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This review highlights a potential sig-
naling pathway of CO

2
-dependent 

stimulation in root hair development. 
Elevated CO

2
 firstly increases the car-

bohydrates production, which triggers 
the auxin or ethylene responsive signal 
transduction pathways and subsequently 
stimulates the generation of intracellular 
nitric oxide (NO). The NO acts on target 
Ca2+ and ion channels and induces acti-
vation of MAPK. Meanwhile, reactive 
oxygen species (ROS) activates cytoplas-
mic Ca2+ channels at the plasma mem-
brane in the apex of the root tip. This 
complex pathway involves transduction 
cascades of multiple signals that lead to 
the fine tuning of epidermal cell initia-
tion and elongation. The results suggest 
that elevated CO

2
 plays an important 

role in cell differentiation processes at 
the root epidermis.

Increasing concentration of atmospheric 
CO

2
 in the 21st century will impact many 

aspects of the human and natural world. 
Elevated CO

2
 has some beneficial physio-

logical effects on plants but nutrient limi-
tation has generally been found to suppress 
these beneficial effects.1 Therefore, under 
conditions of suboptimal supply of nutri-
ents and elevated CO

2
, the plants need to 

develop adaptive mechanisms to enhance 
nutrient acquisition, among which the 
plasticity of root development is of crucial 
importance.

Root hairs make a significant con-
tribution to increasing root surface area 
and facilitating physical anchorage to a 
substrate and providing a large interface 
for nutrient uptake.2 Root-hair cells are 
highly polarized cellular structures result-
ing from tip growth of specific epidermal 
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cells, which are controlled by multiple 
cellular factors and genetic processes.3,4 
Previous studies have shown that root hair 
development can influenced by various 
environmental factors, such as nutritional 
status,5 mycorrhizal infection and water 
stress,6 salinity7 and light intensity.8 Our 
current research has demonstrated a pro-
found effect of elevated CO

2
 on develop-

ment of root hairs in Arabidopsis, which 
works through the well-characterized 
auxin signal transduction pathway.9 Since 
root hairs are an efficient strategy to 
alleviate the limitation of nutrients, one 
promising area of future research will be 
to discover the pathway that control root 
hair differentiation in crops under ele-
vated CO

2
. In this paper, we discussed a 

layer pathway in the interaction between 
CO

2
 and some classical signals on regu-

lating gene regulatory network to control 
development of root hairs.

Process of Root Hair Development

Root-hair morphogenesis, which forms a 
model system for studying polarized plant 
cell growth, can be subdivided into three 
major stages: swelling formation (referred 
to hereafter as root-hair initiation), the 
transition to tip growth and tip growth.10 
The patterning of such a process is highly 
regulated. Numerous experimental obser-
vations indicate that root hair initiation 
and tip growth are controlled by multiple 
factors, such as phytohormones, ABA, cel-
lular and extracellular signals like expan-
sins, cytoplasmic and cell wall pH, actin 
cytoskeleton and microtubules.11-14 A 
tip-focussed cytoplasmic calcium (Ca2+) 
gradient forms during root hair growth 
as it does in all other tip growing cells,15 
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increase auxin levels which then induced 
NO accumulation.27 In addition, NO was 
involved in the growth and development 
of root hairs, of which underlying mecha-
nisms were under the control of auxin.22 
Thus NO may act downstream of CO

2
, 

carbohydrates auxin, ethylene or probably 
JAs.

Recently, NO has been proved as a mul-
tipurpose signaling messenger that accom-
plishes its biological functions through its 
action on multiple targets. The available 
data illustrate that NO can directly influ-
ence the activity of target proteins through 
nitrosylation and has the capacity to act 
as a Ca2+-mobilizing intracellular messen-
ger.30 Meanwhile, NO-dependent signals 
can be modulated through protein phos-
phorylation upstream of intracellular Ca2+ 
release. They implicate a target for pro-
tein kinase control in ABA signalling that 
feeds into NO-dependent Ca2+ release.31 
As broadly known, a high concentra-
tion of cytoplasmic Ca2+ at the root tip is 
required for maintaining its growth rate. 
Furthermore, Samaj et al.,5 have assembled 
these components into a model in which 
ROS produced by NADPH oxidase acti-
vates Ca2+ channels at the plasma mem-
brane in the apex of the root tip, leading 
to a tip-focused Ca2+ concentration gra-
dient and subsequent signaling inherent 
to root hair growth. The Ca2+-permeable 
channel modulated by ROS has been 
demonstrated in Vicia faba guard cells 
and Arabidopsis root hairs.16 Additionally, 
root hair growth was associated with ROS 
production through the activation of the 
MAPK cascade.32 Interestingly, NO has 
also been shown to be involved in the acti-
vation of a MAPK cascade during adventi-
tious root formation.33 These implies that 
NO play a fundamental role in outgrowth 
through MAPK cascade activation.

Based on previous studies and our 
recent observations, a model could be pro-
posed of how CO

2
 regulates the root hair 

formation (Fig. 1). This model is based on 
that proposed by Samaj et al.,5 Lombardo 
et al.,22 and Niu et al.9 Elevated CO

2
 

firstly increases the carbohydrates produc-
tion, which triggers the auxin or ethylene 
responsive signal transduction pathways 
and subsequently results in the genera-
tion of intracellular NO. NO modulate 
target Ca2+ and ion channels and MAPK 

elongation and differentiation within api-
cal meristems.21,22 These cellular processes 
are regulated by a suite of classical signal-
ing including auxin, ethylene, jasmonates 
(JAs), gibberellins (GAs), cytokinins 
(CKs), NO, abscisic acid (ABA), ROS, 
phospholipids and cytoplasmic Ca2+.16,23 
Interestingly, elevated CO

2
 increases 

carbohydrate production,24 auxin level 
and response in plants,9,25 ethylene pro-
duction,26 NO accumulation27 and our 
(unpublished data) and abscisic acid con-
centration.25 Thus, changes in levels and/
or responses of these factors may play an 
important role in regulating the develop-
ment of root hairs grown under elevated 
CO

2
.

To further discuss the pathway in 
which elevated CO

2
 affects root hair 

growth, we need find more convincing 
evidence to support the above hypoth-
esis. In fact, many studies have shown 
that plants grown in elevated CO

2
 usu-

ally have an increased concentration of 
carbohydrates, such as soluble sugar and 
starch, in leaves because of carbohydrate 
assimilation in excess of consumption.24 
The conclusion is in accordance with 
the results found in many other plants. 
It has been recognized that an increased 
accumulation of carbohydrates in plants 
would increase the production of auxin.28 
Thus, elevated CO

2
 might thus increase 

concentrations of auxin in the plants 
via an increase in carbohydrate produc-
tion. Alternatively, elevated CO

2
 could 

enhance ethylene production,26 while eth-
ylene could stimulate IAA synthesis and 
transport in root tips. However, Rahman 
et al.29 reported that auxin plays a com-
pensating role in the process of root hair 
development in Arabidopsis in the absence 
of ethylene. Both auxin and ethylene can 
interact on their biosynthesis and the 
response pathways, or sometimes inde-
pendently regulate the same target genes.3 
The correlation between auxin and eth-
ylene signalling in root development is 
complex. Moreover, it has also reported 
that JAs promote root hair formation in 
Arabidopsis, through an interaction with 
ethylene.23 This implies that there exists 
interplay among phytohormones in medi-
ating root hair development. These issues 
require further investigation. Recent stud-
ies have shown that elevated CO

2
 could 

These process requires tip-localized ROS 
produced by an NADPH oxidase through 
activation of hyperpolarisation-activated 
calcium channels.16 The maintenance of 
this tip-focused Ca2+ gradient during hair 
growth is dependent on microtubules.12 
Besides, potassium channel is the major 
osmotically active ion in many plant cells 
and the translocation of potassium is vital 
for root hair growth.17

Genetic analyses have resulted in iden-
tification of a number of genes that control 
root hair development at various stages. 
Genes including CPC, TRY, ETC1, TTG, 
GL2, GL3/EGL3, WER, RHL1, RHL2, 
RHL3, ERH1, ERH3 and ERH2 4,14 are 
identified to be involved in the early phase 
of root epidermal cell specification. SCM, 
a leucinerich repeat receptor-like kinase 
(LRR-RLK), has recently been shown to 
be required for position dependent pat-
tern of epidermal cells. In scm mutants, 
the formation of N and H cells is not 
correlated to their position.18 After the 
emergence of a bulge outside an epider-
mal cell (root hair initiation stage), genes 
RHD6, TRH1, RHD1, TIP1, AtEXP7 
and AtEXP18 can affect the number of 
swellings on each hair cell, and hair out-
growth and elongation.4,13,14,17 Following 
initiation, numerous genes are activated 
for the correct direction and extent of 
root-hair-tip growth. Root hairs without 
functional RHD2, SHV1, SHV2, SHV3, 
TRH1, ROP2, KJK or AKT1 genes stop 
growing before this stage.14,17,19,20 These 
results suggest that all of these genes are 
important for successful establishment 
of hair cell elongation and tip growth. 
Mutations affecting the CEN1, CEN2, 
CEN3, SCN1, BST1 and TIP1 genes can 
also stop hair growth before this stage, but 
only in certain double-mutant combina-
tions.19 Additionally, SCN1, COW1, TIP1, 
CEN2, CEN1, CEN3, BST1, RHD3 or 
RHD4 genes can induce more branched 
hairs in Arabidopsis.4,19 LRX1, PFN1 and 
Sec1 protein KEULE are required for nor-
mal root hair development.4,14

How does Elevated CO2 Regulate 
Root Hairs Development?

There is accumulating evidence that ele-
vated CO

2
 can accelerate plant growth 

and development by affecting cell division, 
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signaling cascade that are proposed as 
control points of root hair development. 
Withal, ROS activates Ca2+ channels at 
the plasma membrane in the apex of the 
root tip. Then, these endogenous sig-
nals modulate the downstream genetic 
elements that control actin cytoskel-
eton vesicular and microtubules, which 
together regulate root hair development. 
Overall, future studies, including those 
focusing on molecular and physical mech-
anisms governing interactions among the 
cytoskeleton, plasma membrane and cell 
wall, must consider CO

2
 as a new and crit-

ical player to understand cell differentia-
tion processes in the root epidermis.
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