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REVIEW

Introduction

Cationic as well as anionic antimicrobial peptides (AMPs) are 
peptides serving as constitutive or inducible defense barriers 
against microbial infections in plants, insects, amphibians and 
mammals including human.1-3 They might additionally have the 
ability to boost the host immunity by functioning as immuno-
modulators.4,5 Plenty of AMPs exist to cope with practically all 
potential infection sources. In general, the amphipathic peptides 
consist of positively charged residues, predominantly arginine 
and lysine, or else histidine in acidic setting, and a substantial 
ratio of hydrophobic amino acids.6,7 The best-known antimicro-
bial peptide families are (1) linear α-helical peptides compris-
ing cecropins8 and magainins9 exhibiting generally antibacterial 
activities, (2) multiple Cystein-bridge-containing defensins show-
ing antibacterial and antifungal activities,10,11 (3) Pro-rich pep-
tides with activity against bacteria and filamentous fungi,2,12 and 
(4) the Gly-rich peptides active mainly against Gram-negative 
and occasionally Gram-positive bacteria.13,14
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Complicated schemes of classical breeding and their drawbacks, 
environmental risks imposed by agrochemicals, decrease of 
arable land, and coincident escalating damages of pests and 
pathogens have accentuated the necessity for highly efficient 
measures to improve crop protection. During co-evolution of 
host-microbe interactions, antimicrobial peptides (AMPs) have 
exhibited a brilliant history in protecting host organisms against 
devastation by invading pathogens. Since the 1980s, a plethora 
of AMPs has been isolated from and characterized in different 
organisms. Nevertheless the AMPs expressed in plants render 
them more resistant to diverse pathogens, a more orchestrated 
approach based on knowledge of their mechanisms of action 
and cellular targets, structural toxic principle, and possible 
impact on immune system of corresponding transgenic 
plants will considerably improve crop protection strategies 
against harmful plant diseases. This review outlines the current 
knowledge on different modes of action of AMPs and then 
argues the waves of AMPs’ ectopic expression on transgenic 
plants’ immune system.
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Major environmental concerns have been leading to prohi-
bition of a huge part of existing agrochemicals all around the 
world, and coincident growing demands for sustainable strate-
gies in crop protection have inspired the idea of recruiting AMPs 
for improvement of plant health.15 This review covers the diverse 
modes of action, by which AMPs impede assaulting pathogens 
and overviews the impact of expression of AMPs in correspond-
ing transgenic plants in terms of modulating the plant’s different 
immune pathways.

AMPs; General Aspects

Controlled by only one single gene, AMPs can be produced 
rather quickly upon infection with narrow energy consump-
tion;16 nonetheless, some are constitutively expressed. Despite 
the fact that AMPs in insects and mammals may modulate the 
innate and adaptive immune reactions,17 common persuasion on 
their most important function is elimination of infectious micro-
organisms.18,19 Several kinds of classification have been proposed 
for AMPs; however, consistent with their secondary structures 
AMPs are generally categorized into four clusters:20

(1) linear α-helical peptides containing cationic amphipa-
thic helices that perform inhibitory activities generally against 
bacteria. Many peptides of this group have been classified as 
“pore-forming” such as alamethicin, cecropin, PGLa, magainin, 
melittin and mastoparan.21-23

(2) cyclic peptides with b-sheet structure that form predomi-
nantly b-sheets including coupled b-strands due to the presence 
of two or more disulfide bonds. Although being antifungal in 
some cases,11,24 they are often characterized as antibacterial pep-
tides. The b-sheets are stably assembled by either disulfide bonds, 
as in cases of tachyplesins,25 defensins,26 protegrins,27 and gal-
lerimycin,28 or circling of the peptide backbone, as in cases of 
polymyxin B,29 tyrocidines,30 arenicins.31

(3) peptides with b-hairpin or looped configuration that 
include those containing a looped structure due to the presence 
of a single disulfide bond and/or circling of the peptide chain. 
Thanatin from Podisus maculiventris is an example of this kind of 
peptides.32 The best-characterized molecules amongst this group 
are lantibiotics produced by Gram-positive bacteria.

(4) linear peptides with unusual bias in particular amino acids, 
e.g., drosocin, metchnikowin, apidaecin, abaecin, formaecin, 
lebocin, pyrrhocoricin and metalnikowin all rich in proline,12,33 
indolicidin rich in tryptophan,34 histatin rich in histidine,35 
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and membrane permeabilization.44,45 Notable hydrophilic posi-
tively charged domains facilitate the peptides to interact with 
the negatively charged microbial surfaces and head groups of 
bilayer phospholipids leading to cell membrane penetration. 
Three pore-forming mechanisms are described to explain the 
effects of α-helical membrane peptides.1,40 A simplistic schematic 
illustration of different pore formation mechanisms is provided 
in Figure 1 and a selection of peptides showing different pore-
forming mechanisms is given in Table 2. The so-called “carpet-
like” mechanism refers to destruction of membrane assembly by 
collaborative action of peptides.40 Peptides self-associate onto the 
acidic phospholipid-rich regions of lipid bilayers and once their 
concentrations reach a certain threshold they permeate into the 
membrane by mounting the bilayer positive potential.38 The sec-
ond pore-formation mechanism “barrel-stave”63 is symbolized 
in alamethicin;60 it inserts into the membrane hydrophobic area 
and creates a pore by forming trans-membrane helical bundles. 
In the third mechanism, the “toroidal” model, the peptide builds 
toroidal pores in lipid bilayers. Pore construction is, intriguingly, 
managed by the lipid polar head groups and the helix bundles 
that orient vertically to the membrane exterior. More precisely, 
the attached peptides aggregate and induce the lipid monolayers 
to bend continuously through the pore so that both the inserted 

tritrpticin rich in arginine or tryptophan,36 and diptericins and 
attacins rich in glycine.33 These peptides, predominantly found in 
Class Insecta, are active against bacteria and fungi.2,37 The most 
recognized small Pro-rich AMPs are apidaecins that structurally 
consist of two domains: the conserved domain in charge of gen-
eral antibacterial activity, and the variable one responsible for the 
antibacterial spectrum. They are lethal to many Gram-negative 
bacteria.38 Of interest, several linear AMPs are amorphous in free 
solution and fold into their final configuration upon partitioning 
into biological membranes.39

AMPs; Modes of Action

Although mechanisms of action of antimicrobial peptides have 
been frequently reviewed33, 38, 40–42, there are yet open questions 
regarding their heterologous functions. Generally speaking, 
functions of these peptides vary from membrane permeabili-
zation to actions on an array of intracellular target molecules 
including immuno-modulatory activities (Table 1).

Pore-forming activity. Ability to interact with membranes 
is a classical countenance of AMPs;43 nonetheless, membrane 
permeabilization is not an absolute feature. Earlier reports indi-
cate an utter correlation between antibiotic effects of defensins 

Table 1. Effects of native and transgenic AMPs in different organisms

AMPs Organism Target molecule Outcome

Native 
AMPs

Bacteria

Membrane phospholipids/LPS Prevention of vital microbial homeostasis because of pore formation in membranes64

DnaK; receptor/docking/ 
transporter molecule; GroEL

Inhibition of natural ATPase activity; Inhibition of chaperon-assisted protein folding68-70

Ribosome Protein synthesis inhibition69

Fungi

Membrane glycosyl ceramide Membrane permeabilization79,80

Redox signaling cascade Induction of ROS, membrane damage, organelle breakdown and cell death24,82

MAP kinase signaling cascades Regulation of fungal genes important for overcoming plant defense83

Chitin in cell wall Interference with chitin synthesis85,86

Plants Diverse molecules

Modification of host gene expression88,89

Induction of cell death in other plants90

Association with epigenetic somaclonal variation events91

Conferring zinc tolerance92

Mammals

Nucleus Cell cycle impairment in rat retinal neuroblasts81

L-type Ca2+ channel Blockade of mammalian L-type Ca2+ channel84

Diverse molecules

Playing as chemokines93,94 and/or induction of chemokine production95

Inhibition of pro-inflammatory cytokine production induced by LPS96

Wound healing promotion97

Inhibitory activities toward tumor cells and HIV-1 reverse transcriptase98

Modulation of adaptive immune responses4,5

Transgenic 
AMPs in 
plants

Microbes Diverse molecules Interference with microbial fitness and virulence establishment2,99

Plants Diverse molecules

Primed status of transgenic plants due to more activated ISR and SAR and higher 
redox potential2,99,100

Alteration of processes of synthesis, folding, and stabilization of proteins which enter 
to the secretory pathway101

Alteration of translational machinery101

Alteration of components of vesicle-associated transport machinery101

Improved protection against oxidative stress24,82,99-101
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the hyphal membrane, but it also enters cells and affects intracel-
lular targets.24

Defensins of different origins exhibit no clear similarities 
in their modes of mechanism; nevertheless, fungal membrane 
sphingolipid glycosyl ceramide is the most common key tar-
get of a number of defensin-called peptides. Glycosyl ceramide 
was identified as specific target for the antifungal plant defen-
sin RsAFP2 and the insect defensin-like peptide heliomicin.79 

peptides and the lipid head groups line the water core.1 Pores act 
as non-selective channels for ions, toxins and metabolites, thus 
preventing the microbe from maintaining the vital homeosta-
sis.64 Conditional on experimental settings, α-helical membrane 
peptides can take on different pore-forming mechanisms. For 
instance, the pore-forming mechanism differs appropriate to the 
type of membranes and pH, which indicates the essence of exper-
imental settings in the studies on AMPs’ modes of action.65 On 
the other hand, making the Magainin2 tetravalent and octava-
lent largely increases the pore-forming capability of peptide lead-
ing to decreasing the peptide minimal inhibitory concentration 
to low nanomolar ranges.66

Inhibition of DNA and protein functions. It is postulated 
that the positive charge in the short Pro-rich AMPs boosts bacte-
rial cell access67 and the existing prolines may perhaps inhibit 
helix formation and hence, toxicity to the host. Nevertheless, 
apidaecins belonging to short Pro-rich peptides are of distinction 
by lacking the pore-inducing action.38 Eradication of bacteria by 
apidaecins commences by an ambiguous interaction of the pep-
tide with an outer membrane component like LPS and DnaK,68 
and consequently, its entrance into the periplasmic space. Next, 
peptide traverses inner membrane specifically by an irrevocable 
band with either a receptor/docking/transporter molecule69 or 
the 60-kDa bacterial chaperone GroEL.68 Ultimately, the pep-
tide is displaced into the cell where it runs into its certain target 
that is either ribosome leading to protein synthesis inhibition69 
or DnaK leading to protein folding inhibition.68,70 Evidently, 
pyrrhocoricin, a relative of apidaecins, inhibits natural ATPase 
activity and chaperon-assisted protein folding of E. coli’s DnaK, 
whereas it lacks any activity on human HSP70.68,70 In contrast, 
PR-39 kills bacteria by stopping their DNA and protein syntheses 
and gives rise to degradation of these components.71 Interestingly, 
PR-39 does pass through membranes without any apparent dam-
age. The molecule can induce the synthesis of syndecans involved 
in wound healing72 and hamper the NADPH-dependent redox 
reactions.73

Prokaryotic DnaK recognizes extended peptide constitu-
ents as well as positively charged residues inside and outside of 
its substrate-binding furrow.74 This might also occur to similar 
sequence motifs in typical members of Pro-rich peptides fam-
ily, i.e., pyrrhocoricin, drosocin, apidaecin and metchnikowin. 
It is evident that metchnikowin can be triggered by both major 
pathways of fruit fly immune system, imd and Toll,75,76 which 
makes it unique in terms of extreme immune capacity to almost 
all potential microbes, e.g., fungi, bacteria and even viruses. As 
well, obstruction of chaperone-assisted protein folding by Pro-
rich cationic peptides70 prospects a gallant approach to combat-
ing microbial infections.

Disturbance of other intracellular targets. It is documented 
that plant defensins, contrary to their mammalian and insect 
orthologs, neither induce ion permeable pores in artificial phos-
pholipidic membranes nor change their electrical status, making 
evident that these defensins do not interact directly with plasma 
membrane phospholipids.77,78 Though it was reported that the 
antifungal defensin NaD1 from Nicotiana alata induces mem-
brane permeabilization, its activity may not only be restricted to 

Figure 1. Schematic illustration of three pore-forming mechanisms 
to explain the α-helical membrane peptides. In “toroidal” model, the 
peptide builds toroidal pores in lipid bilayers. Pore construction is 
managed by the lipid polar head groups and the helix bundles that 
orient vertically to the membrane exterior. In other words, the attached 
peptides aggregate and tempt the lipid monolayers to bend continu-
ously through the pore so that both the inserted peptides and the lipid 
head groups line the water core. “Carpet-like” mechanism refers to 
destruction of membrane assembly by collaborative action of peptides. 
Peptides self-associate onto the acidic phospholipids-rich regions of 
lipid bilayers, and as soon as their concentrations reach to a certain 
threshold, they permeate into the membrane. This is assisted by esca-
lating the positive potential of bilayer. Via “barrel-stave” mechanism, 
peptide inserts into the membrane hydrophobic substance, flips inward 
and creates a pore by forming transmembrane helical bundles. (Scheme 
is modified after refs. 1 and 46).

Table 2. Classification of different α-helical AMPs according to their 
membrane permeabilization mechanisms

Pore-forming 
mechanism

Peptide Origin Reference

Carpet-like 
(detergent-like)

Cecropins Hyalophora cecropia 47

PGLa Xenopus laevis 48

Dermaseptins Phyllomedusa spp. 49

Ovispirin Ovis aries 50

Latarcins Lachesana tarabaevi 51

RL-37 Macaca mulatta 52

Toroidal 
(wormhole)

Mastoparan X Vespa xanthoptera 53

Magainin 2 Xenopus laevis 54, 55

LL-37 Homo sapiens 52, 56

Melittin Xenopus laevis 57

Piscidin Morone saxatilis 58

Barrel-Stave

Pardaxin
Pardarchirus 
 marmoratus

59

Alamethicin Trichoderma viride 60

Amphotricin B Streptomyces nodosus 61

Ceratotoxin Ceratitis capitata 62
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antimicrobial activity was recruited to improve plant defense 
against microbial attacks.2 Assessment of metchnikowin effects 
on powdery mildew fungus during its interaction with transgenic 
barley provided evidence that the antifungal peptide improves the 
resistance of plant as if it impedes the development of functional 
haustorium due to increased rate of hypersensitive response (HR) 
and development of cell wall apposition (CWA).2 Comprehensive 
study on possible latent influence of metchnikowin on the defense 
system of plant revealed that the SAR and ISR pathways as well 
as redox status of metchnikowin-expressing barley plants are 
potentiated during interaction with powdery mildew fungus.99 
In Phenylpropanoid pathway, the PAL-1 gene expression profile 
demonstrated that in Bgh challenge the activity of phenylalanine 
ammonia-lyase is elevated in metchnikowin transgenic plants.99 
Similar observation was reported by Distefano et al. (2008) for 
PAL gene,100 which suggests that highly activated ISR may be one 
of the causes of higher resistance in these transgenic plants. This 
suggestion is supported by elevated expression of PR-6 in metch-
nikowin plants compared with that in wild type individuals.99 
The higher level of reactive oxygen species down to expression 
of antimicrobial peptides24,82,99,100 supports the notion that these 
peptides play some part of their roles by modulating the redox 
milieu, which might ultimately lead to cell death.

Examination of susceptibility factors, i.e., MLO and Bax 
inhibitor-1 in metchnikowin barley concluded that the suscepti-
bility/resistance of those plants is independent of these factors.99 
Comparative analysis of gene expression between cecropin A 
transgenic and wild-type rice plants grown under optimal con-
ditions and during infection of rice with the rice blast fungus 
Magnaporthe oryzae revealed the overexpression of diverse genes 
involved in (1) protection against oxidative stress, (2) processes 
of synthesis, folding and stabilization of proteins that enter into 
the secretory pathway, (3) translational machinery, and (4) genes 
encoding components of the vesicle-associated transport machin-
ery in cecropin A rice.101 Together, these reports imply the altered 
immune status of AMPs-expressing plants.

Using AMPs for Plant Disease Control

As demands for a better control of plant diseases increase, AMPs 
come into focus.15 To date, a multitude of gene constructions with 
coding sequences of AMPs have been expressed in planta lead-
ing to various extents of protection against fungal and bacterial 
pathogens (see ref. 99). Insect peptides seem especially suitable 
owing to their exceptionally broad antimicrobial potential for 
protecting their hosts against various biotic challenges. Growing 
knowledge on structure-function relationships and thus elucida-
tion of essential peptide domains will press forward the use of 
synthetic AMPs in transgenic crop plants. Synthetic analogues of 
cecropins facilitated their ectopic expression for improvement of 
plant fitness in biotic stress circumstances.102 Interestingly, early 
attempts to express cecropin in tobacco for resistance induction 
against Pseudomonas syringae pv. tabaci were barely successful.103 
Short persistence of cecropin B has been ascribed to proteinases 
in the cytosol mediating proteolysis through an initial endo-
peptidase cleavage.104 To put off such an interfering process, 

Consistently, a Fusarium graminearum mutant deficient in gly-
cosyl ceramide was resistant to both radish RsAFP2 and alfalfa 
MsDef1 defensins, corroborating the idea that glycosyl ceramide 
is also the target of MsDef1.80 On the contrary, pea defensin, 
Psd1, directs cell cycle impairment and causes Neurospora crassa 
conidia to undergo endoreduplication. Furthermore, Psd1 regu-
lates interkinetic nuclear migration from Synthesis (S) to Mitosis 
(M) phase of cell cycle in rat retinal neuroblasts.81 Additionally, 
some defensins such as RsAFP282 and NaD124 modulate the 
intracellular signaling cascades, specifically, induction of reactive 
oxygen species (ROS) that upon accumulation may cause mem-
brane damage, organelle breakdown and eventually cell death. 
Pertinent support for this modulatory activity was found in cer-
tain mutants of F. graminearum disrupted in some MAPKKK(s) 
genes that were hypersensitive to alfalfa MsDef1, barrel clover 
MtDef2, and radish RsAFP2. MAP kinase signaling cascades in 
F. graminearum regulate the fungus sensitivity to plant defen-
sins.83 It is giving proof that plant defensins can act as stimuli 
to launch MAP kinase signaling cascades involved in regulating 
the fungal genes important for overcoming the plant defense. It 
would seem, upon binding of defensins to their receptors, activa-
tion of MAPKKK(s) occurs owing to physical interaction and/
or phosphorylation by either the receptor itself or intermediary 
factors or an interlinking kinase.83 Moreover, MsDef1 has been 
characterized to block the mammalian L-type Ca2+ channel in a 
manner akin to structurally unrelated antifungal toxin KP4 from 
Ustilago maydis.84 It is, as well, documented that bamboo defen-
sins-like AMPs, PpAMP1 and PpAMP2, bind to chitin in micro-
bial cell walls,85 and Aspergillus giganteus defensin, AFP, inhibits 
the chitin biosynthesis in susceptible fungi.86 Consistently, chitin 
synthase mutants of Fusarium oxysporum and Aspergillus oryzae 
are less susceptible to AFP. Presumably, AFP causes cell wall 
stress by interfering with the chitin synthesis and disturbing the 
cell integrity in sensitive fungi.86

Several lines of evidence from different studies indicate that 
microbial membrane permeabilization or/and cell wall disrup-
tion are within modes of mechanism of defensins.87 However, 
the issue whether the lytic action (membrane disturbance) is a 
phenomenon actively processed by AMPs to kill the microbes 
remains an enigma.

Besides direct elimination of microbes, AMPs have been 
shown to possess several immuno-modulatory functions such as 
modification of host gene expression,88,89 induction of cell death 
in other plants,90 association with epigenetic somaclonal variation 
events,91 conferring zinc tolerance,92 playing as chemokines,93,94 
and/or induction of chemokine production,95 inhibition of pro-
inflammatory cytokine production induced by LPS,96 wound 
healing promotion,97 inhibitory activities toward tumor cells 
and HIV-1 reverse transcriptase,98 and modulation of adaptive 
immune responses, e.g., by activation of human plasmacytoid 
dendritic cells in some auto-immune diseases.4,5

Modulation of different cascades of immune system in rel-
evant transgenic plants. There are some reports demonstrating 
that the host gene profiling alters after introgression of anti-
microbial peptides.2,99,100,101 Expression of metchnikowin gene 
from Drosophila melanogaster in barley to codify a peptide with 
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synthesis/manipulation of peptides for base(s) substitution/
deletion and AMPs’ chimeric hybridization result in improved 
disease resistance in plants.120,123,124 Expression of antibody-AMP 
fusion proteins has been shown to control microbial pathogens, 
more efficiently and durably.125,126 Also, targeting the AMPs into 
endoplasmic reticulum instead of intercellular spaces dramati-
cally drops the probability of infertility.121 Moreover, expression 
of a cocktail of AMPs with different modes of action demotes 
the possibility of resistance depletion attributable to microbial 
escape. Notably, insects synthesize concurrently a continuum 
of low-molecular-mass inhibitors against microbial proteases in 
company with AMPs.127 It is anticipated that these inhibitors 
annihilate the digestive action of proteolytic enzymes secreted 
from plant pathogenic fungi.128 Consequently, coincident trans-
mission/expression of insect AMPs and inhibitors of microbial 
proteases will possibly avert the selection of pathogens, which can 
negate the foreign peptides in transgenic plants.

Biosafety remarks. From the ecological point of view, the issue 
whether or not transfer of AMPs into plants imperils the mutual-
istic interactions between plants and beneficial microbes should 
be addressed. There are reports stating target specificity for AMPs 
among the kingdom of fungi. The phyla Glomeromycota and 
Basidiomycota that accommodate many symbiotic fungi might 
be less sensitive to AMPs than Ascomycota.2,129-131 However 
some AMPs affect Basidiomycota rather well, this might not be 
taken as a rule.108,115,119,124,132 Regarding specificity, the activity of 
metchnikowin on orchid mycorrhiza Piriformospora indica133 has 
been studied in detail.2 Growth and development of this fungus 
was not demolished in transgenic plants producing the metch-
nikowin, whilst ascomycete fungi were impaired.2 Despite the 
fact that the definite cause for specificity has not been elucidated 
yet, these observations do prospect a promising approach: utiliz-
ing AMPs to diminish the devastating consequences of diseases 
and pests without affecting the plant’s essential mutualistic inter-
actions with beneficial symbionts. Clearly, these symbionts are of 
vital importance for plants in terms of presenting a better fitness 
via supporting water and mineral uptake as well as strengthen-
ing disease resistance.134 However, it must be stressed that more 
research is needed to identify differential targets of AMPs in 
fungi in order to explain AMP’s specificity on the molecular level.

AMPs potential for combating viruses and pests. Since anti-
viral activities are within the panel of AMP’s properties,135-137 it 
will be interesting to assess the potential of AMPs for controlling 
countless viral diseases in plants. However, since it is known that 
Toll pathway, one of the major pathways in immune response in 
Drosophila, is required for efficient inhibition of virus replica-
tion in infected flies,138 expectation to restrain viruses in plants 
should be considered, critically. Finally, in order to manage the 
pest damages on plants, one might think of expressing AMPs 
under the control of plant tissue specific promoters, for instance, 
those for in-phloem expression to construct some lethal peptides 
to devastating pests, though the biosafety aspects must be, yet 
again, well thought-out.

Overall, the provided data on endogenous genes expression 
in AMPs transgenic plants suggest that antimicrobial genes play 
their roles in disease resistance in part via modulation of different 

cecropin B-derived peptides were manipulated to be shorter in 
length. Alternatively, targeting the mature peptides using signal 
sequences from different origins into the intercellular spaces, 
in which proteinases are seldom present, could lead to rela-
tively higher accomplishment.105 Accordingly, the antimicrobial 
activity of intercellular fluid of metchnikowin expressing barley 
plants2 and the green fluorescing background of intercellular 
spaces surrounding the faintly fluorescing barley epidermal cells 
that transiently express the GFP-fused metchnikowin peptide99 
confirm the functionality of the fruit fly-origin signal sequence 
of metchnikowin peptide, in planta, to secrete the produced pep-
tide into the intercellular space. As another strategy, molecular 
modeling for engineering the AMPs offers a dominant tool to 
engender peer synthetic and chimeric peptides with potentially 
superior properties.

Prospective for Future Endeavors

Dose-effect and synergistic activity. Though it has been 
reported that the degree of antimicrobial activity is not depen-
dent on the AMP production level in transgenic plants,106 most 
of the publications furnish clear evidence for peptides’ dose-
effect activity.82,100,107,108 Some investigators emphasize the pos-
sibility of synergism among different AMPs.109-111 In vivo data 
for different antibacterial peptides show that defensins and lin-
ear peptides work in-synergy,112,113 as exemplified by synergism 
between LL-37 and human b-defensin HBD-2.114 Consistently, 
concomitant expression of AMPs in plants usually leads to higher 
levels of induced resistance than their individual expression.115,116 
This finding is reminiscing of the effect known from combining 
disease resistance genes (gene pyramiding) in traditional breed-
ing, which often results in long-lasting, durable plant protection 
against pathogens.

Recruiting inducible promoters. General propensity toward 
reducing fitness costs117 as well as downgrading the co-evolu-
tionary collapse of resistance to microbes has weighted the gen-
eration of plants expressing AMPs on-demand, by exploiting 
synthetic or native inducible promoters activated upon pathogen 
attack.2,11,107,118,119 Employment of wounding and/or pathogen-
inducible promoters ensures high expression level of the peptide 
upon mechanical wounding and/or microbial infections. This 
may assist to avoid the development of pathogenic microbes capa-
ble of circumventing induced disease resistance, by e.g., mutation 
and/or synthesis of proteolytic agents.

Approaching different strategies to alleviate existing draw-
backs. Undesirably, application of AMPs to engineer patho-
gen resistance in plants suffers from some limitations, namely 
species- and race-specificity of the peptides,120 slight enhanced 
resistance,106 induction of infertility,121 and leakage of conferred 
resistance after a while due to resiliency of disease-causing 
microbes.38 To alleviate these drawbacks as well as to increase 
the antimicrobial potency of existing peptides, several approaches 
have been proposed to follow. Engineering crop plants for dis-
ease resistance via chloroplast genome instead of nuclear 
genome is proposed to achieve high levels of expression and to 
prevent pollen-mediated escape of transgenes.122 In addition, 
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pathogenic microbes. Certainly, entire clarity of this important 
issue demands elaborate and comprehensive experiments, namely 
the use of transcriptomics to explore the impact of transgene 
expression in plants.

Acknowledgments

The research in my lab is financially supported by grants from 
Shahid Bahonar University of Kerman (Iran).

resistance mechanisms. They might also join forces of various 
plant immune pathways culminating in a primed status. The 
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resistance will improve our knowledge concerning the impacts of 
antimicrobial peptides, expressed in diverse plant species, on the 
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the current notion that antimicrobial peptides-derived resistance 
refers solely to the direct noxious effects of these peptides on 
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