
Hepato-specific microRNA-122 facilitates
accumulation of newly synthesized
miRNA through regulating PRKRA
Shuai Li1, Juanjuan Zhu1,2, Hanjiang Fu1, Jing Wan1, Zheng Hu1, Shanshan Liu1,

Jie Li1,2, Yi Tie1, Ruiyun Xing1, Jie Zhu1, Zhixian Sun1 and Xiaofei Zheng1,*

1Beijing Institute of Radiation Medicine, Beijing 100850 and 2Anhui Medical University, Hefei 230032,
P. R. China

Received December 13, 2010; Revised August 14, 2011; Accepted August 18, 2011

ABSTRACT

microRNAs (miRNAs) are a versatile class of non-
coding RNAs involved in regulation of various bio-
logical processes. miRNA-122 (miR-122) is specifically
and abundantly expressed in human liver. In this
study, we employed 30-end biotinylated synthetic
miR-122 to identify its targets based on affinity puri-
fication. Quantitative RT-PCR analysis of the affinity
purified RNAs demonstrated a specific enrichment
of several known miR-122 targets such as CAT-1
(also called SLC7A1), ADAM17 and BCL-w. Using
microarray analysis of affinity purified RNAs, we
also discovered many candidate target genes of
miR-122. Among these candidates, we confirmed
that protein kinase, interferon-inducible double-
stranded RNA-dependent activator (PRKRA), a
Dicer-interacting protein, is a direct target gene of
miR-122. miRNA quantitative-RT–PCR results
indicated that miR-122 and small interfering RNA
against PRKRA may facilitate the accumulation of
newly synthesized miRNAs but did not detectably
affect endogenous miRNAs levels. Our findings will
lead to further understanding of multiple functions
of this hepato-specific miRNA. We conclude that
miR-122 could repress PRKRA expression and fa-
cilitate accumulation of newly synthesized miRNAs.

INTRODUCTION

MicroRNAs (miRNAs) are small conserved RNAs of
�22 nt which negatively modulate gene expression in
animals and plants, primarily through base paring to the
30-untranslated region (UTR) of target messenger RNAs
(mRNAs). This leads to mRNA cleavage and/or

translation repression (1). miRNAs are primarily
transcribed by RNA polymerase II as part of capped
and polyadenylated primary transcripts (pri-miRNAs)
that can be either protein-coding or non-coding. The
primary transcript is cleaved by Drosha ribonuclease III
enzyme to produce an �70-nt stem–loop precursor
miRNA (pre-miRNA), which is further cleaved by the
cytoplasmic Dicer ribonuclease to generate the mature
miRNA. The mature miRNA is incorporated into an
RNA-induced silencing complex (RISC), which recognizes
target mRNAs through imperfect base pairing with the
miRNA. Bioinformatic analysis predicts that each
miRNA may regulate hundreds of target genes, suggesting
that miRNAs may play a role in almost every biological
pathway (2). Indeed, miRNAs have been implicated in the
regulation of various cellular processes, including cell pro-
liferation, apoptosis and stress responses (3–6).

One of the first clues of the existence of miRNAs in
mammals came from studies on genetic alterations in
woodchuck liver tumors. In 1989, a gene rearrangement
of c-myc and an unusual transcript, named hcr, was desc-
ribed in one of these tumors. This transcript was char-
acterized as liver specific, essentially non-coding,
specifically nuclear and processed by endonucleases (7).
Furthermore, hcr was proposed to be the precursor for
miR-122. In the current understanding, the part of the
hcr transcript encompassing the so-called ‘pri-miRNA’ is
predicted to be processed to form a 66-nt long ‘pre-
miRNA’, which presents a hairpin structure with 79%
base pairing, and which will ultimately be cleaved by the
endonuclease Dicer to form the mature miR-122 (8).
Recent works on tissue-specific miRNAs has demon-
strated miRNAs participation in tissue specification and
cell lineage decisions (9–11). Among these tissue-specific
miRNAs, miR-122 is one which is specifically expressed in
adult liver and constitutes 70% of the total miRNA popu-
lation (12–14). Recent studies showed that miR-122 could
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modulate lipid metabolism (15,16), hepatitis C virus
(HCV) replication (17–19), apoptosis (20) and play a
role in hepatocellular carcinoma (HCC) (21–23). To
better understand the role of this liver-specific miRNA,
the identification of the target genes of miR-122 is
necessary.

In the present study, we employed 30-end biotinylated
synthetic miR-122 to identify its target genes based on affin-
ity purification as described previously (24,25). Quantitative
reverse transcriptase–polymerase chain reaction (RT–PCR)
analysis of the affinity purified RNAs demonstrated a
specific enrichment of several reported miR-122 targets,
such as CAT-1 (13), ADAM17 (22) and BCL-w (20). By
microarray, many candidate target genes of miR-122 were
identified. We also verified that PRKRA, which showed a
high of enrichment in affinity purification assay, was a
new target gene of miR-122. Furthermore, the
over-expression of miR-122 could facilitate the accumula-
tion of newly synthesized miRNA.

MATERIALS AND METHODS

Cell lines and cultures

HepG2 and HeLa cell lines were cultured in DMEM
(GIBCO BRL, Grand Island, NY, USA) containing
10% FBS with 100U/ml penicillin and 100mg/ml strepto-
mycin at 37�C with 5% CO2.

Affinity purification experiments

To identify mRNAs associated with miRNA-122, affinity
purification experiments were performed as described pre-
viously (Supplementary Figure S1, see Supplementary
Methods for details) (24,25). Synthetic miRNA-122
duplexes were produced carrying a biotin group attached
to the 30-end of the miRNA sense strand (TaKaRa,
Dalian, China) and transfected into HepG2 cells. Cells
were harvested 48 h after transfection. The isolated RNA
was ready for downstream qRT–PCR or microarray
analysis.

Real-time qRT–PCR for mRNA

Total RNA was isolated using TRI Reagent (Sigma-
Aldrich, St Louis, USA). cDNA was generated by
reverse transcription using 1 mg of total RNA
and ImProm-IITM Reverse Transcription System
(Promega, Madison, WI, USA). Quantitative real-time
PCR was performed on the MX 3000PTM PCR
Instrument (Stratagene, La Jolla, USA) using SYBR
Premix EX TaqTM (TaKaRa). Forward (F) and
reverse (R) primers used were as follows: GAPDH-
F 50-tcagtggtggacctgacctg-30, GAPDH-R 50-tgctgtagccaa-
attcgttg-30; BCL-w -F 50-tttggttcggctttatcagg-30, BCL-w-R
50-gaggactgcgagttccaaag-30; CAT-1-F 50-ggctgtcctctggtga-
gaag-30, CAT-1-R 50-ggccaccagatcaaaagtgt-30; ADAM-
17-F 50-ctgtggtgcaaaagcagaaa-30, ADAM-17-R 50-tgcca-
aatgcctcatattca-30; PRKRA-F 50-acgaatacggcatgaagacc-30,
PRKRA-R 50-tggaagggtcaggcattaag-30; A20-F 50-
gagagcacaatggctgaaca-30, A20-R 50-tccagtgtgta
tcggtgcat-30.

Microarray hybridization

RNA from affinity purification experiments was linear
amplified (Two-Cycle Eukaryotic Target Labeling Kit,
P/N 900494, Affymetrix, Inc., Santa Clara, CA, USA)
and analyzed on Affymetrix human u133 plus 2.0 micro-
arrays, which include a set of human maintenance genes to
facilitate the normalization and scaling of array experi-
ments. This set of genes serves as a tool to normalize
and scale the data prior to performing data comparisons.

miRNA target site analysis

Affymetrix probe set identifiers were mapped to Ensembl
transcripts using the Ensembl Biomart system. The
30-UTR sequences were extracted from Ensembl using
Biomart utilities. UltraEdit software was used to search
candidate 30-UTR for seed matches (perfect Watson–
Crick matches between the 6-mer from bases 2 to 7 of
the miRNA from the 50-end) with none or one of three
kinds of extensions: (i) an A across from nucleotide 1 in
the miRNA (seedM+t1A), (ii) an additional match be-
tween the site and nucleotide 8 in the miRNA
(seedM+m8M) and (iii), the combination of (i) and
(ii) (seedM+m8M+t1A). TargetScan software (www
.targetscan.org) was used to search for conserved miR-
122-binding sites.

Plasmid construction

For the expression of miR-122, miR-133 or miR-30a,
genomic fragment of Homo sapiens miR-122, miR-133
or miR-30a precursor was amplified and cloned into
pcDNA3.0 (Invitrogen, Carlsbad, CA, USA). PRKRA
30-UTR segment was subcloned into the pGL3 Control
vector (Promega) immediately downstream of the stop
codon of the luciferase gene. PCR with the appropriate
primers also generated inserts with point substitutions in
the miRNA complementary sites. Wild-type and mutant
inserts were confirmed by sequencing.

miRNA qRT–PCR

For miRNA detection, total RNA was polyadenylated by
poly (A) polymerase (Ambion, Austin, USA). An amount
of 50 ml polyadenylation reaction was set up with 10 mg
total RNA and 1 ml (2U) poly (A) polymerase according
to the manufacturer’s protocol. After incubation at 37�C
for 60min, poly (A)-tailed total RNA was recovered by
phenol/chloroform extraction and ethanol precipitation.
RT reaction was performed using 1 mg poly (A) tailed
total RNA and 1 mg RT primer [50-gcgagcacagaattaata
cgatcactatagg(t)18VN-30] with 1 ml ImProm-IITM Reverse
Transcriptase (Promega) according to the manufacturer’s
protocol. qPCR was performed as described in the method
of Quantitect SYBR Green PCR Kit (Qiagen, Hilden,
Germany) with Mx3000pTM (Stratagene) supplied with
analytical software. One primer of miRNA
amplification is miRNA specific (miR-122 50-tggagtgt
gacaatggtgtttg-30; miR-16 50-tagcagcacgtaaatattggcg-30;
miR-24 50-tggctcagttcagcaggaacag-30; miR-133 50-tttggtcc
ccttcaaccagctg-30; miR-30a 50-tgtaaacatcctcgactggaag-30),
and the other is a universal primer (50-gcgagcacagaa
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ttaatacgac-30). U6 snRNA levels were used for normaliza-
tion (U6-F 50-cgcttcggcagcacatatacta-30; U6-R 50-cgcttcac
gaatttgcgtgtca-30).

miRNAs, small interfering RNAs and transfection

The miR-122 duplex and PRKRA small interfering RNAs
(siRNAs) were designed and synthesized by GenePharma
(GenePharma, Shanghai, China). The sequences of miRNA
duplex and siRNAs were presented in Supplementary
Table S1. siRNAs and miRNAs were transfected using
Lipofectamine 2000 (Invitrogen). In brief, cells were
cultured in a six-well plate to 50% confluence. For each
well, 5 ml siRNA (20 mM) or miRNA (20 mM) was added
into 250ml Opti-MEM medium (GIBCO BRL), 4 ml of
Lipofectamine 2000 into 250 ml Opti-MEM medium and
then mixed siRNA or miRNA with Lipofectamine 2000
after 5min incubation. After 20min, the mixture was
added to cells and incubated for 6 h before replacing the
medium. Total RNA and protein were prepared 48 or 72 h
after transfection and were used for qRT–PCR or western
blotting analysis.

Western blot

Total cell lysate was prepared in 1� SDS buffer. Proteins
at the same amount were separated by SDS–PAGE and
transferred onto PVDF membranes. After probing
with anti-PRKRA (10771-1-AP; Protein Tech Group,
Inc., Chicago, USA) or anti-b-actin antibody (Beijing
Zhongshan Biotechnology, Beijing, China) and incubating
with proper secondary antibody, antigen–antibody
complex was visualized by enhanced chemiluminescence’s
reagents Supersignal (Pierce, Rochford, IL, USA).

Luciferase reporter assay

Adherent HepG2 cells were grown in DMEM with 10%
FBS to 80–90% confluency in 24-well plates. Cells were
co-transfected with 100 ng of firefly luciferase reporter
vector containing the PRKRA 30-UTR (named pGL3-
PRKRA-30-UTR) or PRKRA mutant (named pGL3-
PRKRA-30-UTRmut) and 8 ng of the control vector
containing Renilla luciferase, pRL-TK (Promega), in a
final volume of 0.5ml using Lipofectamine 2000
(Invitrogen). Firefly and Renilla luciferase activities were
measured consecutively using the Dual-luciferase assays
(Promega) 48 h after transfection.

Statistic analysis

All data are presented as means� SD. Differences were
assessed by two-tailed Student’s t-test using Excel
software. P< 0.05 was considered to be statistically
significant.

RESULTS

Affinity purification of miR-122 target mRNAs

To identify mRNA targets of miR-122, we employed
an affinity-based target-identification procedure in which
miR-122 is synthesized with a 30-biotin group allowing for
subsequent purification with streptavidin (Supplementary

Figure S1). This technique has been previously verified for
affinity purification of miRNA targets in Drosophila
melanogaster cells and human neuronal cells (24,25). We
validated the technique using a biotin-tagged miR-122 tar-
geting several reported targets such as CAT-1 (13),
ADAM17 (22) and BCL-w (20). Affinity purification ex-
periments in HepG2 cells resulted in a 2- to 19-fold en-
richment of these endogenous targets (Figure 1).

To identify more targets of miR-122, RNAs from affin-
ity purification experiment were linear amplified and
analyzed on microarrays. Microarray results showed
that 1474 genes were enriched >2-fold by 30-biotin
modified miR-122 (output) compared with total RNA
(input) (Supplementary Table 2). We examined the
30-UTRs for the presence of the 6-nt sequence CACTCC
, which is the reverse complement of the nucleotides 2–7
seed in the mature miR-122 sequence. About 39% of the
enriched mRNAs having at least one miR-122 recognition
sequence, while the seed match frequency in all annotated
human 30-UTRs was only 25%, implying that a significant
pool of the enriched mRNAs correspond to direct
miR-122 targets in the liver (P< 0.001, Figure 2B and
Supplementary Table S3). Detailed studies indicate that
the presence of extended seed matches increases the like-
lihood that a given message is regulated by a miRNA
(26,27). We therefore examined the identified seed
matches for the presence of an A anchor corresponding
to the 50 most nucleotide of miR-122, as well as for an
extended match to base 8 of miR-122 as described by
Lewis et al. (26). Both the 7-nt and the 8-nt seed matches
were significantly enriched in our microarray data
(Figure 2Aand B; Supplementary Table S3). Moreover,
about one-third of the conserved targets predicted by
TargetScan software showed >2-fold of enrichment by
biotin modified miR-122 (38 out of 124, Supplementary
Table S2).

The GO analysis revealed that the enriched genes were
over represented in gene categories involved in cellular
functions associated with the regulation of transcription
and RNA splicing, as well as development and cell
cycle (Supplementary Table S4 and See Supplementary
Table S5 for details).

Interaction between miR-122 and the 30-UTR
of PRKRA mRNA

In previously mentioned affinity purification experiment,
PRKRA showed a high-level enrichment (�45-fold) and
harbored one putative binding site for miR-122 in its
mRNA’s 30-UTR which was conserved across various spe-
cies (Figure 3A). To investigate the potential miRNA:
mRNA interaction, the human PRKRA 30-UTR was
subcloned after the firefly luciferase open reading frame
(ORF) and cotransfected into HepG2 cells with the
miR-122 duplex, which could mimic miR-122 molecule.
miR-122 duplex could lead to a 60% decrease of relative
luciferase activity compared with Negative Control trans-
fected cells (Figure 3B). An analogous reporter with point
substitutions disrupting the target sites (as illustrated,
Figure 3A) was also contransfected with miR-122
duplex. There was no decrease of relative luciferase activity
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in miR-122 duplex transfected cells compared with
Negative Control transfected cells (Figure 3B).

PRKRA is a potential target of miR-122

To learn whether miR-122 can affect endogenous
PRKRA, we examined the impact of this miR-122 on
PRKRA protein expression in cultured cells. Western
blot from protein extracts obtained from the HepG2
cells revealed dramatically reduction in PRKRA protein
level after miR-122 duplex transfection (Figure 3C). In
contrast, negative control-transfected cells showed no re-
duction in PRKRA protein level. Because inhibition of
expression by miRNA may also be mediated by mRNA
degradation (28,29), we examined whether the PRKRA
mRNA levels might be affected by miR-122. Figure 3D
showed the PRKRA mRNA level was dramatically
reduced by miR-122 duplex (42% reduction). Taken
together, affinity purification experiment, luciferase data,
immunoassay and real-time qRT–PCR assay provided
strong evidences that PRKRA is a target of miR-122.

miR-122 facilitates accumulation of newly synthesized
miRNA through downregulate PRKRA

PRKRA (PACT) cDNA was cloned by virtue of its inter-
action with PKR (30). PRKRA is a human cellular
protein that heterodimerizes with PKR through its
double-stranded RNA-binding domains (dsRBDs) and
activates PKR pathway in vitro and in vivo in the absence
of dsRNA. In contrast to PRKRA, the human immuno-
deficiency virus transactivating response RNA-binding
protein (TRBP), another dsRBD protein with 42%
identity to PRKRA, has an inhibitory effect on PKR
(31). The opposite effects of PRKRA and TRBP on
PKR activity are mediated by the C-terminal dsRBDs,
which are devoid of detectable dsRNA-binding properties
(31). PRKRA and TRBP have been demonstrated recently
to interact with RNase III Dicer, a key enzyme involving
in miRNA maturation, through their C-terminal dsRBDs
(32–35). By using siRNA against TRBP, Chendrimada
et al. (32) found that TRBP knockdown reduced endogen-
ous miRNA levels in cell culture, whereas Haase et al. (33)
saw no such reduction.
To assess the potential role of PRKRA in miRNA

pathway, we transfected HeLa cells with miR-122 duplex
or siRNAs against PRKRA. Via miRNA-RT–qPCR, we
found the endogenous levels of miR-16 and miR-24
changed only slightly after the depletion of PRKRA
(Figure 4A and B). This supports the previous observation
that mature miRNA is highly stable in cells and therefore
the changes in the steady-state level of mature miRNA
may be difficult to detect (36–38). Then we cotransfected
miR-133 expressing vector (pcDNA3.0-miR133) with
miR-122 duplex or siRNAs against PRKRA into HeLa
cells. Results from miRNA-RT–qPCR indicated that
miR-122 duplex, siPRKRA-1 and siPRKRA-2 could fa-
cilitate accumulation of newly synthesized miR-133
(Figure 4C). We also found that PRKRA siRNAs could
also facilitate accumulation of newly synthesized miR-122
when HeLa cells were cotransfected with miR-122 express-
ing vector (pcDNA3.0-miR122) (Figure 4D). Similar
results were observed in HepG2 cell line (data not
shown). To monitor PKR activity, we analysis the expres-
sion of Tnfaip3 (A20) which could be induced by PKR
activation through NF-kB pathway (39,40). Real time
qRT–PCR results showed that downregulation of
PRKRA by siRNA has no effect on A20 expression
(Supplementary Figure S3). Our findings that PRKRA

Figure 1. Affinity purification with biotin-tagged miR-122 from human hepatoma HepG2 cells and quantitative RT–PCR for its endogenous target
CAT-1, ADAM17 and BCL-w. HepG2 cells were treated with cell lysis buffer 48 h after transfection. Data were normalized to the level of GAPDH
mRNA. Results of the mean of triplicate quantitative PCR assays with standard deviation of the mean are presented. *P< 0.05.

Figure 2. A significant enrichment of miR-122 targets by biotin-tagged
miR-122. (A) Different seed types of miR-122. (B) The occurrence of
miR-122 6-, 7- or 8-nt seed sequence matches in biotin-miR-122
enriched mRNAs (grey columns) and in all human annotated genes
(white columns).
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knockdown facilitated accumulation of newly synthesized
miRNA support the hypothesis that PRKRA and TRBP
have opposite effects on miRNA maturation just like the
situation in PKR pathway (Figure 5).

DISCUSSION

The present study shows that PRKRA could be enriched
by 30-biotin modified miR-122. It is also shown that
PRKRA is negatively regulated by miR-122 via a
specific target site within the 30-UTR. Moreover, we
showed that miR-122 facilitates accumulation of newly
synthesized miRNA through downregulating PRKRA ex-
pression. The identification of miR-122 as an important
regulator of miRNA maturation emphasizes an essential
role of this liver-specific miRNA.
Sophisticated mechanisms regulating RNA may explain

the gap between the great complexity of cellular functions
and the limited number of primary transcripts. Regulation
by miRNAs underscores this possibility, as each miRNA
is believed to bind directly to many mRNAs to regulate

their translation or stability and thereby control a wide
range of activities. Despite their biological importance,
determining the targets of miRNAs is a major challenge.
Attention has largely been laid on computational predic-
tions of targets based on the observation that many
miRNAs can recognize their targets by binding to motifs
in the 30-UTR sequences complementary to bases 2–8 of
the miRNA (the seed region) (41). Whereas these algo-
rithms have been instrumental in many studies of individ-
ual miRNA:mRNA interactions, unbiased approaches to
study miRNA target recognition are important to discover
new features of miRNAs. In this study, we used a direct
affinity-based procedure to isolate target mRNAs bound
by miR-122. These results will help us to understand the
function of this liver-specific miRNA. While preparing
this manuscript one group has published a paper
demonstrating miR-122 targeting CUTL1 (CUX1)
during liver development, which is also enriched by
biotin-tagged miR-122 (Supplementary Table S2) (42).

The affinity-based target-identification procedure was
performed following Orom et al. (24,25) with some

Figure 3. miR-122 inhibits PRKRA expression. (A upper panel) The target site of miR-122 in PRKRA 30-UTR is conserved among mammalian
species. (A lower panel) Predicted duplex formation between miR-122 and the targeted PRKRA 30-UTR. The PRKRA 30-UTR mutant is identical
with the wild-type except that its three point substitutions disrupting pairing to miR-122 seed. (B) pGL3-PRKRA-30-UTR reporter plasmid in which
the luciferase-coding sequence had been fused to the 30-UTR of PRKRA was cotransfected into HepG2 cells with Negative Control (grey columns)
or miR-122 duplex (white columns). Luciferase activity was normalized relative to a simultaneously transfected Renilla expression plasmid.
30-UTR-Mut indicates the introduction of alterations into the seed complementary sites shown in Figure 3A. Results of the mean of quadruplicate
assays with standard deviation of the mean are presented. *P< 0.05. (C) Western blots of PRKRA from HepG2 cells. Cells were transfected with
Negative Control or miR-122 duplex. Cells were harvested 48 h later, and 30 mg of whole-cell lysate was added into each lane. A b-actin antibody was
used in a reprobing as a loading control. (D) Real-time RT–PCR of PRKRA in HepG2 cells transfected with the Negative Control or miR-122
duplex for 48 h. Data were normalized to the level of GAPDH mRNA. Results of the mean of triplicate qPCR assays with standard deviation of the
mean are presented. *P< 0.05.
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modification. The non-specific binding of RNAs to
streptavidin–agarose beads was unavoidable even we
washed the beads four times with cell lysis buffer.
Therefore, GAPDH with no putative target site of miR-
122 was chosen to serve as an internal control. If one gene
is the target of miR-122, the output would contain
more mRNA/GAPDH than the Input. To validate our
results, we also normalize mRNA with b-actin (no
putative target site of miR-122 in its 30-UTR). Results
from real-time PCR showed that miR-122’s known tar-
get gene had enrichment in Ouput when normalized
to GAPDH or b-actin (Figure 1 and Supplementary
Figure S4).

miRNAs are generated by a two-step processing path-
way. Primary miRNAs are processed to pre-miRNAs by
Drosha. These pre-miRNAs are cleaved by Dicer to
generate mature miRNAs (43–45). In human cells,
Drosha exists as part of a protein complex called the
Microprocessor complex, which contains the dsRNA-
binding protein DGCR8 (also called Pasha). DGCR8 is
essential for Drosha activity and capable of binding single-
stranded fragments of the pri-miRNA that are required
for proper processing (46,47). Dicer also exists as part of a
protein complex which contains two dsRNA-binding
proteins, TRBP and PRKRA (32–35). It was reported that
TRBP knockdown reduced endogenous miRNA levels in

cell culture (32). Here, we found that PRKRA knockdown
by miR-122 duplex or siRNAs against PRKRA could fa-
cilitate accumulation of newly synthesized miRNA. Thus
dsRNA-binding protein such as DGCR8, TRBP and
PRKRA could affect the miRNAs processing pathway
by interacting with Drosha or Dicer.
However, our finding that PRKRA is a negative regu-

lator of miRNA processing is in direct conflict with the
finding of Lee et al. (34). They demonstrated that the re-
duction of PRKRA protein results in reduced miRNA
accumulation. The contradictory results probably re-
flect the different methodologies. Lee et al. depleted
PRKRA by RNAi from a HeLa cell line that expresses
pri-miR-30a from the tetracycline-inducible promoter.
After incubation with siRNA, the cell line was exposed
to doxycycline, the derivative of tetracycline, for induc-
tion of pri-miR-30a. By using northern blotting on
miR-30a, they found that reduction of PRKRA protein
levels results in reduced miRNA accumulation. While
we co-transfected siRNA and miRNA-expressing vector
into HeLa cell line. By using miRNA quantitative-
RT–PCR, we found that PRKRA siRNAs could facilitate
the accumulation of miRNA. Moreover, we co-transfected
PRKRA siRNAs and miR-30a-expressing vector (the
specific miRNA investigated by Lee et al.) into HeLa
cell line. Forty-eight hours after transfection, we employed

Figure 4. miR-122 facilitates the accumulation of newly synthesized miRNA through regulating PRKRA. (A and B) miRNA-RT–qPCR detected the
expression of miR-16 and miR-24. HeLa cells were transfected with the Negative Control siRNA, miR-122 duplex, siPRKRA-1 or siPRKRA-2 for
48 h. (C) miRNA-RT–qPCR detected the expression of miR-133. HeLa cells were cotransfected with miR-133 expressing vector (pcDNA3.0-miR133)
and Negative Control siRNA, miR-122 duplex, siPRKRA-1 or siPRKRA-2 for 48 h. (D) The same experiment as described in (C), except for
cotransfecting HeLa cells with miR-122 expressing vector (pcDNA3.0-miR122) and Negative Control siRNA, siPRKRA-1 or siPRKRA-2 for 48 h.
Total RNA was poly-A tailed, reverse transcripted and then real-time PCR tested. Data were normalized to the level of U6 RNA. Results of the
mean of triplicate quantitative PCR assays with standard deviation of the mean are presented.
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miRNA quantitative-RT–PCR to detect miR-30a ex-
pression and found that PRKRA siRNAs could also fa-
cilitate the accumulation of miR-30a (Supplementary
Figure S5).
An interesting paradox exists between TRBP and

PRKRA, which shares 42% amino acid sequence identity.
TRBP inhibits the dsRNA-activated PKR, whereas
PRKRA activates this protein—both using their
C-terminal domains for these functions (31). TRBP and
PRKRA could interact with Dicer, raising the intriguing
possibility that TRBP and PRKRA modulate PKR differ-
entially in response to dsRNAs in the cytoplasm. For
instance, it would be disadvantageous to the cell to have
miRNA precursors activating PKR, as this may ultimately
lead to cell death. Thus, our findings suggest that TRBP
and PRKRA might be responsible for keeping the balance
between PKR pathway and pre-miRNA processing
(Figure 5).
In conclusion, miR-122, a hepato-specific miRNA,

inhibits the expression of Dicer-interacting PRKRA gene
by binding to the 30-UTR of PRKRA mRNA and thereby
facilitates the accumulation of newly synthesized miRNA.
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