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Stomata are formed by pairs of sur-
rounding guard cells and perform 

important roles in photosynthesis, tran-
spiration and innate immunity of terres-
trial plants. Ionic solutes in the cytosol of 
guard cells are important for cell turgor 
and volume change. Consequently, trans-
membrane flux of ions such as K+, Cl-, 
and malate2- through K+ channels and 
anion channels of guard cells are a direct 
driving force for turgor change, while the 
opening of calcium permeable channels 
can serve as a trigger of cytosolic free cal-
cium concentration elevations or oscilla-
tions, which play second messenger roles. 
In plants, heterotrimeric G proteins have 
fewer members than in animals, but 
they are well investigated and found to 
regulate these channels and to play fun-
damental roles in guard cell function. 
This mini-review focuses on the recent 
understanding of G-protein regulation 
of ion channels on the plasma membrane 
of guard cells and their participation in 
stomatal movements.

Heterotrimeric G proteins, composed of 
Gα, Gβ and Gγ subunits, are key ele-
ments of cellular signal transduction net-
works. In plant species, fewer members of 
G proteins are present than in animals. For 
example, only one Gα subunit (GPA1), 
one Gβ subunit (AGB1) and two Gγ sub-
units (AGG1 and AGG2) are reported in 
Arabidopsis while 23 Gα, 5 Gβ and 12 Gγ 
subunits have been identified in human.1 

All three kinds of subunits are expressed 
in guard cells. Ubiquitous expression of 
GPA1 throughout plant was ascertained 
by northern and promoter::GUS analyses 
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and RT-PCR results also indicate guard 
cell expression.2-4 AGB1 is ubiquitously 
expressed throughout the plant and its 
promoter::GUS transgenic lines show 
strong expression in guard cells.5-7 For 
Gγ subunits, RNA blots show AGG1 and 
AGG2 expression throughout the plant, 
however, reporter gene analysis shows 
guard cell expression of AGG2 but not 
AGG1.7-9 The guard cell expression of G 
protein subunits implies the function of G 
protein in guard cell signaling and stoma-
tal movement regulation. 

Stomata are microscopic pores in the 
epidermis of terrestrial plants, which serve 
as the mouths of plants for gas change 
since through them CO

2
 enters leaves for 

photosynthesis and water vapor is lost as 
transpiration.10-13 In addition, stomatal 
movements induced by pathogen and 
pathogen/microbe-associated molecu-
lar patterns (PAMPs or MAMPs) are a 
component of the plant innate immunity 
system.14-16 Biotic and abiotic stresses (e.g. 
water deficiency, cold, pathogens) and 
their induced phytohormone changes (e.g. 
abscisic acid [ABA], ethylene) have been 
widely investigated in stomatal move-
ment regulation, and stomatal apertures 
are directly regulated by volume change 
of the surrounding guard cell pairs. The 
accumulation/release of ionic solutes 
through ion channels on the guard-cell 
plasma membrane together with malate 
production/metabolism induces water 
influx/efflux driving increase/decrease of 
cell turgor and volume which co-operates 
with the radial reinforcement of the guard 
cell walls to widen/shrink stomatal aper-
ture.10,17 Given that mature guard cells 
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of whole genome sequencing, together 
with the development of guard cell proto-
plast isolation and patch clamping tech-
niques for Arabidopsis, resulted in this 
species becoming the model plant sys-
tem for study of G protein regulation of 
ion channels at molecular level. T-DNA 
insertional mutants lacking functional 
genes for heterotrimeric G proteins could 
be used directly for the study of the 
involvement of heterotrimeric G proteins 
in regulation of guard cell ion channels 
and G protein effects on stomatal move-
ments.1 In guard cells of null mutants of 
the sole Gα gene, GPA1, ABA inhibition 
of inward K+ channels was abolished, 
consistent with the observation that light-
induced stomatal opening is hyposensi-
tive to inhibition by ABA in these gpa1 
mutants.4 Interestingly, consistent ABA 
hyposensitive phenotypes were observed 
in agb1, and gpa1abg1 mutants: without 
ABA, there is no alteration in K+ currents 
and with ABA, inhibition of inward K+ 
currents and light-induced stomatal open-
ing is impaired.30 Similar experiments 
have also been conducted in mutants 
of the two identified Gγ genes, agg1 
and agg2,8,9 unexpectedly, neither single 
mutants nor double mutants of these 
two Gγ subunits showed similar pheno-
types to that of gpa1 or agb1; rather, these 
mutants showed wild-type ABA inhibi-
tion of inward K+ channels and stomatal 
opening.31 So, it is reasonable to speculate 
that there exist unidentified, additional 
Arabidopsis Gγ(s) which work(s) in guard 
cells together with GPA1 and AGB1. 
Besides the phytohormone ABA, loss of 
function of GPA1 also blocks flg22 inhi-
bition of inward K+ channels and stomatal 
opening, indicating that plant G proteins 
are common elements for crosstalk of ABA 
and elicitors in guard cells.15

To date, nine genes encoding 
K+-channels have been identified in 
Arabidopsis: KAT1, KAT2, AKT1, 
AKT5, SPIK, AKT2/3, AtKC1, SKOR 
and GORK.10,32,33 In guard cells, the 
inward K+ channel members or subunits 
KAT1, KAT2, AKT1, AKT2/3, AtKC1, 
and the outward K+ channel, GORK, are 
expressed.32-34 Evidence accumulating 
from heterologous expression and func-
tional analysis of heteromeric inward K+ 

subunits (e.g. AtKC1 and AKT1) indicates 

quickly became the model system for the 
study of G protein function in plants. 
The acquisition and characterization of 
mutants lacking functional heterotrimeric 
G proteins facilitated direct examination 
of the roles of heterotrimeric G proteins in 
the regulation of ion channels and stoma-
tal movements.

ABA is the best studied regulator of 
stomatal movements.  ABA inhibits sto-
matal opening and promotes stomatal clo-
sure, reducing transpirational water loss; 
in addition, guard cell ABA signaling is 
one of the best-defined cellular signaling 
networks in plants.13,22,23 Most of the roles 
of G proteins in regulation of ion channels 
during stomatal opening are associated 
with ABA signaling. Electrophysiological 
experiments using G protein modulators, 
phytohormones and G protein mutants 
have greatly contributed to our under-
standing of the G-protein signaling net-
work of stomatal movements.

G-protein regulation of K+ chan-
nels. Guard cell plasma membrane K+ 
channels mediate K+ uptake/release and 
thus control changes in guard cell tur-
gor change.24,25 Since G proteins can be 
constitutively activated by GTPγS or 
cholera toxin, and inactivated by binding 
to GDPβS or pertussis toxin, a combina-
tion of pharmacological and electrophysi-
ological methods was once widely used to 
study G-protein regulation of guard cell 
ion channels and stomatal movements. G 
protein regulation of ion channels was first 
demonstrated in Vicia faba guard cells, in 
which the inward-rectifying K+ channels 
were found to be activated by GDPβS and 
inhibited by GTPγS, cholera and pertus-
sis toxins.26 That finding was supported 
by further single-channel recordings 
from isolated membrane patches, show-
ing the G-protein regulation of ion chan-
nels can occur via a membrane delimited 
mechanism.27 Besides electrophysiology, 
light-induced stomatal opening could be 
promoted by microinjection of GTPγS 
into guard cells.28 These early studies 
strongly suggested the involvement of het-
erotrimeric G proteins in the regulation of 
ion channels and stomatal movements.

Arabidopsis genes encoding Gα and 
Gβ subunits of the G protein were identi-
fied even before the Arabidiopsis genome 
was completely sequenced.5,29 Completion 

lack plasmodesmata with neighboring 
cells, all ion uptake and efflux must pass 
through ion channels and ion transporters 
on the plasma membrane.

In Arabidopsis guard cells, the model 
cell type for cell signaling of the model 
plant species, all three kinds of ion chan-
nels (K+ channels, anion channels and 
Ca2+-permeable channels) have been 
investigated and found to be regulated 
by heterotrimeric G proteins.10,17 Their 
ion channel activities can be measured in 
intact guard cells, guard cell protoplasts, 
or cell membrane patches using the patch 
clamp technique.15,18,19 Patch clamping 
can be used to measure ion fluxes in whole 
cells or even through a single ion chan-
nel.20,21 The patch clamp technique under 
the whole-cell recording configuration 
can measure the currents through hyper-
polarization-activated inward K+ channels 
which account for K+ accumulation during 
stomatal opening, and the depolarization-
activated outward K+ channels which, 
together with R-type and S-type anion 
channels, mediate solute removal during 
stomatal closure. Besides these ionic fluxes 
which directly elicit changes in turgor, 
Ca2+-permeable channels which partici-
pate in Ca2+ signaling are also regulated 
by G proteins. For better visualization of 
the currents through K+, anion and Ca2+-
permeable channels, real current traces 
and their idealized current/voltage rela-
tionships are indicated in Figure 1. The 
G-protein regulation of inward and out-
ward K+ channels, S-type anion channels, 
and Ca2+-permeable channels and their 
significance for stomatal movements will 
be discussed below, and the genes encod-
ing them which have been explored up to 
now also will be discussed.

G-protein Regulation  
of Guard Cell Ion Channels During 

Stomatal Movements

Evidence suggesting that G proteins regu-
late stomatal movements and ion chan-
nel activities was first obtained in the 
early 1990s using electrophysiological 
and pharamacological methods applied 
mainly to guard cells of the broad bean, 
Vica faba. With the sequencing of the 
Arabidopsis genome and identification of 
G protein encoding genes, Arabidopsis 
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another dependent on G proteins. The 
genes encoding anion channels have been 
identified recently; SLAC1 encodes S-type 
anion channels and R-type channels are 
likely encoded by AtALMT12, but other 
reports showed the existence of R-type 
anion currents in atalmt12, so its function 
needs further confirmation.37-39 GPA1 and 
AGB1 mediate ABA activation of S-type 
anion channels implies indirect or direct 
regulation of SLAC1 by G proteins. 

G-protein regulation of Ca2+-
permeable channels. Hyperpolarization-
activated Ca2+-permeable channels on the 
plasma membrane of guard cells trigger 
Ca2+

cyt
 elevation, and such elevation inhib-

its inward K+ channels and activates both 
S-type and R-type anion channels, facili-
tating net solute removal during stomatal 
closure.12,40-42 ABA promotes the produc-
tion of reactive oxygen species (ROS) such 
as H

2
O

2
 which activate plasma membrane 

characteristics.11 Since the S-type channels 
could be activated by a large range of volt-
ages and exhibit slow deactivation allow-
ing export of a large amount of anions, 
they are a major component of the mem-
brane depolarization mechanisms that 
drive stomatal closure (Fig. 1).36 ABA acti-
vates both S-type and R-type anion chan-
nels;36 G-proteins involvement in ABA 
regulation of S-type channels has been 
observed, while R-type channels have not 
yet been assessed for such regulation.4,30 
gpa1 and agb1 mutants show reduced 
ABA activation of outward anion chan-
nels under strong cytosolic pH buffer, 
however, under weak pH buffering, ABA 
activation of outward anion channels is 
identical in wild type and in mutants of 
gpa1 or agb1.4,30 These results demonstrate 
the existence of two parallel pathways that 
mediate ABA activation of S-type anion 
channels: one through cytosolic pH and 

that functional inward K+ channels are 
heteromers,35 and since ABA could not 
totally inhibit the inward K+ currents, 
further work is needed to clarify which 
kind of specific inward K+ channels are 
regulated by G proteins. Furthermore, 
even though there is no significant dif-
ference before and after ABA application 
in outward K+ currents of guard cells in 
wild type and the mutants of G-protein 
subunits,4,30,31 a gradual inhibitory effect 
of flg22 on outward K+ channels observed 
in wild type guard cells was absent from 
gpa1 mutants, indicating the involvement 
of G-protein in regulation of outward K+ 

channels and thereby stomatal closing.15

G-protein regulation of anion chan-
nels. Anion channels on the plasma mem-
brane of guard cells which mediate anion 
efflux during stomatal closure are catego-
rized as R-type (rapid) and S-type (slow) 
according to their electrophysiological 

Figure 1. current traces and idealized current/voltage relationships of wild type guard cell plasma membrane ion channels involved in G-protein 
regulation (a–c), aBa inhibition of whole-cell inward K+ currents. (a) indicates inward K+ currents of wild type guard cell protoplasts in response to 
hyperpolarizing voltages under control conditions [Scale bar is shown in (B)]; (B) indicates inward K+ currents of wild type guard cell protoplasts with 
aBa treatment; (c) indicates the idealized current/voltage relationship of inward K+ currents for control (gray) and aBa treatments (black). (d–F), aBa 
activation of slow anion currents. (d) indicates anion currents of wild type under control condition and (e) shows current after aBa treatment; (F) 
indicates the idealized current/voltage relationship of anion currents for control (gray) and aBa treatments (black). (G–I), aBa activation of currents 
through ca2+-permeable channels. (G) indicates currents through ca2+-permeable channels of wild type under control condition and (H) shows current 
after aBa treatments; (I) indicates the idealized current/voltage relationship of currents through ca2+-permeable channels for control (gray) and aBa 
treatments (black).
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may know the specific molecular mecha-
nisms and channel(s) targeted by the G 
protein.
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Ca2+ channels resulting in an increase in 
Ca2+
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 levels and stomatal closure.42 Since 

ABA promotes Ca2+
cyt 

elevation and Ca2+
cyt

 
elevation in turn activates S-type anion 
channels,4,12,30 it is reasonable to hypoth-
esize that G proteins are involved in ABA 
regulation of Ca2+-permeable channels 
and Ca2+

cyt
 generation. This hypothesis 

was directly supported by recent electro-
physiology experiments.43 In that study, 
ABA activation of plasma membrane Ca2+-
permeable channels and ROS elevation in 
guard cells was minimal in gpa1 mutants, 
while H

2
O

2
 activation of these channels 

and of ROS elevation could be observed 
in guard cells of both wild type and gpa1. 
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