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Legumes can establish a symbiosis 
with rhizobia and form root nod-

ules that function as an apparatus for 
nitrogen fixation. Nodule development 
is regulated by several phytohormones 
including auxin. Although accumula-
tion of auxin is necessary to initiate the 
nodulation of indeterminate nodules, the 
functions of auxin on the nodulation of 
determinate nodules have been less char-
acterized. In this study, the functions of 
auxin in nodule development in Lotus 
japonicus have been demonstrated using 
an auxin responsive promoter and auxin 
inhibitors. We found that the lenticel for-
mation on the nodule surface was sensi-
tive to the auxin defect. Further analysis 
indicated that failure in the development 
of the vascular bundle of the determinate 
nodule, which was regulated by auxin, 
was the cause of the disappearance of 
lenticels.

Legumes (Fabaceae) constitute the third 
largest plant family with around 700 gen-
era and 20,000 species.1 Legume plants 
form root nodules through symbiosis with 
a soil microbe called rhizobia. This plant-
microbe symbiosis in nodules mediates an 
harmonized exchange of chemical signals 
between host plants and rhizobia.2 Nodules 
are biologically divided into two differ-
ent groups, i.e., indeterminate nodules 
and determinate nodules. Indeterminate 
nodules, represented by Trifolium repens 
(white clover) and Medicago truncatula, are 
initiated from the inner cortex to form a 
persistent nodule meristem, which allows 
continuous growth, and leads to the for-
mation of elongated nodules, whereas in 
determinate legumes, nodules are mostly 
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developed from outer cortical cells and 
form spherical nodules.3

Auxin is one of the most important reg-
ulators for nodule development. Since the 
possible involvement of auxin in nodule 
formation was first reported by Thimann,4 
auxin distribution during nodulation has 
been studied in particular with indeter-
minate nodules.5 However, little is known 
about auxin involvement in determinate 
nodule formation. To evaluate auxin func-
tions in the determinate nodulation of 
legume plants, we performed an auxin-
responsive promoter analysis in detail. 
Using GH3:GUS transformed Lotus japon-
icus (a kind gift from Dr. Herman P. Spaink, 
Leiden State University, Netherlands),6 we 
detected auxin signals throughout the nod-
ulation process, e.g., at the basal and front 
part of the nodule primordia, circumjacent 
to the infection zone of the young devel-
oping nodules (Fig. 1), and at the nodule 
vascular bundle in mature nodules. We 
also investigated the effect of several auxin 
inhibitors, including newly synthesized 
auxin antagonist PEO-IAA (kindly pro-
vided by Dr. Hayashi, Okayama University 
of Science, Japan),7 on the nodulation of 
L. japonicus, and revealed that auxin was 
required for forming a nodule vascular 
bundle and lenticels (Fig. 2).8

In indeterminate legumes, auxin is 
accumulated at the site of rhizobia inocu-
lation.9 This is caused by the inhibition 
of polar auxin transport by accumulation 
of flavonoids around the infection site, 
which are known as regulators of auxin 
transport. When flavonoid biosynthesis is 
reduced by the gene silencing of chalcone 
synthase, which catalyzes the first step 
of flavonoid synthesis, M. truncatula was 
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Lenticels regulate gas permeability of 
nodules.14 Under low oxygen or water-
logged conditions, they develop more 
extensively, whereas they collapse, or 
develop very little during insufficient 
water conditions, or under high oxygen 
pressure.14,15 Because lenticel development 
on the nodule surface is accompanied 
with the nodule vascular bundle, growth 
regulators supplied from the vascular sys-
tem likely facilitate lenticel development.15 
Our data suggests that auxin is necessary 
to form the nodule vascular bundle, and 
in fact, auxin itself is one of the candidates 
of growth substances that control lenti-
cel formation. It is necessary to analyze 
mutants, which lack in lenticel formation, 
but can form a nodule vascular bundle, for 
clarification of further mechanisms of len-
ticel development.

unable to inhibit polar auxin transport and 
resulted in reduced nodule number.10,11 A 
similar phenotype was observed when the 
auxin transporter gene was silenced.12 In 
addition, treatment of polar auxin trans-
port inhibitors such as NPA and TIBA 
induce pseudonodule formation,9 suggest-
ing that auxin accumulation is required 
for nodulation of indeterminate legumes. 
In contrast, the treatment of polar auxin 
transport inhibitors in determinate nod-
ules did not induce a nodule-like struc-
ture, suggesting a different function of 
auxin between indeterminate and deter-
minate nodules. It is, however, of interest 
to investigate the involvement of flavo-
noids in determinate nodule formation, 
because several genes in the flavonoid bio-
synthesis pathway are upregulated at 2 dpi 
(days post inoculation) in L. japonicus.13

Figure 1. GH3:GUS expression in determinate nodule at 6 dpi. (A) GUS staining was observed in the central cylinder of the root vascular bundle and in 
the nodule. (B) Cross section of (A). GUS expression was observed around the infection zone of the nodule. Bars = 100 μm.

Figure 2. The effect of auxin inhibitor on nodule surface. (A) Typical mature nodule of L. japonicus 
at 21 dpi. Lenticels are pointed out by yellow arrowheads. (B) The treatment of auxin inhibitor 
(NPA 100 μM) inhibited lenticel formation on the nodule surface. Bars = 500 μm.
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