Nucleotide sequence of the yeast SUC2 gene for invertase

Ronald Taussig and Marian Carlson

Department of Human Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 West 168th Street, New York, NY 10032, USA

Received 18 October 1982; Revised and Accepted 3 January 1983

ABSTRACT

The yeast <u>SUC2</u> gene is a structural gene for both the secreted and intracellular forms of invertase. We have determined the nucleotide sequence of the coding region and the 5' and 3' flanking regions. The coding regions for the signal peptide-containing precursor to secreted invertase and for the intracellular invertase begin at different initiation codons within the <u>SUC2</u> gene but share the same reading frame. The amino acid sequences predicted for the two forms of invertase from the nucleotide sequence are consistent with the properties of the purified enzymes. Potential sites for glycosylation of the secreted invertase are identified.

INTRODUCTION

Yeasts (<u>Saccharomyces</u>) carrying a <u>SUC</u>⁺ gene produce two forms of the sucrose-cleaving enzyme invertase: a secreted, glycosylated enzyme and an intracellular, nonglycosylated enzyme. The <u>SUC</u> genes of yeast are a dispersed multigene family, including <u>SUC1-SUC5</u> and <u>SUC7</u> (1,2). We previously cloned one member of this family, the <u>SUC2</u> gene, and showed that it is a structural gene for both forms of invertase (3,4). The <u>SUC2</u> gene encodes two mRNAs, 1.9 kb and 1.8 kb in size, which differ at their 5' ends (3). Nucleotide sequence analysis of the 5' end of the gene showed that the 1.9 kb mRNA encodes a signal peptidecontaining precursor to secreted invertase and that the 1.8 kb mRNA does not include the complete signal sequence and thus is translated to yield intracellular invertase (4). The two mRNAs are differently regulated in response to glucose concentration, as is synthesis of the two forms of invertase (3).

Yeast invertases have been extensively studied for over a century [for review, see (5)], and the secreted and intracellular invertases produced from the <u>SUC2</u> gene have been purified and

characterized (6,7,8). The protein moiety of each consists of two identical subunits of approximately 60,000 daltons (6,7,9). The secreted enzyme is a glycoprotein containing about 50% carbohydrate (mannose and 3% glucosamine; 6) which is attached as approximately nine asparagine-linked polysaccharide chains per protein subunit (9,10). Secreted invertase has served as a model glycoprotein for studies of carbohydrate synthesis and structure (11,12) and for analysis of the secretory pathway in yeast (13).

We report the nucleotide sequence of the <u>SUC2</u> structural gene for invertase, including the entire coding region and both 5' and 3' flanking sequences. The amino acid sequences of the two forms of invertase are predicted from the DNA sequence, and potential glycosylation sites on the secreted enzyme are identified.

MATERIALS AND METHODS

Preparation of end-labeled restriction fragments

Plasmid DNAs were prepared as described previously (3). Restriction sites were mapped by standard methods and by analysis of purified 5' end-labeled fragments. Restriction enzymes were purchased from New England BioLabs or Bethesda Research Laboratory and used under the conditions specified by the supplier. The 5' ends of restriction fragments were dephosphorylated using calf intestinal alkaline phosphatase (Boehringer-Mannheim) and then radioactively labeled using T4 polynucleotide kinase (Bethesda Research Laboratory) and γ^{-32} P-ATP (3000 Ci/mmol; Amersham), as described by Maxam and Gilbert (14).

Fragments labeled at a unique end were usually obtained by cleaving with a second restriction enzyme and separating the resulting two end-labeled fragments. In a few cases, the two labeled strands were separated. End-labeled fragments were purified by electrophoresis in 4% to 6% polyacrylamide gels prepared in 89 mM Tris-OH, 89 mM boric acid, 2 mM EDTA, pH 8.3, from a stock of 29% acrylamide, 1% N,N'-methylene-bis-acrylamide. For strand separation, the DNA was heated to 90°C for 1 minute in 30% dimethylsulfoxide, 1 mM EDTA, prior to electrophoresis on a 5% polyacrylamide gel. DNA fragments were recovered from gels by crushing the gel and eluting the DNA (14).

Sequence analysis

DNA sequence was determined by the methods of Maxam and Gilbert (14). The G, G+A, C+T, and C reactions were carried out with only minor modifications, except that piperidiniumformate, pH 4.0, was used in the G+A reaction. The final lyophilizations were usually replaced by precipitations with ethanol (15). Cleavage products were analyzed by electrophoresis in 6% and 8% polyacrylamide/7 M urea gels (80 cm x 38 cm x 0.4 mm). Autoradiography was carried out at -70°C with Kodak XR-5 film and DuPont Lightning Plus intensifying screens. Sequences were analyzed on a PDP11/45 computer using programs obtained from R. Staden (MRC laboratory, Cambridge, U.K.) (16).

The nucleotide sequence was determined on both strands for greater than 55% of the sequence (66% of the coding region). The sequence near each restriction site was determined by analysis of at least one fragment spanning the site.

RESULTS

Nucleotide sequence analysis

Figure 1 shows a restriction map of the <u>SUC2</u> gene indicating the sites and strategy used for sequence analysis. The position of the coding region and the structures of the 1.9 kb and 1.8 kb mRNAs are also shown. Nucleotide sequence analysis was performed on restriction fragments prepared from plasmids pRB58, pRB59, pRB117 and pRB118, which have been described elsewhere (3). Plasmid pRB58 carries a <u>SUC2</u>⁺ gene and pRB59, pRB117 and pRB118 contain subcloned fragments of the <u>suc2-215</u> amber allele (17).

Figure 2 presents the nucleotide sequence of the <u>SUC2</u>⁺ gene, including the complete sequence of the coding region, 300 nucleotides of the 5' noncoding region and 493 nucleotides of 3' flanking sequence. The only open reading frame encoded by the <u>SUC2</u> mRNAs is translated into amino acids. The A residue in the ATG codon which initiates translation of the precursor to secreted invertase (see Discussion) has been assigned position +1. The reading frame is open through position +1596.

Figure 1. Sequencing strategy. The map of the SUC2 gene shows only those restriction sites used for sequence analysis (other sites are not shown). Arrows indicate the direction and extent of the nucleotide sequence read from each 5' end-labeled site. Those arrows with a circular head indicate 3' end-labeled sites analysed in a previous study (4). The open bar represents the coding region; the signal sequence is hatched. The 1.9 kb and 1.8 kb mRNAs are indicated by bold arrows pointing in the direction of the 3' end.

DISCUSSION

Coding region

From the nucleotide sequence of the <u>SUC2</u> gene we can infer the amino acid sequences of intracellular invertase, secreted invertase, and the signal peptide-containing precursor to secreted invertase. We showed in a previous study that the coding regions for the precursor to secreted invertase and for the intracellular invertase begin at different points within the <u>SUC2</u> gene but share the same reading frame (4). The initiator methionine codon for translation of the precursor to secreted invertase from the 1.9 kb mRNA was identified as the ATG codon at position +1. The initiation codon for translation of the intracellular enzyme from the 1.8 kb mRNA was identified as the ATG at position +61.

In this study we have shown that the reading frame for the invertase gene is open through position +1596, where it is terminated by a nonsense codon (TAG) at position +1597. A second nonsense codon (TAA) in the same frame follows at position +1606. A contiguous coding region was expected because no intervening sequence was detected in the SUC2 gene by S1 mapping and primer extension analysis of the mRNAs (3,4).

From the translation of the nucleotide sequence, we infer that the precursor to secreted invertase is a polypeptide of 532 amino acids. Its calculated molecular weight is 60,572. Cleavage of the 19 amino acid signal peptide (4,18) from the precursor (see Figure 2) is then predicted to yield a mature protein of 513 amino acids and a calculated molecular weight of 58,567. The coding region for the intracellular invertase includes the 512 codons between nucleotides +61 and +1596 and would be translated into a polypeptide of calculated molecular weight 58,480. These values agree well with studies of the intracellular and secreted enzymes indicating that the protein in each subunit has a molecular weight of about 60,000 (6,7,9).

Amino acid sequence data derived from direct analysis of the protein is available only for the amino and carboxyl termini of invertase. The amino acid sequence predicted by nucleotides +1 to +120 has been compared previously to partial amino acid sequences of the amino termini of invertase <u>in vitro</u> translation products (18) and shows good agreement (4). Trimble and Maley used carboxypeptidases A and B to determine the following sequence for the carboxyl terminus of secreted invertase: Tyr-Val-Arg-Phe-(Ser or Gln)-Glu-Val-Lys-COOH (9). The translation of the 3' end of the coding region of our nucleotide sequence is:

Lys-Phe-Gln-Val-Arg-Glu-Val-Lys-COOH. These two sequences are identical for the three carboxyl terminal residues and they also agree with respect to the amino acid composition, although not the order, of the next four residues. This result confirms that we have correctly identified the end of the coding region at position +1596.

The amino acid composition calculated for the mature secreted enzyme is shown in Table 1. The most striking feature is the high levels of aspartic and glutamic acids, which constitute 62 of the 513 amino acid residues. The predicted composition is in good accord with the empirically determined composition of the purified enzyme (6). The major discrepancy is that the previously reported levels of aspartic and glutamic acids are

TTTGCCTATTACCAT -300

CATAGAGACGTTTCTTTTCGAGGAATGCTTAAACGACTTTGTTTG																							
TGACGACTTTTTTTTGGATTTCGATCC <u>TATAA</u> TCCTTCCTCCTGAAAAGAAACA <u>TATAAATA</u> GATATGTATTATTCTTCAAAACATTCTCTT - 100																							
GTTCTTGTGCTTTTTTTTACCATATATCTTACTTTTTTTT																							
met ATG 1	leu CTT	leu TTG	gln CAA	ala GCT	phe TTC	leu CTT	phe TTC	leu CTT	leu TTG	ala GCT	gly GGT	phe TTT	ala GCA	ala GCC	lys AAA	ile ATA	ser TCT	ala GCA	ser TCA	met ATG	thr ACA	asn AAC	glu GAA
thr ACT	ser AGC	asp GAT	arg AGA	pro CCT	leu TTG	val GTC	his CAC	phe TTC 10	thr ACA 00	pro CCC	asn AAC	lys AAG	gly GGC	trp TGG	met ATG	asn AAT	asp GAC	pro CCA	asn AAT	gly GGG	leu TTG	trp TGG	tyr TAC
asp GAT	glu GAA	lys AAA	asp GAT	ala GCC	lys AAA	trp TGG	his CAT	leu CTG	tyr TAC	phe TTT	gln CAA	tyr TAC	asn AAC	pro CCA	asn AAT	asp GAC	thr ACC	val GTA 200	trp TGG	gly GGT	thr ACG	pro CCA	leu TTG
phe TTT	trp TGG	gly GGC	his CAT	ala GCT	thr ACT	ser TCC	asp GAT	asp GAT	leu TTG	thr ACT	asn AAT	trp TGG	glu GAA	asp GAT	gln CAA	pro CCC	ile ATT	ala GCT	ile ATC	ala GCT	pro CCC	lys AAG	arg CGT
asn AAC	asp GAT	ser TCA	gly GGT 300	ala GCT	phe TTC	ser TCT	gly GGC	ser TCC	met ATG	val GTG	val GTT	asp GAT	tyr TAC	asn AAC	asn AAC	thr ACG	ser AGT	gly GGG	phe TTT	phe TTC	asn AAT	asp GAT	thr ACT
ile ATT	asp GAT	pro CCA	arg AGA	gln CAA	arg AGA	cys TGC	val GTT	ala GCG	ile ATT	trp TGG	thr ACT	tyr TAT 4(asn AAC	thr ACT	pro CCT	glu GAA	ser AGT	glu GAA	glu GAG	gln CAA	tyr TAC	ile ATT	ser AGC
tyr TAT	ser TCT	leu CTT	asp GAT	gly GGT	gly GGT	tyr TAC	thr ACT	phe TTT	thr ACT	glu GAA	tyr TAC	gln CAA	lys AAG	asn AAC	pro CCT	val GTT	leu TTA	ala GCT	ala GCC	asn AAC	ser TCC	thr ACT 500	gln CAA
phe TTC	arg AGA	asp GAT	pro CCA	lys AAG	val GTG	phe TTC	trp TGG	tyr TAT	glu GAA	pro CCT	ser TCT	gln CAA	lys AAA	trp TGG	ile ATT	met ATG	thr ACG	ala GCT	ala GCC	lys AAA	ser TCA	gln CAA	asp GAC
tyr TAC	lys AAA	ile ATT	glu GAA	ile ATT	tyr TAC	ser TCC	ser TCT 600	asp GAT	asp GAC	leu TTG	lys AAG	ser TCC	trp TGG	lys AAG	leu CTA	glu GAA	ser TCT	ala GCA	phe TTT	ala GCC	asn AAC	glu GAA	gly GGT
phe TTC	leu TTA	gly GGC	tyr TAC	gln CAA	tyr TAC	glu GAA	cys TGT	pro CCA	gly GGT	leu TTG	ile ATT	glu GAA	val GTC	pro CCA	thr ACT	glu GAG 70	gln CAA DO	asp GAT	pro CCT	ser TCC	lys AAA	ser TCT	tyr TAT
trp TGG	val GTC	met ATG	phe TTT	ile ATT	ser TCT	ile ATC	asn AAC	pro CCA	gly GGT	ala GCA	pro CCT	ala GCT	gly GGC	gly GGT	ser TCC	phe TTC	asn AAC	gln CAA	tyr TAT	phe TTT	val GTT	gly GGA	ser TCC
phe TTC	asn AAT	gly GGT 300	thr ACT]his CAT	phe TTT	glu GAA	ala GCG	phe TTT	asp GAC	asn AAT	gln CAA	ser TCT	arg AGA	val GTG	val GTA	asp GAT	phe TTT	gly GGT	lys AAG	asp GAC	tyr TAC	tyr TAT	ala GCC
leu TTG	gln CAA	thr ACT	phe TTC	phe TTC	asn AAC	thr ACT	asp GAC	pro CCA	thr ACC	tyr TAC	gly GGT 900	ser TCA	ala GCA	leu TTA	gly GGT	ile ATT	ala GCC	trp TGG	ala GCT	ser TCA	asn AAC	trp TGG	glu GAG
tyr TAC	ser AGT	ala GCC	phe TTT	val GTC	pro CCA	thr ACT	asn AAC	pro CCA	trp TGG	arg AGA	ser TCA	ser TCC	met ATG	ser TCT	leu TTG	val GTC	arg CGC	lys AAG	phe TTT	ser TCT 10	leu TTG 00	asn AAC	thr ACT
glu GAA	tyr TAT	gln CAA	ala GCT	asn AAT	pro CCA	glu GAG	thr ACT	glu GAA	leu TTG	ile ATC	asn AAT	leu TTG	lys AAA	ala GCC	glu GAA	pro CCA	ile ATA	leu TTG	asn AAC	ile ATT	ser	asn AAT	ala GCT

gly GGT	pro CCC	trp TGG	ser TCT	arg CGT	phe TTT 1	ala GCT 100	thr ACT	asn AAC	thr ACA	thr ACT	leu CTA	thr ACT	lys AAG	ala GCC	asn AAT	ser TCT	tyr TAC	asn AAT	val GTC	asp GAT	leu TTG	ser AGC	asn AAC
ser TCG	thr ACT	gly GGT	thr ACC	leu CTA	glu GAG	phe TTT	glu GAG	leu TTG	val GTT	tyr TAC	ala GCT	val GTT	asn AAC	thr ACC	thr ACA 200	gln CAA	thr ACC	ile Ata	ser TCC	lys AAA	ser TCC	val GTC	phe TTT
ala GCC	asp GAC	leu TTA	ser TCA	leu CTT	trp TGG	phe TTC	lys AAG	gly GGT	leu TTA	glu GAA	asp GAT	pro CCT	glu GAA	glu GAA	tyr TAT	leu TTG	arg AGA	met ATG	gly GGT	phe TTT	glu GAA	val GTC	ser AGT
ala GCT 130	ser TCT 00	ser TCC	phe [.] TTC	phe TTT	leu TTG	asp GAC	arg CGT	gly GGT	asn AAC	ser TCT	lys AAG	val GTC	lys AAG	phe TTT	val GTC	lys AAG	glu GAG	asn AAC	pro CCA	tyr TAT	phe TTC	thr ACA	asn AAC
arg AGA	met ATG	ser TCT	val GTC	asn AAC	asn AAC	gln CAA	pro CCA	phe TTC	lys AAG 1 ¹	ser TCT 100	glu GAG	asn AAC	asp GAC	leu CTA	ser AGT	tyr TAC	tyr TAT	lys AAA	val GTG	tyr TAC	gly GGC	leu CTA	leu CTG
asp GAT	gln CAA	asn AAC	ile ATC	leu TTG	glu GAA	leu TTG	tyr TAC	phe TTC	asn AAC	asp GAT	gly GGA	asp GAT	val GTG	val GTT	ser TCT	thr ACA	asn AAT	thr ACC	tyr TAC 1500	phe TTC	met ATG	thr ACC	thr ACC
gly GGT	asn AAC	ala GCT	leu CTA	gly GGA	ser TCT	val GTG	asn AAC	met ATG	thr ACC	thr ACT	gly GGT	val GTC	asp GAT	asn AAT	leu TTG	phe TTC	tyr TAC	ile ATT	asp GAC	lys AAG	phe TTC	gln CAA	val GTA
arg AGG	glu GAA	val GTA	lys AAA	*** TAG/ 1600	AGGT" D	*** Ata	AACI	TATI	GTC	TTT	TAT	[TTT]	TTC A.	AAGO	CATI	(CTA)	AGGO	GTT	rage <i>i</i>	ACG	\GTG <i>i</i>	CGA	ATGT
AA A <i>I</i>	CTT	TATG	ATTT	CAAAG	GAAT		CCA	ACC	\TTG/		IGTA1	[TTT]	FATT	TTA:	TTTO	CTCCO	GACO	CCA	GTTAC	CTG	AATI	TGT	TTCT
TATO	TACI	TIA	(ATA)	AGTA:	TAAT	гстс1 18	TAA 300	AATI	TTT/	CTA	CTTT	CAA'	TAGAC	CATCI	ATTT1	TTC	ACGT/	ATA	AACCO	CACAI	TCG1	TAAT	GTAG
TTGCCTTACACTACGAGATGGACCTTTTTGCCTTTATCTGTTTTGTTACTGACACAATGAAAACCGGGTAAAGTATTAGTTATGTGAAAATTTAA 1900																							
AAGCATTAAGTAGAAGTATACCATATTGTAAAAAAAAAA																							

ACCAAGCTATCTGTAACAGGAGCTAAAAAATCTC

Figure 2. Nucleotide sequence and amino acid translation of the SUC2 gene. The complete sequence of a contiguous 2389 nucleotide region encompassing the SUC2 structural gene is shown. The sequence of the mRNA-identical strand of the SUC2⁺ gene is presented; the suc2-215 amber allele has a mutation at position +140 which produces an amber codon (4). The open reading frame encoded by the 1.9 kb mRNA is translated into amino acids. TATA-like sequences preceding the coding region are underlined and the approximate position of the 5' end of the 1.9 kb mRNA is marked with an asterisk (4). The two termination codons immediately following the coding region are also marked with asterisks. The site for cleavage of the signal peptide is indicated by a vertical arrow (4,18). Tripeptide sequences which may serve as glycosylation sites are boxed. The putative recognition sequence for poly(A) addition, TATATAAG, is underlined twice. The sequence contains the 6 bp recognition sites of the following enzymes: HindIII (at positions -27, +11), BamHI (+787), XbaI (+829), BclI (+1037), KpnI (+1159) and HpaI (+I189).

Amino Acid	Number of residue						
	Predicted	Reported					
Aspartic acid	32	77					
Asparagine	44						
Threonine	39	36					
Serine	47	49					
Glutamic acid	30	50					
Glutamine	18						
Proline	26	28					
Glycine	30	31					
Alanine	29	30					
Cysteine	2	2					
Valine	29	30					
Methionine	10	9					
Isoleucine	18	17					
Leucine	34	36					
Tyrosine	31	28					
Phenylalanine	36	35					
Tryptophan	16	14					
Lysine	25	26					
Histidine	4	7					
Arginine	13	12					

Table 1. Amino acid composition of secreted invertase

The values predicted from the nucleotide sequence are compared with those reported for the purified enzyme by Neumann and Lampen (6). The latter values have been recalculated for a molecular weight of 58,567.

higher than predicted by the nucleotide sequence. This could be attributed to breakdown of asparagine and glutamine.

Glycosylation sites on secreted invertase

Secreted invertase is a glycoprotein carrying approximately nine asparagine-linked polysaccharide chains per subunit (9,10). Glycosylation of eukaryotic proteins occurs at the tripeptide sequences asparagine-X-threonine and asparagine-X-serine, where X may be any amino acid residue except possibly aspartate (19,20). The amino acid sequence of invertase includes 13 such tripeptide sequences, three of which contain aspartate as the middle residue

	1	Fable	2. Cod	lon	usage	in	the	SUC2	gene	•	
	U		С			A			G		
U	Phe	19	Ser	19		ſyr	10		Cys	1	ט [
		20		12			21			1	c
	Leu	5		7							A
		21		1					Trp	16	G
с	Leu	5	Pro	7	1	His	3		Arg	3	U
		0		4			1			1	c
		6		15	(Gln	19			0	A
		2		0			0			0	G
A	Ile	12	Thr	21	i	Asn	14		Ser	6	U
		4		9			30			3	c
		3		6	1	Lys	11		Arg	8	A
	Met	11		3			15			1	G
G	Val	7	Ala	16	i	Asp	21		Gly	20	U
		12		11		•	11		1	6	c
		4		5	(Glu	22			3	A
		6		2			8			2	G
	1										1

The first position of the codon is indicated at the left, the second position at the top, and the third position at the right. The number indicates the utilization of each codon in the coding region for the precursor to secreted invertase.

(boxed in Figure 2). In other glycoproteins, not all asparagine-X-threonine/serine acceptor sites are glycosylated (19,20), and it remains to be determined which of the asparagine residues in invertase are actually glycosylated.

Codon usage

Codon usage in the <u>SUC2</u> gene is summarized in Table 2. A bias is evident in the codon representation for several amino acids; for example, the codon CAA for glutamine is used 19 times and the codon CAG is not used. The codon bias in the <u>SUC2</u> gene follows the same pattern observed for other yeast genes by

Bennetzen and Hall (21), but the degree of bias is relatively low. Of the 61 possible codons, 56 are used in the <u>SUC2</u> gene; in contrast only 33 codons are used in the gene for alcohol dehydrogenase I (22), and 29 codons in the two genes for glyceraldehyde-3-phosphate dehydrogenase (23). Bennetzen and Hall note a correlation between the degree of codon bias and the level of gene expression (22); with respect to degree of bias, the <u>SUC2</u> gene resembles the less highly expressed yeast genes. Sequences preceding and following the coding region

The sequence reported includes 300 nucleotides preceding the coding region and 493 nucleotides following the coding region. The base composition of these noncoding sequences is more AT-rich (70%) than the coding region (58%); such AT-rich noncoding sequences have been found adjacent to most of the yeast genes which have been sequenced (23-28). The 5' ends of the 1.9 kb and 1.8 kb mRNAs have been mapped and TATA-like sequences and other features of the 5' noncoding region have been described previously (4; see Figure 2). The 3' ends of the 1.9 kb and 1.8 kb mRNAs were mapped by S1 nuclease protection analysis to a position 1.03 kb downstream from the BamHI site (3). The sequence reported here shows that the relevant BamHI cleavage site is between nucleotides +787 and +788. The 3' ends therefore map approximately at position +1817 and the mRNAs contain about 220 nucleotides of 3' noncoding sequence. The sequence TATATAAG starts at position +1780 (see Figure 2). This sequence closely resembles the consensus sequence TAAATAAA/G, which is often found 28 to 33 nucleotides before the poly(A) addition site in yeast genes (22). The sequence TATGT is found at position +1771; Zaret and Sherman suggested that the sequence TATGT or TAGT, located 10 to 40 bp before the poly(A) site, may have a role in transcription termination and polyadenylation in yeast (29).

ACKNOWLEDGMENTS

This work was supported by a grant (NP-358) from The American Cancer Society to M.C. We thank Lois Purcell for typing the manuscript. REFERENCES

- Carlson, M., Osmond, B.C., and Botstein, D. (1980) Cold Spring Harbor Symp. Quant. Biol. <u>45</u>, 799-803. 1.
- Mortimer, R.K., and Hawthorne, D.C. (1969) in The Yeasts, Rose, A.H. and Harrison, J.S., Eds., Vol. 1, pp. 385-460, 2. Academic Press, New York.
- Carlson, M., and Botstein, D. (1982) Cell 28, 145-54. 3.
- 4. Carlson, M., Taussiq, R., Kustu, S., and Botstein, D. (1983) Mol. Cell. Biol., in press.
- 5. Lampen, J.O. (1971) in The Enzymes, Boyer, P.D., Ed., Vol. 5, pp. 291-305, Academic Press, New York. Neumann, N.P. and Lampen, J.O. (1967) Biochemistry 6,
- 6. 468-475.
- 7. Gascon, S, and Lampen, J.O. (1968) J. Biol. Chem. 243, 1567-1572.
- Gascon, S., Neumann, N.P., and Lampen, J.O. (1968) J. Biol. 8. Chem. 243, 1573-1577.
- Trimble, R.B. and Maley, F. (1977) J. Biol. Chem. 252, 9. 4409-4412.
- 10. Tarentino, A.L., Plummer, T.H., Jr., and Maley, F. (1974) J. Biol. Chem. 249, 818-824.
- 11. Lehle, L., Cohen, R.E., and Ballou, C.E. (1979) J. Biol. Chem. 254, 12209-12218.
- 12. Esmon, B., Novick, P., and Schekman, R. (1981) Cell 25, 451-460.
- Novick, P., Ferro, S., and Schekman, R. (1981) 13. Cell 25, 461-469.
- 14. Maxam, A.M. and Gilbert, W. (1980) in Methods Enzymol. Grossman, L. and Moldave, K. Eds., Vol. 65, pp. 499-560, Academic Press, New York.
- 15. Smith, D.R. and Calvo, J.M. (1980) Nucl. Acids Res. 8, 2255-2273.
- 16. Staden, R. (1977) Nucl. Acids Res. 4, 4037-4051.
- 17. Carlson, M., Osmond, B.C., and Botstein, D. (1981) Genetics 98, 25-40.
- 18. Perlman, D., Halvorson, H.O., and Cannon, L.E. (1982) Proc. Natl. Acad. Sci. 79, 781-785.
- 19. Struck, D.K. and Lennarz, W.J. (1980) in The Biochemistry of Glycoproteins and Proteoglycans, Lennarz, W.J. Ed., pp. 35-83, Plenum Press, New York.
- 20. Hubbard, S.C. and Ivatt, R.J. (1981) Ann. Rev. Biochem. 50, 555-583.
- 21. Bennetzen, J.L. and Hall, B.D. (1982) J. Biol. Chem. 257, 3026-3031.
- 22. Bennetzen, J.L. and Hall, B.D. (1982) J. Biol. Chem. 257, 3018-3025.
- 23. Holland, J.P. and Holland, M.J. (1980) J. Biol. Chem. 255, 2596-2605.
- Smith, M., Leung, D.W., Gillam, S., Astell, C.R., 24.
- Montgomery, D.L. and Hall, B.D (1979) Cell 16, 753-761. Montgomery, D.L., Leung, D.W., Smith, M., Shalit, P., Faye, 25. G. and Hall, B.D. (1980) Proc. Natl. Acad. Sci. USA. 77, 541-545.

- 26.
- Gallwitz, D. and Sures, I. (1980) Proc. Natl. Acad. Sci. USA. 77, 2546-2550. Ng, R. and Abelson, J. (1980) Proc. Natl. Acad. Sci. USA. 77, 3912-3916. 27.
- Holland, M.J., Holland, J.P., Thill, G.P. and Jackson, K.A. (1981) J. Biol. Chem. 256, 1385-1395. Zaret, K.S. and Sherman, F. (1982) Cell <u>28</u>, 563-573. 28.
- 29.