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Clinical decisions are ideally based on randomized trials but must often rely on observational data analyses,

which are less straightforward and more influenced by methodology. The authors, from a series of expert

roundtables convened by the Forum for Collaborative HIV Research on the use of observational studies to

assess cardiovascular disease risk in human immunodeficiency virus infection, recommend that clinicians who

review or interpret epidemiological publications consider 7 key statistical issues: (1) clear explanation of

confounding and adjustment; (2) handling and impact of missing data; (3) consistency and clinical relevance of

outcome measurements and covariate risk factors; (4) multivariate modeling techniques including time-

dependent variables; (5) how multiple testing is addressed; (6) distinction between statistical and clinical

significance; and (7) need for confirmation from independent databases. Recommendations to permit better

understanding of potential methodological limitations include both responsible public access to de-identified

source data, where permitted, and exploration of novel statistical methods.

Clinical treatment guidelines are based on data from

various sources including randomized controlled trials

(RCTs) and observational studies [1]. Observational

data are frequently useful for clinical decision making,

especially for potential drug-related adverse events, yet

pose a unique set of challenges [2]. Knowledge of the

strengths and limitations of observational data is

essential for interpretation and application to clinical

practice. While guidelines exist on standards for re-

porting of epidemiological analyses [3–8], similar

standards for clinical decision making do not. The im-

perative to make clinical decisions, advise patients, and

craft clinical guidelines justifies discussion of important

factors to be considered by clinicians in reviewing ob-

servational data analyses. This article provides a sum-

mary of such factors, using adverse cardiovascular

outcomes in patients with human immunodeficiency

virus (HIV) as exemplary.

RCTs serve as the foundation for development of

clinical guidelines. They are only rarely susceptible to

bias given that, on average, the random assignment of

treatment ensures equivalence of characteristics between
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study groups. RCTs are also the gold standard for inference of

causation, or support for a conclusion that the investigated ex-

posure or variable is causative of the disease outcome being as-

sessed (in contrast to an association in which the exposure may be

related in a noncausal manner). However, RCTs have certain

limitations: for example, their generalizability can be limited if

study patients with characteristics different from those of the target

population are selected by restrictive enrollment criteria (eg, less

complicated disease states, increased adherence, or predisposition

for morbidity). In addition, RCTs often address questions that

differ from those targeted by observational data analyses.

Observational studies have unique strengths and are widely

used when RCTs are not feasible. An observational study design

can be used to investigate adverse events that RCTs may lack

power to assess if the events are rare or occur after a prolonged

period of time. Furthermore, an observational study design may

be used to analyze factors that cannot be randomized, such as

smoking behavior. Observational data may establish associa-

tions between drug exposure and risk of complications that may

serve as triggers for pathophysiological investigations or for

confirmatory RCTs. Consistency across separate studies in di-

rection of association and strength of findings, dose-exposure

relationships, or a well-understood biological mechanism

strengthen the support of observational studies for causal in-

ference. However, the ultimate validity of estimates of causal

effects based on observational data rests on an untestable as-

sumption that one can remove or adjust for all bias.

Observational studies vary in design and include cross-

sectional studies, case-control studies, case-cohort studies,

and longitudinal studies. Temporality, a necessary criterion

for causality, can be established in longitudinal observational

studies that observe participants over time. Longitudinal studies

can be both retrospective, when data are drawn from previously

compiled databases such as medical records, and prospective,

when data are collected progressively over time. In a prospective

clinical cohort study, patient data can be culled from medical

records going forward in time. In a prospective interval cohort

study, specially designed data collection mechanisms are regu-

larly administered prospectively, such as with surveys, case re-

port forms, biological specimen collection, or physical

examinations [9]. An ideally performed observational study

entails (1) a primary hypothesis and a rigorous prespecified

protocol for data collection (electronic posting of the study

protocol could assist readers in the interpretation of the find-

ings); (2) explicit definition and method of ascertainment for

exposure(s) and outcome(s) of interest; (3) preferably a re-

quirement for prospective data capture; (4) specification and

validation of baseline and time-dependent confounders; and (5)

full details of the primary statistical and sensitivity analyses.

Observational data have been particularly relevant to

understanding the association between HIV infection and

cardiovascular disease (CVD). Multiple studies have found higher

CVD rates among HIV-infected persons, including children and

adolescents [1, 10–12], compared with reference control groups

[13–16]. Increased CVD rates seem to be independent of tradi-

tional cardiovascular risk factors (eg, smoking and hyperlipid-

emia), which are also elevated in this population [17]. Several

studies have reported that use of specific antiretroviral medi-

cations or classes is associated with an increased risk of acute

myocardial infarction (AMI) [18–21]. Some of these associations

were expected (eg, dyslipidemia after administration of certain

antiretroviral drugs), and some unexpected (eg, association be-

tween the nucleoside reverse transcriptase inhibitor abacavir and

AMI) [22]. This latter result has prompted multiple subsequent

investigations with inconsistent findings [23–32].

Several factors have precluded the ability of RCTs to assess the

association between CVD and antiretroviral medications, with

consequent necessity to rely on observational data. A study that

requires patients to be randomized to specific HIV medications

or removed from HIV treatment entirely might not be ethically

feasible if the patient meets criteria for treatment or has a con-

traindication to certain drugs, or if the potential for drug re-

sistance exists. Rapidly changing treatment paradigms for HIV

may not permit lengthy RCTs, which would be required for

development of CVD outcomes.

The inconsistent findings from observational data analyses of

long-term cardiovascular risk in HIV-infected patients led the

Forum for Collaborative HIV Research to convene a series of

roundtable discussions addressing the development of clinical

guidance on CVD prevention and management based on cur-

rent observational data. The Forum process involves stepwise

identification of public health issues, background research,

formation of roundtable discussions composed of scientific ex-

perts, and publication of consensus. Statistical experts, basic

scientists, and clinicians from cardiology and HIV medicine met

to formulate a potential consensus. A concluding Forum report

was presented as a panel discussion at the 2010 International

AIDS Conference (Vienna) that summarized clinical im-

plications of the current published data [33]. Subsequently, the

authors identified a number of key factors that should influence

interpretation and clinical applicability of observational study

findings, which form the basis for this article.

CONFOUNDING AS A SOURCE OF BIAS

In RCTs, the patients are randomly assigned to an intervention

or placebo to minimize differences between the groups. Differ-

ences in groups contribute to bias in estimates of causal effects.

Confounding is a common source of bias in observational

studies and is induced by the presence of factors that system-

atically influence the outcome being examined and are distrib-

uted differently between the exposed and unexposed groups.
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Confounding by indication occurs when the decision to ad-

minister a drug is not randomized. Those who receive the drug

may disproportionately have characteristics other than drug

exposure that could convey risk of an outcome, such as AMI. As

an illustration, abacavir may have been preferentially prescribed

to patients with increased risk factors for CVD, so increased

CVD rates in the abacavir group may be the result of a lack of

homogeneity in cardiovascular risk factors between the com-

pared groups. Likewise, protease inhibitors (as a class of anti-

retroviral drugs) have been linked to dyslipidemia, so an

alternative nonnucleoside reverse transcriptase inhibitor–based

regimen may have been preferentially prescribed to patients with

higher CVD risk and might then appear to be associated with

increased CVD events.

In theory, adjustment for bias from confounding is possible if

potential risk factors that may have governed prescribers’ decision

making and preferences are known and correctly measured. Ad-

justment can help to correct the possible confounding effects of

such inhomogeneously distributed variables, but adjustment

cannot be assumed to fully eliminate bias. An unknown level of

residual bias arises due to unknown or unmeasured confounders

or insufficient adjustment, such that one exposure group has re-

sidual risk related to factors not present to the same degree in the

other. That said, a substantial change in relative risk after ad-

justment for measured confounders suggests that the original

groups were indeed heterogeneous. The key point to consider is

that adjustment for confounding by indication requires that co-

variates that predict initiation of treatment must be measured and

available before treatment initiation in order for any statistical

approach to appropriately adjust for the potential bias.

Furthermore, care should always be taken when adjusting for

potential confounding factors that may also lie on the causal

pathway between the proposed risk factor and the outcome of

interest. For example, dyslipidemia is associated with both the

choice of antiretroviral drugs and AMI, and it is on the causal

pathway between some antiretroviral drugs and AMI; it is both

a confounder and an intermediate variable. Handling such time-

varying confounding is problematic using standard regression

methods. Causal modeling methods may be used but are complex

to apply in anything but the most straightforward setting [34].

MISSING DATA

Incomplete or missing data represent a significant challenge in

the use and interpretation of observational data. Data may be

missing for a confounding covariate, such as smoking; for the

exposure of interest, such as drug usage; or for the outcome

variable, such as AMI. Reasons for missing data include in-

complete or inefficient capture in medical records, errors in

extraction of data, loss to follow-up, difficulties in capturing

time-dependent variables such as exposure time, or differences

in methodology for capture of events by centers, practitioners,

or changes over time. The impact of missing data is most

worrisome when data on confounders or the outcome are not

missing at random. If the reason the data are missing is based to

some degree on unmeasured factors that predict the outcome,

then no statistical estimation method can recover the desired

causal effect without making untestable assumptions. If, on the

other hand, this ‘‘missingness’’ is a function of measured factors

and can be well estimated from the data, then sophisticated

methods can be used to deal with the challenge of estimating the

effect, notwithstanding missing data.

Individual missing data can be handled by several methods:

(1) by excluding patients with missing data from the analysis; (2)

by maximum likelihood estimation that explicitly assigns or

imputes a value to that missing information and providing

proper statistical inference that acknowledges the uncertainty

due to imputation; or (3) by using other advanced or novel

statistical methods [35, 36]. Imputation generally results in less

bias than other methods, or excluding those with missing co-

variate information, but careful understanding of the underlying

assumptions of the method and its practical performance is

required [37, 38]. Disclosure of the extent of missing data, how

missing data were handled, underlying assumptions of the

chosen method, and the potential impact of absent data will help

to facilitate understanding of study findings, analytical limi-

tations, and robustness.

Another form of bias involves incomplete data on the out-

come of interest, such as AMI. Such ascertainment bias could

occur when patients at low CVD risk, who may be concentrated

in one group, have more missed outcome events. Efforts to

ensure universal ascertainment are an important and recom-

mended part of the ideally designed observational study.

DEFINITION OF CLINICAL TERMS

Comparison of observational studies is often complicated by

inconsistency of definitions of clinical covariates, such as con-

founders, exposures, or outcomes. Recognition of different end

point definitions is important in comparing study results. Many

cardiovascular studies, including RCTs, define CVD with com-

bined end points of myocardial infarction, revascularization,

stroke, and/or cardiovascular death. In HIV studies, the Strate-

gies for Management of Antiretroviral Therapy trial defined CVD

as AMI (including death due to clinical AMI and silent AMI),

stroke, or coronary artery disease requiring surgery or invasive

procedures [39], whereas the D:A:D observational study defines

AMI by World Health Organization MONICA project criteria

[40] adjudicated centrally [18]. Some studies have used different

International Classification of Diseases codes to indicate a cardio-

vascular outcome, with some using codes for coronary heart

disease [13] and others using codes for myocardial infarction [16].
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Historical changes in the definition of AMI limit direct compar-

ison of CVD studies over time. As with RCTs, consideration and

comparison of multiple observational studies on related risks are

optimized when definitions of clinical terms are similar, although

such standardization is not always feasible.

MULTIVARIATE MODELING

Standard statistical adjustment often assumes a linear or cate-

gorical relationship of confounders and exposures to outcome.

Although this assumption is simple, it is not necessarily correct

when it is applied to clinical data. For example, increases in total

cholesterol have a nonlinear impact on CVD risk, with small

increases in CVD risk for cholesterol levels from 100 to 200 mg/dL

and escalating risk thereafter. In contrast, absolute changes in

CD4 cell counts are more significant at the lower end. In addition,

time dependency of exposure may not be considered in basic

analyses. Categorical classification as ‘‘hypertensive’’ based on the

use of antihypertensive agents or the most recent blood pressure

does not take into account variation in blood pressure over time.

To more accurately assess its impact on outcome, a confounder

or drug exposure may be time-updated so that an exposure is

calculated from baseline through the last available measurement.

The analysis of the relationship between drug exposure and

outcome becomes substantially more complicated. More so-

phisticated analytic methods may be required. Thus, linear re-

gression models and categorical adjustments oversimplify

a complex reality. More recent developments in statistics—for

example, marginal structural models, machine learning, and data

adaptive methods—and increased computing power may permit

more accurate estimates of the desired causal effect of the expo-

sure on the clinical outcome and should be evaluated for practical

use. In particular, marginal structural models are appropriate and

efficient when decisions to initiate treatment are based on past

covariates and treatment initiation itself affects subsequent

measures of these same covariates [34]. Simple adjustment for

these time-updated covariates in this scenario may ‘‘adjust away’’

the effects of the treatment being investigated, whereas marginal

structural models take these pathways into account.

In smaller databases or in situations where the outcome is

rare, analysis of and adjustment for multiple covariates, or risk

factors, may also be impeded by too few events. At least 10

events per covariate are needed in event-based regression models

[41]. If the number of outcome events is small in comparison to

the number of confounding factors to be adjusted for, in-

terpretation of multivariate analysis findings may be less reliable.

MULTIPLE TESTING

If multiple testing is not adjusted for, the probability of falsely

rejecting the null hypothesis—claiming an association is present

when it is not—increases with the number of evaluations per-

formed. Common use of 2-sided 95% confidence intervals as-

sumes that 1 in 20 represents an acceptable degree of false-positive

findings. Multiple tests applied to truly random associations must

eventually result in at least 1 factor erroneously showing a signif-

icant association with the outcome. There are currently .20

antiretroviral drugs spanning 5 classes. If performing 29 statistical

tests looking at association of antiretroviral drugs to CVD, the

odds of incorrectly identifying a positive relationship is 80%.

Multiple testing may be accounted for through formal statis-

tical techniques. In the absence of adjustment for multiple testing,

the primary study objective should be taken as the main focus of

the analysis. Secondary and investigative analyses should be

treated as hypothesis generating, not hypothesis testing. Repli-

cation of findings in discrete data sources can help to address

multiple testing. Discussion of the risk of false-positive findings,

disclosure of the prespecified testing plan, and correction strat-

egies for multiplicity or justification for not addressing multiple

testing would assist readers in interpreting study findings.

STATISTICAL VERSUS CLINICAL

SIGNIFICANCE

Analyses using large databases can achieve statistical significance

with differences that lack clinical meaning. In a large database,

small residual confounding effects may result in statistically

significant exposure-outcome relationships, even when no un-

derlying causal relationship exists. The absolute as well as relative

increases in risk should be assessed, and interpretation of the

statistical output in terms of clinical meaning should be pro-

vided. In general, determining clinical significance relies on the

consensus opinion of clinical experts and the patient community.

CONFIRMATION OF FINDINGS

Confirmation of findings in discrete data sources can strengthen

conclusions from observational studies. Findings can be con-

firmed internally by testing a portion of the original database but

holding a second portion aside to confirm the finding—‘‘test

and hold.’’ However, the preferable approach is to confirm

findings using a discrete data source. Because datasets differ with

regard to specific sources of bias, data availability, and analytic

techniques, repeating a study in an alternate dataset may address

many of the potential limitations of an individual dataset, in-

cluding confounding, missing data, and false-positive results.

Furthermore, alternate statistical techniques may be used, such

as those that use time-varying covariates. However, some limi-

tations may be common to many datasets, such as confounding

by indication based on common provider practices. Obtaining

similar results from independent datasets with different intrinsic

limitations increases confidence.
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RECOMMENDATIONS

Two steps might be useful to facilitate responsible use of findings

from observational study analyses. First, increasingly, public

access to data from RCTs has been required by editorial policy

[42], US law [43], the US Food and Drug Administration (FDA)

through Summary Bases of Approval, adverse event reporting,

or meta-analysis (see FDA analysis of abacavir exposure and risk

of AMI) [27]. Similar responsible public access to de-identified

observational databases may be feasible in some cases and offers

the potential benefit of a deeper understanding and explanation

of methodological effects. Availability of data for public health

agency review may facilitate better and more informed decision

making by regulators. Second, novel statistical methods for

adjustment (including more sophisticated nonparametric

methods) should be investigated to verify whether more reliable

assessment of the causal effect of interest could be provided.

CONCLUSIONS

Observational data are critical to clinical decision making and to

informing patients but must be understood in light of meth-

odological limitations. Standards for rigor in observational

analyses have not evolved concomitantly with those for RCTs.

Seven key factors are important when interpreting observational

data: (1) explanation of likely implications of confounding and

approaches to adjustment; (2) the extent, nature, handling, and

impact of missing data; (3) consistency of definitions for out-

come and covariate terms when cross-comparing studies; (4)

methods for adjusting for time-dependency; (5) the risk of false-

positive findings and handling of multiplicity; (6) the difference

between statistical and clinical significance; and (7) the impor-

tance of confirmation from independent databases. Many par-

ticipants recommended that responsible public access to

databases, if feasible, could permit investigation of methodo-

logical concerns and validation by novel analytical approaches.

As observational data sources continue to increase, balanced

understanding and responsible use of such data will be critical to

inform clinical care and public policy.
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