Phys. Med. 66



yi ¼
ð
‘i

d‘ XðrÞ ¼
X

j

Aijxj; i:e:; y ¼ Ax; (2)

where the element of the system matrix A is given by

Aij ¼
ð
‘i

d‘BjðrÞ: (3)

To obtain a solution for this linear system, two alternative IR

methods have been developed. The algebraic reconstruction

technique (ART) (Refs. 1 and 2) and its variants such as the

simultaneous ART (SART) (Ref. 3) treat the reconstruction

task as a matrix inversion problem. However, due to the ill-

posed nature of this problem, solutions are in the weighted-

least-squares sense, and the weight of different data depend

on the specific sequence of iterations.4–7 The second scheme

consists of modeling the measurement of x-ray projections

as a statistical process. Thus, the image reconstruction proce-

dure looks for a solution that maximizes the likelihood of

measurements. This approach is called statistical image

reconstruction (SIR). Prior information about the target

image is modeled by the selection of regularizing functions.

The above IR strategies have less-restrictive requirements

on view angle sampling when compared to analytical image

reconstruction algorithms. When using the latter methods,

the number of measured view angles must be high enough to

avoid undersamping artifacts. The drawback of IR methods

is that their behavior with respect to precision and accuracy

is not well understood. Without giving very specific assump-

tions of prior information known about the target image, this

behavior is still not fully understood. However, when one

can assume that the target image is sparse under a given

transformation—i.e., in a sparsified domain—that is incoher-

ent with the sampling procedure, one can prove that the

required number of measured projections can be much lower

than that required by analytical inversion schemes such as

Fourier rebinning or FBP. In practice, the exact solution can

be obtained via a nonlinear optimization process. The theory

of exact signal recovery from few samples has been gener-

ally referred to as compressed/compressive sensing (CS).8–10

Although the CS theory is mathematically elegant, in real

medical imaging applications, two aspects are worthy of em-

phasis. The first one is the relevance of mathematical condi-

tions introduced in the rigorous proof of main conclusions in

CS theory.8–10 In medical imaging, it is very difficult, if not

impossible, to design a data acquisition method that com-

pletely satisfies the mathematical conditions of the CS

theory. Thus, the CS method is primarily utilized without

formal analysis by the simple application of ‘1-norm minimi-

zation or its variants. Similarly, in this paper, we only focus

on the empirical application of the CS method without pur-

suing mathematical rigor of the CS theory itself. Second, for

a real imaging system, the decrease of data samples also dic-

tates that the noise properties are being degraded. Thus, the

signal to noise ratio (SNR) is fundamentally limited. There-

fore, when the number of acquired data samples for a spe-

cific application decreases, alternative mechanisms are often

needed to solve the SNR deficit problem.

In many medical imaging applications, a high SNR image

that is similar to the target image is available. We call this

image a prior image. It is possible to sparsify the target image

by taking a difference with the prior image. At the same time,

by imposing similarity between the target image and the high

SNR prior image, one can share some of the high SNR char-

acteristics of the prior image with the target image. This

improves the potential SNR deficit problem in undersampled

reconstruction. Subtraction sparcification and SNR cloning

are the two essential ingredients of the prior image con-

strained compressed sensing (PICCS).11 Recently, our group

and others have applied PICCS to a variety of CT imaging

problems. It was shown that it mitigates artifacts in the recon-

struction of highly undersam-pled dynamic cone-beam CT

datasets,12–14 offers some temporal resolution improvement

in multidetector CT,15,16 allows one to relax some hardware

constraints in dual energy CT,17 and can be used to reduce

the noise in medical images with minimal loss in spatial reso-

lution or texture.18–20 The original PICCS optimization prob-

lem was also formulated as a nonconvex objective function to

moderately improve the potential undersampling factor.21,22

In many of these applications, the PICCS objective

function was minimized using two alternating steps. The

approach is similar to that of Sidky et al.23,24 and Ritschl

et al.25 One step imposes data consistency condition using

SART with the necessary order subset updating strategy. The

other step updates the target image by minimizing the PICCS

objective function. The balance between the data consistency

requirement and objective minimization step was achieved

by selecting the appropriate number of minimization steps

following the one SART updating step. In this implementa-

tion framework, it is not very convenient to study the per-

formance of the algorithm, although the computation

efficiency is high due to the fact that there is no need to use

the transpose of the system matrix A. In addition, when the

projection data become very noisy, it is not convenient to

incorporate an accurate noise model in this implementation

for ultralow-dose CT studies. An alternative unconstrained

optimization framework may have a potential advantage.

Several groups have proposed unconstrained implementa-

tions to solve CS objective functions in CT. Song et al.26 pro-

posed a conjugate gradient (CG) algorithm to solve a total

variation (TV) optimization problem. The approach taken in

the current paper is very similar, but we propose a different

step size selection procedure. Choi et al.27 uses a first-order

algorithm proposed by Nesterov28 to solve same problem.

The research presented in this article concerns an imple-

mentation of PICCS based on an unconstrained formulation

of the optimization problem. The goal is to compare the per-

formance of various alternative gradient-based optimization

algorithms with regard to accuracy and convergence speed.

Furthermore, the unconstrained PICCS objective function

contains two parameters that control the relative weight of

the prior image and data consistency terms (Sec. II A). The

impact of variations in these parameters on the reconstruc-

tion accuracy, noise level, and spatial resolution is studied.

A similar study based on image quality metrics as performed

by Bian et al.29 for TV-based compressed sensing.

67 Thériault-Lauzier, Tang, and Chen: Optimization and evaluation of PICCS 67

Medical Physics, Vol. 39, No. 1, January 2012



II. METHODS AND MATERIALS

II.A. PICCS in an unconstrained minimization
framework

PICCS can be formulated as a constrained or an uncon-

strained minimization problem. The reconstruction of an

image x̂ using the constrained approach can be formally

expressed as

fpiccsðxÞ ¼ ajwðx� xpÞj‘1
þ ð1� aÞjwðxÞj‘1

(4)

x̂ ¼ arg min
x

fpiccsðxÞ s:t: Ax ¼ y: (5)

Essentially, this approach aims at minimizing the PICCS

objective function fpiccs, while enforcing that the target

image vector x be consistent with the measurements vector

y, given the system matrix A. The sparsifying transform w
will be discussed in Sec. II B. This problem is usually solved

using a projection onto convex sets algorithm (POCS), alter-

nating between a minimization procedure and a data consis-

tency enforcement algorithm.11,23

The unconstrained formulation of PICCS combines the

objective function with a data consistency term. The result-

ing problem is

fuc ¼
fpiccsðxÞ
jwðxpÞj‘1

þ k
2

ðAx� yÞTDðAx� yÞ
jjAxpjj2

(6)

x̂ ¼ arg min
x

fuc: (7)

In order to obtain a dimensionless data consistency parame-

ter k, the PICCS objective function is normalized by the

‘1-norm of the prior image jwðxpÞj‘1
present in the data. The

data consistency term is normalized by the squared ‘2-norm

of the prior image in the data sample space. The latter nor-

malization is applied to limit application-dependent varia-

tions in the value of k. The effect of variations in the data

consistency parameter k will be studied and discussed later

in this paper. This normalization is similar to that proposed

by Song et al.26 The noise matrix D ¼ diagf1=r2
i g is a diag-

onal matrix with entries determined by the inverse of the

noise variance at each detector element as shown in litera-

ture.30,31 The notation [�]T signifies a matrix transpose. How-

ever, for the rest of this paper, D will be set to the identity

since the evaluation of the statistical formulation of PICCS

is out of the scope of the research presented here.

The unconstrained PICCS problem [Eq. (6)] can be

solved using classical minimization algorithms, given that

the gradient of the objective function can be computed. Let

us define the partial derivative of the objective function with

respect to the ith image element as ½rfucðxÞ�i ¼ @
@xi

fucðxÞ.
We have

@

@xi
fucðxÞ ¼

1

wðxpÞ
@

@xi
fpiccsðxÞ

þ k

jjAxpjj2
½ATðAx� yÞ�i: (8)

The system matrix A is computed using ray tracing through

the image matrix. Each line of the matrix corresponds to a

different projection. The elements of a given line are the rel-

ative intersection lengths of the ray with the various image

elements. A is thus a very sparse matrix.

In order to discuss the gradient computation of the PICCS

objective function, one must define the spasifying transform

employed.

II.B. Total variation

The TV (Ref. 32) is defined as the ‘1-norm of an image

bidimensional spatial gradient ‘2-norm. Given the image dis-

cretization x 2 RMN�1 and K ¼ fMn : n 2Ng, we may

define the TV norm as

TVðxÞ ¼
X

1<i<M�ðN�1Þ
i 62K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ ðxiþM � xiÞ2

q
: (9)

In the language of compressed sensing, the sparsifying trans-

form employed by the TV norm is the ‘2-norm of the gradi-

ent of the image.

The TV is used as a sparsifying norm throughout this pa-

per. The PICCS objective function can thus be written as

fpiccsðxÞ ¼ aTVðx� xpÞ þ ð1� aÞTVðxÞ: (10)

Computing the gradient of fpiccs reduces to the computation

of the gradient of the TV norm

@

@xi
TVðxÞ ¼ � xiþ1 þ xiþM � 2xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxiþ1 � xiÞ2 þ ðxiþM � xiÞ2
q

þ xi � xi�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xi�1Þ2 þ ðxi�1þM � xi�1Þ2

q
þ xi � xi�Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�Mþ1 � xi�MÞ2 þ ðxi � xi�MÞ2

q : (11)

Note that this function possesses several singularities. These

must be regularized in the numerical implementation of the

gradient. A few different methods can be used to this end.33

A widely used method of removing the singularity is to

define a modified total variation

TV�ðxÞ ¼
X

1<i<M�ðN�1Þ
i 62K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ ðxiþM � xiÞ2 þ �2

q
;

(12)

where � should be small enough the preserve the shape of

the function, while large enough to remove singularities.

However, we use a different scheme in this research. We use

the original definition of TV, but we discard the terms from

Eq. (11) whenever their denominator has a value less than �.
In practice, � was set to 10�8. The rationale behind this heu-

ristic scheme is that near singularities, the difference

between adjacent pixel values is small and can be considered

to have converged to a minimum of the total variation. Their

contribution to the gradient can thus be neglected.

Special care must be taken with respect to the image

edges in the definition of the total variation. Since objects

scanned using CT have compact support, it is reasonable to
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assume that elements outside of the image have an attenua-

tion coefficient value of zero.

Using the previous definitions, we finally have

@

@xi
fpiccsðxÞ ¼ a

@

@xi
TVðx� xpÞ þ ð1� aÞ @

@xi
TVðxÞ: (13)

Combining Eq. (8) and (13), we have a well-defined gradient

for the unconstrained PICCS objective function [Eq. (6)].

We may now use classical minimization algorithms to solve

the PICCS problem.

II.C. Minimization algorithms

A variety of minimization algorithms exist in literature to

minimize an objective function. In this paper, we have

selected to compare the performance of two minimization

algorithms: steepest descent and nonlinear CG. These algo-

rithms are commonly used to perform unconstrained minimi-

zation of multivariate functions and, respectively, offer

linear and quadratic rates of convergence.34

II.C.1. Steepest descent

The idea of the steepest descent algorithm is simple:

determine the direction of steepest descent r—given by the

negative gradient—and take a step which minimizes the

objective function along that direction. The step size is deter-

mined by a line searching procedure described in Sec. II C 3.

The algorithm is stopped when the convergence criterion is

satisfied (Sec. II C 4). If convergence has not been reached

after a fixed maximal number of iterations, the procedure

terminates.

The steepest descent algorithm has been shown to have a

very slow rate of convergence in some cases.34,35 In this

regard, the CG algorithm has much more desirable properties.

II.C.2. Nonlinear conjugate gradient

The linear CG algorithms was proposed to iteratively

solve linear systems of equations with positive definite coef-

ficient matrices.36 For a system of n equations, the algorithm

converges in at most n iterations when no rounding error is

present. It was later suggested that the algorithm be adapted

to nonlinear objective functions for which the gradient is

defined.37 In many cases, the algorithm has been shown to

converge in much fewer iterations than the dimensionality of

the problem.34

The idea of the CG algorithm is to compute the next

descent direction by combining the steepest descent direc-

tion and the previous search direction. The amount of the

previous search direction to be kept is determined by the pa-

rameter b. In the nonlinear case, no unique formula exists

for this quantity. Two common choices are the Fletcher-

Reeves formula37 and the Polak-Ribiere formula.38 Both

approaches are evaluated in Sec. III A.

At the implementation level, the Polak-Ribiere method

involves a few more operations per iteration. It also requires

more memory usage since the gradient vector from the previ-

ous iteration must be stored. However, these differences are

rarely important in practice. The nonlinear CG algorithms

only offer linear convergence unless they are restarted.37,39

The restart procedure consists of forgetting the previous

search direction and taking a steepest descent step. In the

current implementation, this procedure is applied every 20

iterations, i.e., Nrestart¼ 20. PICCS has the favorable prop-

erty that a good initial guess is available, the prior image xp.

This fact hastens the convergence of the minimization algo-

rithm. Both steepest descent and CG methods involve a line

search procedure, the next topic to be discussed.

II.C.3. Step size selection

At each iteration, the above algorithms pick a search direc-

tion. The role of the line search method is to compute the size

of the step to be taken in that direction. In order for the mini-

mization algorithm to be convergent, the step size must gener-

ate a sufficient reduction in the objective function. That is, the

objective function need not be exactly minimized along the

search direction to attain convergence. A possible criterion

for sufficient decrease is given by the first Wolfe condition34

fucðxþ gdÞ � fucðxÞ þ c1grf T
ucd; (14)

with 0< c1< 1, where d is the descent direction, and g is the

step size.

The backtracking line search is a simple algorithm that

uses the first Wolfe condition.

In the current implementation g0¼ 1, c1¼ 10�4, and

c2¼ 0.5. At each line search iteration, the objective function

must be evaluated, a potentially costly operation to perform.

However, due to the linearity of the sensing system matrix

A, it is possible to avoid successive matrix-vector multiplica-

tions. Indeed, we propose the following simplification:

fucðxþ gdÞ ¼ fpiccsðxþ gdÞ
TVðxpÞ

þ k
2

jjAðxþ gdÞ � yjj2

jjAxpjj2

¼ fpiccsðxþ gdÞ
TVðxpÞ

þ k
2

jjAðx� yþ gAdÞjj2

jjAxpjj2

¼ fpiccsðxþ gdÞ
TVðxpÞ

þ k
2

jjsþ gqjj2

jjAxpjj2
;

Backtracking line search

INPUT: current point x, search direction d, gradient g

OUTPUT: step-size g
g / g0

q / dTg

f0 / fuc(x)

frhs / f0þ c1gq
x / xþ gd

flhs / fuc(x)

while flhs� frhs do

g / c2g
x / xþ gd

flhs / fuc(x)

frhs / f0þ c1gq
end while
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where s¼Ax� y and q¼Ad. Matrix-vector multiplications

are thus replaced by much more efficient vector-scalar

multiplications.

Furthermore, the backtracking algorithm uses a fixed ini-

tial step size guess g0. It is possible to improve this initial

guess by using the Newton-Raphson (NR) approximation.

Essentially, NR consists of setting to zero the first-order Tay-

lor expansion of the function directional derivative with

respect to the step size

dTrfucðxþ gdÞ � dTrfucðxÞ þ gdTHfucd ¼ 0;

which yields

g ¼ �dTrfucðxÞ
dTHfuc

d
; (15)

where Hfuc
is the Hessian matrix of the objective function. In

general, this matrix may be expensive to compute. However,

in the case of the PICCS objective function, it is possible to

obtain an analytic expression for the Hessian, which renders

practical the use of the NR approximation method. One may

write

½Hfuc
�kl ¼

@2

@xk@xl
fucðxÞ

¼ 1

TVðxpÞ
@2

@xk@xl
fpiccsðxÞ

(16)

þ k

jjAxpjj2
½ATA�kl; (17)

where

@2

@xk@xl
fpiccsðxÞ ¼ a

@2

@xk@xl
TVðx� xpÞ

þ ð1� aÞ @2

@xk@xl
TVðxÞ; (18)

that is, the computation of the Hessian of the PICCS objec-

tive function reduces to the computation of the Hessian of

the TV norm. The main enabling idea allowing the computa-

tion of the Hessian is that any given element of the TV gradi-

ent depends only on the value of seven image elements. The

Hessian matrix is thus extremely sparse—each line or col-

umn being composed of only seven nonzero elements. Fur-

thermore, the elements of the Hessian matrix need not be

stored explicitly since the NR approximations needs only the

scalar dTHfuc
d. This further minimizes the memory cost of

the approach.

We propose a fast NR line search algorithm based on the

two improvements discussed above.

It must be noted that concerns have been raised in the lit-

erature concerning the robustness and efficiency of Newton-

like methods when used with TV.40,41 Essentially, this criti-

cism rests on the observation that the quadratic model does

not approximate the nonlinearity of TV very well. This may

result in many line search iterations in order to obtain quad-

ratic convergence. In this case, the line searching steps are

relatively inexpensive numerically. Furthermore, as will be

shown in Sec. III A, the initial guess given by the NR

approximation satisfies the Wolfe condition in a vast major-

ity of cases. In this situation, the line search iteration is not

necessary.

II.C.4. Definition of a convergence criterion

In order to study the performance of the different algo-

rithms objectively, one must first define a practical conver-

gence criterion. In this paper, the averaged variation in the

objective function over the last two iterations was used

�v2l ¼ v2l þ v2l�1; (19)

where

vk ¼ fucðxkÞ � fucðxk�1Þ: (20)

where k 2N is the iteration number and l¼ [k/2] is half the

iteration number. An ideal quantity would converge to the

same value for all algorithms once they have reached

convergence.

II.D. Experimental projection datasets

II.D.1. Numerical temporal enhancement phantom

Two numerically simulated datasets were used in the

evaluation section; the first dataset was noiseless, while the

second included noise. Poisson noise was added to simulate

an incident x-ray fluence of 5� 106 photons per detector

element.

The phantom was designed to include both static and

dynamic structures overlaid on a large ellipse with a linear

x-ray attenuation coefficient of lbackground¼ 0.02 mm�1. The

static structures were circles with various diameters—1.32 to

15 mm—and contrast levels—8.8% to 100%. The contrast C
of a given object lobject was relative to the background

ellipse:

Fast Newton-Raphson line search

INPUT: current point x, search direction d, gradient g

OUTPUT: step size g
q1 / dTg

q2  dTHfuc
d

g �q1

q2

s / Ax� y

q / Ad

f0  fpiccsðxÞ
TVðxpÞ þ

k
2
jjsjj2

jjAxpjj2
frhs / f0þ c1gq1

x / xþ gd

f
lhs
 fpiccsðxÞ

TVðxpÞ þ
k
2
jjsþgqjj2

jjAxpjj2

while flhs� frhs do

g / c2g
x / xþ gd

f
lhs
 fpiccsðxÞ

TVðxpÞ þ
k
2
jjsþgqjj2

jjAxpjj2
frhs / f0þ c1gq1

end while

70 Thériault-Lauzier, Tang, and Chen: Optimization and evaluation of PICCS 70

Medical Physics, Vol. 39, No. 1, January 2012



C ¼
lobject � lbackground

lbackground

� 100%

The dynamic structures also had several diameters but their

attenuation coefficient was varied following a Gaussian

curve at 64 time frames. The prior image was generated by

averaging over FBP reconstructions each with 64 view

angles at all time frames. Each 64-view angle dataset con-

sisted of a different set of projections in an interleaved fash-

ion. The streaking artifacts from each dataset were thus

mutually incoherent, and canceled each other in the averaged

image.

Fully-sampled datasets had 1024 projection view angles,

while undersampled datasets had 64 projection view

angles. Each projection view angle had 886 detector

elements. The reconstructions had 512� 512 pixels of size

(1 mm)2.

II.D.2. In vivo myocardial perfusion dataset

The third dataset used for this research is an IACUC-

approved in vivo myocardial perfusion study in a porcine

model. The projection data were acquired using a GE

Healthcare Lightspeed VCT scanner (GE Healthcare, Wau-

kesha, WI) with a tube voltage of 120 kVp, a tube current of

500 mA, and total exposure time of 50 s. The data were ret-

rospectively gated into 66 time frames. The fully-sampled

short-scan dataset of each time frame is composed of 642

views. To study the effects of under-sampling, datasets with

a reduced number of view angles were produced by decimat-

ing view angles. Datasets with 107, 80, 64, 40, 20, and 16

views per phase were produced. In the PICCS framework,

the prior image selection is application dependent. In the

present case, the prior image was reconstructed from the

combination of all time frames for each undersampled data-

set using the FBP algorithm. PICCS is used to recover the

temporal information, while minimizing undersampling arti-

facts. Time frame 28 was used in the evaluations studies.

II.E. Image evaluation metrics

In order to compare the performance of the previous algo-

rithms, as well as the quality of reconstructed images, sev-

eral metrics were used.

II.E.1. Reconstruction accuracy

In many cases, it is necessary to quantify the accuracy of

the reconstruction. This is accomplished here by computing

the relative root mean square error (rRMSE) between a

reconstructed image (x) and a reference image (xref)

rRMSEðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NROI

X
i2ROI

xi � xref
i

xref
i

� �2

vuut ; (21)

where NROI is the number of pixels within the ROI used for

the analysis. The reference image is the fully-sampled FBP

reconstruction at the corresponding time frame. It is impor-

tant to note a potential caveat; the reference images for the

in vivo dataset contain noise inherent to the data acquisition

system. Also, the TV minimization procedure has a noise

mitigating effect on the reconstructions. It is thus possible

that a portion of the rRMSE be due to a mismatch in the

noise levels and not to inaccuracies in the PICCS reconstruc-

tion. This must be kept in mind when analyzing the in vivo
results. The simulated dataset did not suffer from this limita-

tion since a noiseless reference was available.

II.E.2. Noise

The noise present in the images has an impact on the

human perception of low-contrast objects in images. We

quantify the noise present by measuring the standard devia-

tion within a uniform region of interest (ROI) of the object.

II.E.3. Spatial resolution

The spatial resolution of an imaging system is a measure

of how it represents details in the object. In the case of linear

and shift-invariant imaging systems, this can be described in

terms of the point spread function (PSF) or, equivalently, by

the modulation transfer function (MTF). From these func-

tions, one may extract a single parameter describing the

maximal level of detail that can be imaged by the system,

i.e., the spatial resolution. However, nonlinear imaging sys-

tems, such as the PICCS framework, have object-dependent

PSFs. Furthermore, the PSF is often shift-variant, meaning

that it varies between features within one image. It is thus

difficult to determine a single figure of merit describing the

spatial resolution of a system.

Images reconstructed using TV minimization often shows

minimal loss of spatial resolution for large high contrast

objects, but show substantial degradation of small low-

contrast structures. In order to quantify this effect, we fitted

the intensity profile along several edges with the point spread

function corresponding to a Gaussian blur. We extracted the

full width at half maximum (FWHM) of the corresponding

blurring function, which we refer to as the pseudo PSF

width. This metric can be measured locally in the image and

can thus be used to evaluate the blurring of structures of dif-

ferent size and contrast.

Specifically, for an image under study, x of dimension

M�N, the blur was quantified as follows:

1. Select a 1D linear segment ‘ through the object of interest

in the image.

2. Solve the least squares problem

min
b2R;h2R

X
i2‘
ðxi � hG‘

b½xref �iÞ
2

where i is the position in the image matrix, and h is a multi-

plicative factor. The blurred image, G‘
b½xref � 2 RMN�1, is

the convolution of the reference image with a normalized

Gaussian function of width b. The image at 2D position

(m,n) is
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G‘
b½x�mþnM ¼

X
j

X
k

xkþjM
1

2pb2

�
exp

½ðk � mÞD1�2

2b2

" #

� exp
½ðj� nÞD2�2

2b2

" #)

where D1 and D2 are the voxel dimension along the image

horizontal and vertical axes. The value of b that solve the

least squares problem above is used as metric of image

sharpness. It is referred to as pseudo PSF width for the rest

of this article.

In the numerical study, objects of various sizes and con-

trasts were simulated, which enabled the pseudo PSF width

to be measured for each structure. In the in vivo study, we

have elected to study the loss of spatial resolution at low-

contrast edges between muscle and adipose tissue; the con-

clusions reached about the spatial resolution are only valid

of such structures.

The pseudo PSF width is modeled using a symmetric

Gaussian kernel, which could slightly over- or underestimate

the true local impulse response has a different profile. The

results should be evaluated in this context.

II.E.4. Temporal resolution

In order to evaluate the temporal resolution achieved

by the reconstruction algorithm, tissue time enhancement

curves were drawn for images reconstructed from fully-

sampled and undersampled projection datasets for the nu-

merical phantom studies. These curves were compared with

those obtained from the fully-sampled reference images and

the prior image. To further quantify the temporal resolution,

the rRMSE was measured within ROIs drawn around

dynamic regions of the object.

II.E.5. Texture

TV-based compressive sensing algorithms have been

shown to converge to overly smooth images with sharp

edges. Often, the reconstructions are plagued by “patchy”

artifacts.31 In the context of medical imaging, this may result

in deceptive structures that an observer could mistake for a

physical object.

These images often have a texture that is different from

that of FBP images. A popular metric of image similarity is

the universal image quality index42 (QI). This metric takes

into account the loss of correlation, luminance distortion,

and contrast changes between an image and a reference. To

apply it to the evaluation of texture, we selected a uniform

region of the object. The QI was calculated between a

PICCS reconstructed image and a reference fully-sampled

FBP image. For two images a and b, the QI is defined as

QI ¼ 4rablalb

ðr2
a þ r2

bÞðl2
a þ l2

bÞ
; (22)

where

rab ¼
1

NROI � 1

X
i2ROI

ðai � laÞðbi � lbÞ;

la and lb are the mean image values within the ROI, and ra

and rb are the standard deviations within the ROI.

The QI is measured for the in vivo dataset since it offers

natural texture.

II.F. Performance studies of PICCS

II.F.1. Performance of the minimization algorithms

The minimization algorithms were compared with respect

to their accuracy and their speed of convergence. The algo-

rithms to be compared are the following:

• steepest descent with backtracking line search (SD–BT);
• steepest descent with Newton-Raphson line search

(SD–NR);
• conjugate gradient with Fletcher-Reeves formula and

backtracking line search (CG– FR–BT);
• conjugate gradient with Fletcher-Reeves formula and

Newton-Raphson line search (CG–FR–NR);
• conjugate gradient with Polak-Ribiere formula and back-

tracking line search (CG–PR– BT);
• conjugate gradient with Polak-Ribiere formula and

Newton-Raphson line search (CG– PR–NR).

For this study, the prior image parameter a was kept con-

stant at 0.5, while the data consistency parameter k was var-

ied over a broad range of values to determine if it affected

the convergence speed and accuracy. The in vivo dataset was

used for this study. The algorithm with the best characteris-

tics was used to evaluate the effect of the PICCS objective

function parameters.

II.F.2. Performance dependence of the two
parameters in the PICCS objective function

Two parameters can be set independently in the uncon-

strained objective function. The data consistency parameter

k determines the relative weight of the PICCS function fpiccs

and of the data consistency term jjAx� yjj2. A high value of

k is expected to result in a greater amount of conformity

with the data y. This may not be desirable since noise is pres-

ent in those data. The prior image parameter a determines

the weight to be given to conformity with the prior image.

An a value of 0 is equivalent to TV-based compressed sens-

ing, while a value of 1 corresponds to a minimization of the

prior image term only.

A wide range of values of a and k are used to produce

reconstructions. The resulting images are evaluated based on

their noise level, spatial resolution, temporal resolution,

noise texture, and qualitative features.

III. RESULTS AND DISCUSSION

III.A. Performance of minimization algorithms

The convergence criterion is plotted versus the iteration

number for several values of k in Fig. 1. Notice that the con-

vergence rate is similar for several values of k. In practice, a

threshold of 10�3 is used to define convergence.

Each algorithm was applied to the PICCS objective func-

tion for 16 different values of k on a logarithmic scale from
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approximately 3� 103–4� 1010. The prior image parameter

a was set to 0.5. The rRMSE was measured for all the recon-

structions once convergence had been reached. The means

and standard deviations of the rRMSE for each algorithm are

given in Table I. One notices that the reconstruction accu-

racy is very similar for all algorithms studied. Furthermore,

only small fluctuations in accuracy are observed, as the

standard deviation is relatively constant. One must note that

a portion of the rRMSE is due to the noise present in the

fully-sampled FBP reconstructions used as a reference. A

portion is also caused by mismatches in spatial resolution at

edges. This explains the relatively high values measured for

all the algorithms.

The convergence speed is where the algorithms show sub-

stantial differences. The comparison is drawn from the num-

ber of iterations necessary to reach convergence (Table I).

The steepest descent (SD) methods show the slowest conver-

gence with a number of iterations two to three times greater

than for CG algorithms. Fletcher-Reeves and Polak-Ribiere

formulas perform equally well in terms of convergence

speed.

The advantage of the NR line search over the backtrack-

ing (BT) line search is threefold. First, it cuts the number of

CG iterations needed for convergence by half. Second, it

converges more predictably, which is shown by the lower

standard deviation in the mean number of iterations. These

advantages are due to the nature of the BT line search, in

that it systematically overshoots the position of the objective

function minimum while, the NR line search attempts to esti-

mate the position of the minimum and generates a greater

diminution in the objective function at most iterations. Third,

it is shown in (Table I) that the NR line search requires line

searching in less than 1% of the CG iterations performed.

The BT line search generally requires several iterations

before it discovers a step size that generates a sufficient

reduction in the objective function. While this is due in part

by the choice of a large initial step size guess for the BT

algorithm, we still conclude that the NR line search—with

its near zero number of line searches—is superior.

Based on these findings, CG–FR–NR is determined to be

superior and is used for the rest of the studies. The Fletcher-

Reeves formula is chosen over the Polak-Ribiere formula

because of its lower memory requirements.

III.B. Performance dependence of parameters
in the PICCS objective function

III.B.1. Numerical datasets

The simulated projection datasets were reconstructed

using PICCS for a range of a and k parameters. Some sample

images are presented in Fig. 2 for both the noiseless and

noisy datasets. The prior image was produced by averaging

over images reconstructed using FBP from the 64 view angle

datasets of all 64 time frames. An interleaved sampling pat-

tern was used among all 64 time frames. Thus, the averaging

procedure mitigated the undersampling artifacts present in

each individual time frame. In contrast, the reference images

were reconstructed using FBP from the 1024 view angle

datasets at each time frame. Notice the difference in contrast

of the dynamic structure regions between the reference and

prior images. The contrast from particular time frames was

accurately reconstructed in TV minimization and PICCS

reconstructions. The average attenuation coefficients within

the largest dynamic object were measured for all time frames

reconstructed using PICCS and are plotted in Fig. 3. Notice

that the PICCS images show a slight amount of edge

enhancement around the dynamic structures. This inaccuracy

is quantified by an increase in the rRMSE in the correspond-

ing ROI as a increases.

An important point to notice about the TV minimization

images (a¼ 0) shown in Fig. 2 is the loss of small scale,

low-contrast details in the static region of the phantom. This

region was reconstructed sharply in the PICCS reconstruc-

tions at a¼ 0.5. This results was expected since that region

of the image was accurately reconstructed in the prior image.

To quantify this behavior, the rRMSE was measured in an

ROI which included only these static structures [Fig. 4(a)].

This analysis was done for the noiseless dataset to remove

the effect of noise. The error is reduced as a increased. How-

ever, the error measured in an ROI around the dynamic

structures increases with a. Therefore, there exists a trade-

off between the accuracy of static and dynamic structures.

Furthermore, the spatial resolution of the image was

shown to depend on the object size and contrast. Figures

4(b) and 4(c) show the pseudo PSF width as a function of a
for static objects of different sizes and contrast levels. Small

FIG. 1. Plot of the convergence criterion value, the variation averaged every

two iterations, with respect to the iteration number. Each line corresponds to

a different value of the data consistency parameter k in the range [103,108].

TABLE I. Algorithms performance comparison.

Algorithm

Mean rRMSE at

convergence

Mean number of CG

iterations before

convergence

Mean number line

search iterations

SD–BT 10.9 6 0.5% 68 6 22 22 6 3

CG–FR–BT 10.1 60.8% 27 6 4 12.5 6 0.9

CG–PR–BT 10.6 6 0.7% 31 6 15 16 6 9

SD–NR 11.2 60.5% 47 6 16 0 6 0

CG–FR–NR 10.0 6 0.9% 15 6 2 0.01 6 0.02

CG–PR–NR 10.2 6 0.7% 15 6 1 0.01 6 0.01
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and low-contrast objects are preferably blurred by TV mini-

mization. These results clearly demonstrate that the point

spread function of images reconstructed using TV minimiza-

tion or PICCS is not shift-invariant. When a was increased

above 0.5, the spatial resolution of small low-contrast

objects was restored; that is, the pseudo PSF width dropped

below the pixel size, (1 mm)2. For a¼ 0.5 and above, the

spatial resolution is below the pixel size (1 mm)2 for all

FIG. 2. Reconstructions of the numerical phantom using FBP, TV minimization, and PICCS for two values of the prior image parameter a. The prior image

used for the PICCS reconstructions is shown. Notice that at a¼ 0.0, the image lacks fine details. At a¼ 0.5, the image accurately shows small scale details at

all contrasts levels. The display range is set to [0.00, 0.04] mm�1.

FIG. 3. Plot of the contrast enhancement of the dynamic numerical phantom at various time frames.
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values of A studied. As k is decreased, the noise level con-

verges to that of the prior image 1.5� 10�4 mm�1.

The dataset with noise added was also analyzed with

respect to spatial resolution. TV minimization images with

noise showed deformed low-contrast structures due to patchy

artifacts. The same contrast and size dependence of the resolu-

tion was observed in that case. Figure 5 demonstrates the

tradeoff between noise and spatial resolution for low, medium,

and high contrast objects. Notice the characteristic L-shape of

these curves. For large values of k, the noise level varies with-

out loss of spatial resolution. However, at low values of k and

a, the pseudo PSF width increases without an improvement in

noise level. This figure demonstrates that PICCS with properly

selected parameters offers a reduction in noise with respect to

the FBP reconstructed reference image without a loss in spa-

tial resolution around low-contrast static objects.

III.B.2. In vivo dataset

Reconstructions were performed for a range of a from 0

to 1 by 0.1 increments at various values of k using the

in vivo dataset. Reconstructions at several sampling levels

are shown on Fig. 6. Notice that image quality depends on

the sampling level. At 107 view angles, the TV minimization

image showed high accuracy but a slightly patchy texture.

As the sampling level is further reduced to 64 and 20 view

angles, the spatial resolution is degraded in the lung region

and the texture becomes overly smooth. For PICCS images,

the texture of the lung region remains qualitatively similar to

that of FBP images. There is a minimal loss of spatial resolu-

tion obeserved in the 20-view angle PICCS reconstruction in

the ventricular and pulmonary regions. However, this loss is

minor in comparison to that suffered by TV minimization

images.

To qualitatively evaluate the temporal resolution, recon-

structions at three different time frames for the 64 view

angle dataset using optimal parameters are presented in Fig.

7. Notice the change in the contrast of the cardiac chambers

as the concentration of iodinated agent varies.

In order to evaluate the accuracy of the reconstruction,

the rRMSE was measured for all images within an ROI that

included soft tissue only, thus excluding the lungs and bones.

FIG. 4. Plots of quantitative metrics with respect to variations in the prior image parameter a for the noiseless numerical phantom at 64 projection view angles.

(a) shows the rRMSE measures within two ROIs each containing either static or dynamic structures [see Figs. 2(a)]. (b) shows spatial resolution measurements

of the smallest static structure for various contrast levels. (c) shows spatial resolution measurement for the lowest contrast static objects for several sizes. Note

that the pixel size is (1 mm)2.

FIG. 5. Plot of the noise standard deviation as a function of the pseudo PSF width for the numerical phantom with noise added. Each point of a given curve cor-

responds to a different value of k [ f0.46,0.90, 2.2, 5.4,13, 32g, is shown for all values of a. The pseudo PSF in (a) is for a low-contrast object while that in (b)

is for a medium contrast object and (c) is for a high contrast object. Note that the prior image has a noise standard deviation of 1.5� 10�4 mm�1 and a pseudo

PSF width of 0.1 mm which is negligible compared with the pixel size of 1 mm. Similarly, the potential blur of the PICCS reconstructed images is also negligi-

ble at the optimal value of a¼ 0.5.
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These regions are excluded since sharp interfaces are present

that could generate artificially high rRMSEs due to mis-

matches in spatial resolutions between the reconstructions

and the reference image. The rRMSE is plotted with respect

to the a parameter for various levels of view angle sampling

(Fig. 8). For each curve, the data consistency parameter k
that offered the minimal rRMSE was used. A striking feature

of these curves is the presence of an optimal value of

the prior image parameter. Indeed, the rRMSE is lowest for

values of a between 0.4 and 0.5. This behavior is well

FIG. 6. Reconstructions of the in vivo study using FBP, TV minimization, and PICCS. At all sampling rates shown here, FBP images show undersampling

artifacts in the form of streaks. For TV minimization (a¼ 0.0), the image lacks fine details and has an overly smooth texture for sampling rates below 100

view angles. Using PICCS (a¼ 0.5), images accurately show small scale details with minimal loss at all sampling levels. The display range is set to

[�1000,1000] HU.
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correlated by the qualitative appearance of the reconstruc-

tions. At low a, the reconstructions are overly smooth, which

causes a loss in fine, low-contrast structures. At large a, the

algorithm applies an excessive weight on the prior image

conformity, and thus, it retains some of the prior image fea-

tures. At the optimal a, details are accurately reconstructed

and the prior image is minimally visible.

As the number of projection view angles is reduced the

rRMSE increases since PICCS looses some of its ability to

correct for inconsistencies between the prior image and the

projection data. However, at all sampling levels, a PICCS

reconstruction yields an accuracy superior to that of TV min-

imization. These results are consistent with the rRMSE

measurements obtained for the noiseless simulated dataset

[Fig. 4(a)]. For the in vivo dataset, the ROI contained both

static and dynamic structures. The rRMSE thus combined

the behavior of both curves from Fig. 4(a).

The level of noise present in the images also depends on

the prior image parameter a. At low a, the noise is mitigated

by the total variation term of the PICCS objective function,

while at larger values, it has a level similar to the one found

in the prior image (Fig. 9).

As previously observed, lower noise comes at a price.

Low-contrast details are often lost. This behavior is quanti-

fied by the pseudo PSF width (Fig. 10), which was measured

at 18% contrast interfaces. At moderate to high values of a,

the spatial resolution is preserved. However, when a is low,

FIG. 7. Reconstructions for various time frames following contrast injection. The complete dataset had 66 time frames. The display range is set to

[�1000,1000] HU. The PICCS images were produced from datasets with 107 view angles, while those used for the FBP images had either 642 or 107 view

angles.

FIG. 8. Plots of the relative root mean square error with respect to the prior

image parameter a. Each curve corresponds to a different level of sampling.

Note that the prior image used in all cases had a rRMSE of 2.31%.

77 Thériault-Lauzier, Tang, and Chen: Optimization and evaluation of PICCS 77

Medical Physics, Vol. 39, No. 1, January 2012



the total variation term of the objective function dominates,

and the width of the pseudo PSF increases. This means that

low-contrast spatial resolution is being degraded.

There exists a trade-off between the loss of spatial resolu-

tion and the noise level. This is illustrated in Fig. 11. Each

curve corresponds to a different value of a, while the points

on a given curve correspond to different values of k. One im-

portant observation to be made from the figure is that for

large enough values of a, the pseudo PSF width is relatively

constant for all values of k.

The texture of the images also varies considerably for

different values of a. At the low end, images show a step-

like appearance and often show patchy artifacts. As a is in-

creased, the texture of PICCS-reconstructed images becomes

more similar to that of FBP-reconstructed images. This is

quantified by the QI shown on Fig. 12. At a� 0.5, the QI

was close to 1, which signifies a level of high texture confor-

mity with the reference image. It is also interesting to note

that as k is increased, the noise texture of the images resem-

bles more and more the texture of FBP images. The QI is

sensitive to the noise level. At high k, the noise increases

beyond the level of the reference image, which causes a

decrease in QI.

The appearance of in vivo images also varies with respect

to the value of the data consistency parameter k. For low val-

ues of k, the difference between various a levels, in terms of

noise, and spatial resolution is maximized. These differences

reduce gradually as k increases. It is reasonable to attribute

this behavior to the fact that at large values of k the algo-

rithm converges approximately to the solution of the least

squares problem

arg min
x
jjAx� yjj2: (23)

In this regime, variations in the PICCS objective function

fpiccs(x) have little impact on the reconstructions. The data

consistency parameter k should be kept at a lower level in

order to retain the advantages of PICCS with respect to noise

suppression and under-sampling artifacts mitigation. How-

ever, in that regime, less weight is given to the consistency

of the image with the projection dataset.

FIG. 10. Surface plot of the pseudo point spread function (PSF) width as a

function of the prior image parameter a and the data consistency parameter

k. The width of the pseudo PSF in the prior image is 0.45 mm. Note that this

plot is rotated by 180	 with respect to (Fig. 9) to allow better visualization.

This figure was generated using data measured from the reconstructions of

the 107-view angle dataset. Similar results can be obtained for other sam-

pling factors.

FIG. 11. Plot of the noise standard deviation as a function of the pseudo PSF

width. The pseudo PSF measurements were performed at a low-contrast

edge in soft tissue. This figure was generated using data measured from the

reconstructions of the 107-view angle dataset. In the prior image, the pseudo

PSF width is 0.45 mm and the noise standard deviation is 9.35 HU. Similar

results can be obtained for other sampling factors.

FIG. 12. Surface plot of the universal image quality index as a function of

the prior image parameter a and the data consistency parameter k.

FIG. 9. Surface plot of the noise standard deviation in HU as a function of

the prior image parameter a and the data consistency parameter k. The noise

standard deviation in the prior image is 9.35 HU. This figure was generated

using data measured from the reconstructions of the 107-view angle dataset.

Similar results can be obtained for other sampling factors.
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In summary, it was also shown in this section that a value

of a near 0.5 is an optimal choice with respect to reconstruc-

tion accuracy, the trade-off between noise level and low-

contrast spatial resolution, as well as image texture.

IV. CONCLUSIONS AND DISCUSSION

Various classical unconstrained optimization algorithms

were implemented to minimize the PICCS objective func-

tion. When applied to a porcine CT dataset acquired in vivo,

it was shown that the nonlinear conjugate gradient algorithm

with a fast Newton-Raphson line search displayed the fastest

convergence speed with proper accuracy. Using this algo-

rithm, the parameters of the unconstrained PICCS objective

function were studied. For both numerical and in vivo data-

sets, it was shown that a value of a around 0.5 is an optimal

choice with respect to both the reconstruction accuracy and

the trade-off between noise level and low-contrast spatial re-

solution. This value of a also results in sharp low-contrast

details. Using the in vivo dataset, it was also shown that this

choice of a results in a noise texture similar to that of FBP

images. Finally, it was demonstrated that the data consis-

tency parameter k should be kept at a lower level in order to

retain the advantages of the PICCS framework with respect

to noise suppression and under-sampling artifacts mitigation.

One limitation of the present study is that an explicit

noise model is not included in the PICCS objective function

[Eq. (6)]. As mentioned in Sec. I, the introduction of a noise

model can become important in ultralow-dose CT. The per-

formance of PICCS is not expected to change, with the

exception of better noise performance. However, it would be

interesting for future investigations to see how much advant-

age can be gained by the incorporation of a detailed noise

model in PICCS framework.

Another limitation of the present study is that the topic of

how “good” the prior image should be in order for PICCS to

yield high performance. This aspect was not discussed here.

In published results so far, PICCS is well suited for applica-

tions where a prior image with compromised temporal resolu-

tion, spectral resolution, and/or spatial resolution, but also a

high SNR can be generated from the acquired projection

data. The generalization to a more general prior image

remains an interesting research topic for future investigations.
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