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Abstract
High intraglomerular pressure is associated with renal 
hyperfiltration, leading to the initiation and progression 
of kidney disease in experimental models of diabetes 
mellitus (DM). In humans, hyperfiltration is observed in 
patients with type 1 and type 2 DM, and is also seen in 
patients with pre-diabetic conditions, such as the meta-
bolic syndrome. From a mechanistic perspective, both 
vascular and tubular factors likely contribute to the 
pathogenesis of hyperfiltration. Until now, human stud-
ies have primarily focused on the use of medications 
that inhibit the renin angiotensin system to reduce 
efferent vasoconstriction and thereby improve hyper-
filtration. More recent advances in the development of 
investigational adenosine antagonists and inhibitors 
of sodium glucose co-transport may help to elucidate 
tubular factors that contribute to afferent vasodilata-
tion. In this review, we summarize available data from 
experimental and human studies of type 1 and type 2 
DM and obesity to provide an overview of factors that 
contribute to the hyperfiltration state. We have focused 
on the renin angiotensin system, cyclooxygenase-2 
system, nitric oxide, protein kinase C and endothelin as 
vascular determinants of hyperfiltration. We also dis-

cuss relevant tubular factors, since experimental mod-
els have suggested that inhibition of sodium-glucose 
cotransport may be renoprotective.
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INTRODUCTION
Renal hemodynamic function abnormalities are com-
mon in experimental models of  diabetes mellitus (DM), 
including increased intraglomerular capillary pressure and 
glomerular hyperfiltration[1,2]. Micropuncture studies have 
suggested that these hemodynamic abnormalities are on 
the basis of  high renal blood flow and glomerular trans-
capillary hydraulic pressure due to afferent arteriolar vaso-
dilatation, efferent vasoconstriction and suppression of  tu-
buloglomerular feedback[3-5]. These hemodynamic changes 
have been associated with activation of  pro-inflammatory 
cytokines such as transforming growth factor-β (TGF-β), 
leading to proteinuria and kidney disease[4,6]. Similar chang-
es likely occur in experimental obesity[7].

In humans, glomerular hyperfiltration associated with 
early DM is a risk factor for the development of  progres-
sive diabetic nephropathy[8]. Hyperfiltration is typically 
defined by a glomerular filtration rate (GFR) of  between 
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125 mL/min to 140 mL/min per 1.73 m2, or greater than 
2 standard deviations above the mean GFR in normal, 
healthy individuals[9,10]. Hyperfiltration is typically ob-
served in 25%-75% of  prevalent patients with type 1 DM 
and may depend on factors such as age, diabetes duration 
and glycemic control[10]. In patients with the metabolic 
syndrome and type 2 DM, the occurrence of  hyperfiltra-
tion is likely lower and ranges from 5%-40%[10,11]. More 
recently, hyperfiltration has been associated with impaired 
fasting glucose in the general population, suggesting a 
link between high intraglomerular pressure and the devel-
opment of  chronic kidney disease[12]. The pathogenesis 
of  diabetic hyperfiltration is incompletely understood but 
has been attributed to glomerular hemodynamic and tu-
bular factors[13].

Given the deleterious effect of  renal hyperfiltration 
on the risk of  diabetic nephropathy and the possible clin-
ical benefit derived through a reduction in intraglomeru-
lar pressure, it is of  the utmost clinical importance to 
elucidate physiological mechanisms that are responsible 
for this condition[8,14].

HEMODYNAMIC HYPOTHESIS FOR 
HYPERFILTRATION IN TYPE 1 DM
As reviewed elsewhere, the hemodynamic hypothesis 
suggests that hyperfiltration is caused by changes in 
pre-glomerular (afferent) and post-glomerular (effer-
ent) arteriolar tone[13]. A variety of  vasoactive mediators 
regulate glomerular arteriolar tone, including the nitric 
oxide (NO) system, cyclooxygenase 2 (COX2)-derived 
prostanoids, the renin angiotensin system (RAS), protein 
kinase C (PKC) and endothelin (ET). Strong experimen-
tal evidence has suggested that hyperglycemia increases 
the production and/or bioavailability of  these factors, 
leading to changes to segmental resistance, thereby influ-
encing renal function[13]. While pre- and post-glomerular 
arteriolar resistance cannot be measured in human stud-
ies, a similar change in levels of  vasoactive mediators has 
been postulated in human integrative physiology studies 
involving patients with type 1 DM. These studies used 
inulin and para-aminohippurate clearances to measure 
GFR, filtration fraction, renal blood flow and renal vas-
cular resistance[13].

At the afferent arteriole, experimental evidence has 
strongly implicated a primary increase in NO production 
and bioactivity, which is mediated by hyperglycemia[15-17]. 
Less is known regarding the NO system in patients with 
uncomplicated type 1 DM, as reviewed elsewhere[13]. For 
example, increases in urinary and serum levels of  NO 
metabolites are present in patients with type 1 DM and 
are associated with the degree of  chronic hyperglyce-
mia[15,18]. These studies have, however, been limited by 
the inclusion of  both normal buminuric and albuminuric 
participants, who may have underlying differences in NO 
bioactivity[13]. Studies examining the interaction between 
NO and hyperfiltration have been further limited by a 

lack of  dynamic testing, such as the inhibition of  NO 
synthase or the use of  acute hyperglycemic clamping[19]. 
Such physiological maneuvers are necessary to clarify the 
role of  the NO system in early type 1 DM.

In addition to the NO system, COX2-derived pros-
tanoids likely mediate an important impact on the affer-
ent arteriolar function, leading to hyperfiltration[13,20-22]. 
COX2 is constitutively expressed in vascular endothelial 
cells in renal tissue and mediates important renal autoreg-
ulatory effects at the macula densa[23]. We have previously 
demonstrated that COX2 inhibition during clamped eug-
lycemic conditions result in a partial reduction in GFR in 
hyperfiltering type 1 DM patients, consistent with find-
ings from hyperfiltering animals[20,24]. Interestingly, COX2 
inhibition did not ameliorate the GFR increase mediated 
by hyperglycemia. Despite compelling animal data, the 
use of  COX2 inhibitors in humans is limited by partial 
hemodynamic effects and a side effect profile which pre-
vents long term use of  these agents.

In addition to factors in the pre-glomerular circula-
tion, efferent vasoconstriction related to RAS activation 
plays a critical role in the pathogenesis of  glomerular 
hyperfiltration in animal and human studies[1,25,26]. For 
example, we have previously demonstrated that angio-
tensin-converting-enzyme (ACE) inhibition for 21 d is 
associated with a significant decline in hyperfiltration 
in patients with uncomplicated type 1 DM[26]. We were 
unable, however, to normalize GFR in our cohort. In 
contrast, GFR was not influenced by ACE inhibition in 
participants with normofiltration. We have extended this 
work by examining the effect of  adding an investigational 
PKC-β inhibitor (ruboxistaurin) to pre-existing RAS 
blockade therapy in patients with microalbuminuria[27]. 
Our rationale for this study was that the hemodynamic 
effects of  hyperglycemia and angiotensin Ⅱ, including 
hyperfiltration, are mediated by PKC-β intracellular sig-
naling cascades[28,29]. Similar to the effects of  ACE inhibi-
tion, the addition of  ruboxistaurin partially reduced, but 
did not normalize hyperfiltration, suggesting the need for 
the blockade of  multiple pathways to abolish the hyper-
filtration state. 

Other vasoactive mediators have been associated 
with renal hyperfiltration in experimental models of  DM, 
including ET-1[30]. Plasma ET-1 levels are increased in 
patients with DM due to the influence of  hyperglycemia, 
RAS activation and PKC-β[31,32] and have been associated 
with microalbuminuria and the development of  chronic 
kidney disease[33-35]. From a hemodynamic perspective, ad-
ministration of  exogenous endothelin is associated with 
increases in renal vascular resistance (RVR) and filtration 
fraction (FF), and a decline in effective renal plasma flow 
(ERPF) in healthy patients, suggesting a renal hyperfiltra-
tion response[36,37]. Blockade of  the ET-A type receptor 
leads to reductions in systemic blood pressure and RVR 
and a rise in ERPF with no change in FF, suggesting a re-
nal vasodilatory effect[38,39]. Importantly these effects are 
lost in the presence of  ET-B type receptor antagonists, 
which cause an opposite rise in blood pressure and RVR 
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and sodium retention leading to edema[38]. In clinical 
studies examining ET-A receptor blockade with avosen-
tan, these hemodynamic observations have translated 
into anti-proteinuric effects and preservation of  renal 
function in patients with type 2 DM. Unfortunately, these 
promising clinical effects have been accompanied by an 
increased risk of  sodium retention and edema, which 
may ultimately limit the use of  these agents[40,41]. This 
adverse effect likely occurs because available agents ex-
hibit ET-B receptor antagonism at doses that have been 
studied, leading to increased proximal tubular sodium 
reabsorption[40,41]. To our knowledge, human mechanistic 
studies examining the effect of  ET antagonists on renal 
hyperfiltration in patients with type 1 DM have not been 
performed.

TUBULAR HYPOTHESIS FOR 
HYPERFILTRATION IN TYPE 1 DM
In contrast with the hemodynamic hypothesis, the tubu-
lar hypothesis proposes that hyperfiltration is initiated by 
increased sodium reabsorption in the proximal tubule, 
which is mediated by the sodium-glucose cotransporter-2 
(SGLT2)[42]. This increase in proximal reabsorption reduc-
es delivery of  sodium to the macula densa, which senses 
a decline in effective circulating volume and renal perfu-
sion. To “maintain” GFR under conditions of  effective 
circulating volume contraction, a physiological response 
would be to reduce adenosine generation in the juxtaglo-
merular apparatus, leading to afferent arteriolar vasodila-
tation, an increase in renal perfusion and a normalization 
in GFR (tubuloglomerular feedback-TGF)[5,43,44]. In DM, 
the decrease in distal delivery is not on the basis of  ef-
fective circulating volume contraction, but instead due to 
increased proximal reabsorption of  sodium, independent 
of  volume status. Consequently, increased proximal re-
absorption is associated with a supranormal rise in GFR 
into the hyperfiltration range[5,45,46].

Animal studies have also elucidated the role of  the 
tubular hypothesis by administering SGLT2 inhibitors 
in experimental models of  type 1 and type 2 DM[47,48]. 
These studies have suggested that SGLT2 inhibition 
decreases hyperfiltration and histological evidence of  
diabetic nephropathy. In humans, while these agents have 
demonstrated glycemic, blood pressure and weight lower-
ing effects, effects on direct measures of  GFR are not yet 
known[49-51].

In addition to the SGLT2, adenosine has been impli-
cated as an important factor that mediates TGF. The use 
of  agents that modulate adenosine activity may therefore 
provide mechanistic insights into the pathophysiology 
of  renal hyperfiltration[43]. For example, adenosine A1 
antagonists, which have been used in heart failure stud-
ies, would be expected to increase GFR and worsen 
hyperfiltration[52]. While adenosine A1 antagonists have 
not, to our knowledge, been used in mechanistic studies 
in patients with DM, short-term administration of  these 

agents may help to clarify the role of  tubular factors in 
the pathogenesis of  renal hyperfiltration.

RENAL HYPERFILTRATION AND 
CHANGES IN MACROVASCULAR 
FUNCTION
In addition to increased renal perfusion leading to hy-
perfiltration, patients with type 1 DM, not analyzed on 
the basis of  filtration status, exhibit elevated blood flow 
in skeletal muscle[53]. Furthermore, some of  the same 
factors that cause hyperfiltration have been implicated 
in the pathogenesis of  the early systemic vascular ab-
normalities that have been described in type 1 DM, 
including increased NO bioactivity[53]. To determine if  
renal hyperfiltration is associated with exaggerated sys-
temic vascular abnormalities, we measured endothelial 
function and arterial stiffness in our cohort of  patients 
with uncomplicated type 1 DM[21,54]. We observed that 
hyperfiltration is associated with high arterial compliance 
and an impaired vasodilatory response to reactive hyper-
emia[21,54]. We interpreted these observations to reflect an 
underlying state of  generalized maximal vasodilatation 
and a subsequent inability to dilate further in response to 
an ischemic stimulus. Whether medications that reduce 
hyperfiltration, such as ACE inhibitors, also preferentially 
increase endothelial function in hyperfiltering patients 
is unknown. Regardless of  the underlying mechanisms, 
hyperfiltration related to type 1 DM reflects a generalized 
change in vascular function leading to renal and systemic 
vascular abnormalities that may predispose to the initia-
tion and progression of  diabetic nephropathy. 

HYPERFILTRATION, TYPE 2 DM AND 
PRE-DM CONDITIONS
Hyperfiltration is not unique to type 1 DM. Type 2 DM 
is also associated with hyperfiltration. As in type 1 DM, 
hyperfiltration related to type 2 is likely to be a significant 
risk factor for the progression of  diabetic nephropa-
thy[10,55,56]. Many of  the mechanisms that have been im-
plicated in the pathogenesis of  hyperfiltration related to 
type 1 DM have also been demonstrated in the context 
of  type 2 DM, including hemodynamic and TGF-related 
factors[10,55-60]. Most of  the evidence in this area is, howev-
er based on experimental data, possibly because patients 
with type 2 DM are considerably more heterogeneous in 
terms of  co-morbid conditions and vascular diseases, and 
are therefore more difficult to include in mechanistic hu-
man physiology studies.

Obesity-related metabolic abnormalities, including 
impaired glucose tolerance, have been strongly associated 
with progressive renal disease[61,62]. Furthermore, obesity, 
the metabolic syndrome and impaired glucose tolerance 
are associated with mechanisms of  renal injury that are 
similar to those identified in overt type 2 DM[11,63-65]. For 
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example, hyperfiltration occurs in individuals with glu-
cose intolerance before the diagnosis of  type 2 DM[66,67]. 
Melsom et al[12] demonstrated an increased risk of  hy-
perfiltration in middle-aged non-DM patients with im-
paired fasting glucose. Interestingly, insulin levels were 
not associated with hyperfiltration in this cross-sectional, 
population-based study. The authors could not, however, 
rule out the possibility that hyperinsulinemia/insulin 
resistance were intermediary factors associated with the 
development of  hyperfiltration, as suggested by oth-
ers based on experimental and human data[7,68-75]. Oth-
ers have suggested that TGF-related mechanisms are 
activated in the presence of  obesity and the metabolic 
syndrome, leading to hyperfiltration[66,73,76,77]. Whatever 
the underlying mechanism, individuals with obesity and 
the metabolic syndrome exhibit a significant increase in 
GFR, predisposing a growing segment of  the population 
to progressive renal disease[11]. Additional human research 
is required to study both the effect of  pharmacotherapy 
and weight loss strategies, including bariatric surgery, on 
physiological and long-term clinical outcomes[73].

CONCLUSION 
Since agents that modulate afferent arteriolar tone are 
either not practical (Ⅳ administration of  L-NMMA) or 
associated with an unacceptable side effect profile after 
long term use (COX2 inhibitors), future attempts to 
ameliorate the hyperfiltration state will likely focus on the 
efferent arteriole and tubular factors. As reviewed else-
where, ACE inhibitors and angiotensin receptor block-
ers only result in partial renal protection, partially due to 
compensatory pathways that are activated with the use 
of  these agents[78,79]. In contrast, direct renin inhibition 
has theoretical physiological advantages that may avoid 
some of  these pitfalls. Whether these agents result in a 
more complete reduction in hyperfiltration is currently 
not known. As mentioned above, experimental evidence 
in type 1 and 2 DM has suggested that inhibition of  the 
SGLT2 co-transporter influences TGF and may reduce 
hyperfiltration. Whether this occurs in humans is un-
known and requires further study.

Perhaps a larger issue related to studying hyperfiltra-
tion is the absence of  a good marker of  kidney func-
tion within the hyperfiltration range. Although we have 
demonstrated that cystatin C compares favorably to 
creatinine-based measurements (using inulin as a gold 
standard) in patients with uncomplicated type 1 DM, cys-
tatin C does have limitations[80]. A greater understanding 
of  the role cystatin C and the identification of  additional 
markers of  GFR that are accessible and cost-efficient are 
required to perform larger therapeutic trials designed to 
better elucidate the clinical importance and treatment of  
renal hyperfiltration. 
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