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Abstract
Diabetes mellitus and its complications are becom-
ing one of the most important health problems in the 
world. Diabetic nephropathy is now the main cause of 
end-stage renal disease. The mechanisms leading to 

the development and progression of renal injury are 
not well known. Therefore, it is very important to find 
new pathogenic pathways to provide opportunities for 
early diagnosis and targets for novel treatments. At the 
present time, we know that activation of innate immu-
nity with development of a chronic low grade inflamma-
tory response is a recognized factor in the pathogenesis 
of diabetic nephropathy. Numerous experimental and 
clinical studies have shown the participation of different 
inflammatory molecules and pathways in the patho-
physiology of this complication.
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INTRODUCTION
Diabetes mellitus (DM), especially type 2, represents one 
of  the most important health problems worldwide and, 
according to recent estimations, it is likely to worsen to 
critical levels in the next decades, with the great concern 
that this disease is rising rapidly in younger population 
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groups, including children and adolescents[1,2]. According 
to data from the International Diabetes Federation, the 
number of  diabetics older than twenty will rise from 285 
million in 2010 to 439 million in 2030. Therefore, target 
organ complications secondary to diabetes, especially 
micro and macro vascular complications will be one of  
the most important medical concerns in the near future. 
Because of  this, a growing number of  researches have fo-
cused on diabetes and its complications, with the aim to 
expand our knowledge about pathogenic and pathophysi-
ological mechanisms, preventive strategies and potential 
novel therapies.

Diabetic nephropathy (DN) is one of  the most rel-
evant diabetic complications. In the last decade, DN 
has become the main cause of  end-stage renal disease 
(ESRD) in the Western world, with estimations indicating 
that type 2 diabetes contributes to a great proportion of  
patients in renal replacement therapy programs[3,4]. How-
ever, this situation is starting to change. While in the gen-
eral population the incidence of  ESRD rises continuously 
due to the increased prevalence of  diabetes mellitus, a 
recent study found that diabetes-related ESRD incidence 
in the population with diabetes has shown a declining 
trend, suggesting that current efforts in the prevention of  
ESRD may be successful[5].

PATHOPHYSIOLOGY OF DIABETIC 
NEPHROPATHY: FROM A METABOLIC 
COMPLICATION TO AN INFLAMMATORY 
DISEASE
Insulin resistance and relative insulin deficiency play key 
roles in the development of  type 2 diabetes[6,7]. Hypergly-
cemia occurring as result of  these factors is critical in the 
genesis of  diabetic complications. Poor glycemic control 
has been demonstrated as an independent predictor of  
the development and progression of  DN[8], although the 
intimate mechanisms by which hyperglycemia leads to 
renal injury are not completely known.

Over the last years, growing evidence supports the role 
of  different enzymes and metabolic pathways in the activa-
tion of  inflammatory mechanisms involved in the patho-
physiology of  DN (Figure 1).

Sorbitol-aldose reductase pathway
When intracellular glucose levels are increased, the polyol 
pathway of  glucose metabolism becomes active. The first 
and rate-limiting enzyme in this pathway is aldose reduc-
tase, which reduces glucose to sorbitol using nicotinamide 
adenine dinucleotide phosphate (NADPH) as a cofactor; 
sorbitol is then metabolized to fructose by sorbitol de-
hydrogenase that uses nicotinamide adenine dinucleotide 
(NAD+) as a cofactor. The affinity of  aldose reductase 
for glucose rises in the hyperglycemic state, causing sorbi-
tol to accumulate and using much more NADPH. 

Activation of  aldose reductase enzyme itself  is able 
to cause damage, as well as through other mechanisms 

such as activation of  protein kinase C (PKC) and protein 
glycosylation. In addition, as referred to above, excessive 
activation of  the polyol pathway increases sorbitol and 
fructose levels. Sorbitol, a strongly hydrophilic alcohol, 
does not diffuse readily through cell membranes and ac-
cumulates intracellularly with potential osmotic harmful 
consequences. Regarding fructose, this molecule can be 
phosphorylated to fructose-3-phosphate, which is broken 
down to 3-deoxyglucosone; both compounds are power-
ful glycosylating agents that participate in the formation 
of  advanced glycation end products (AGEs). 

The excessive usage of  NADPH by the overactivated 
aldose reductase may result in less cofactor available for 
other processes of  cellular metabolism and enzymes; 
for instance, glutathione reductase, which is critical for 
the maintenance of  the intracellular pool of  reduced 
glutathione. This would lessen the capability of  cells to 
respond to oxidative stress, resulting in enhanced activity 
of  compensatory mechanisms, such as the activity of  the 
glucose monophosphate shunt, the principal supplier of  
cellular NADPH. On the other hand, the usage of  NAD+ 
by sorbitol dehydrogenase leads to an increased ratio of  
NADH/NAD+, which has been termed “pseudohypoxia” 
and linked to a multitude of  metabolic and signaling 
changes known to alter cell function. It has been proposed 
that the excess of  NADH may be a substrate for NADH 
oxidase, with the subsequent generation of  intracellular 
oxidant species. Thus, activation of  the polyol pathway 
can initiate and multiply cellular damage through different 
mechanisms, including alteration of  intracellular tonicity, 
generation of  AGEs precursors, and exposition to oxida-
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tive stress as a result of  both reduction of  antioxidant de-
fences and generation of  oxidant species (Figure 2)[9,10].

Some studies have shown that the inhibition of  aldose 
reductase may have a beneficial effect on proteinuria and 
glomerular filtration rate. However, some of  these drugs 
have been associated with significant toxicities[11]. Epalr-
estat, one of  these drugs, was evaluated in patients with 
type 2 diabetes and microalbuminuria. After 5 years of  
follow-up, the rate of  urinary albumin excretion did not 
change in patients under this therapy, while it increased in 
control patients who did not receive this treatment[12]. 

Protein Kinase C
This is an enzyme with different isoforms that phosphor-
ylates various target proteins responsible for intracellular 
signal transduction involved in regulating vascular func-
tion and contractility, flow, cell proliferation and vascular 
permeability. Activation of  PKC results in a myriad of  
potential harmful effects related to diabetic complications 
(Table 1)[13].

In cultured vascular cells, elevated glucose concentra-
tions primarily activates the β and δ isoforms of  PKC. 
In the diabetic retina, hyperglycemia persistently acti-
vates PKC and p38α mitogen-activated protein kinase 
(MAPK), resulting in increased expression of  SHP-1 (Src 
homology-2 domain-containing phosphatase-1), a pro-
tein tyrosine phosphatase which is a previously unknown 
target of  PKC signaling. This signaling cascade finally 
results in pericyte apoptosis. The same pathway, activated 
by increased fatty acid oxidation in insulin-resistant arte-

rial endothelial and cardiac cells, has been suggested to 
play an important role in diabetic atherosclerosis and car-
diomyopathy. In addition, overactivity of  PKC has been 
implicated in the decreased nitric oxide (NO) production 
in smooth muscle cells and has been shown to inhibit 
insulin-stimulated expression of  endothelial NO synthase 
in cultured endothelial cells. Activation of  PKC by high 
glucose also induces expression of  vascular endothelial 
growth factor (VEGF) in vascular smooth muscle cells. 

Regarding diabetic kidney disease (DKD), a hypergly-
cemic environment induces increased PKC-β2 activity in 
renal endothelial cells to produce prostaglandin E2 and 
thromboxane A2, substances that alter the permeability 
and the response to angiotensin Ⅱ of  vascular cells. In 
addition to alterations of  blood flow and permeability, 
activation of  PKC contributes to the accumulation of  
micro vascular matrix protein by inducing expression of  
transforming growth factor (TGF)-β, fibronectin and 
type Ⅳ collagen in both cultured mesangial cells and 
in experimental animal models. This effect appears to 
be mediated by inhibition of  NO production. Finally, 
hyperglycemia-induced activation of  PKC has been also 
implicated in the overexpression of  the fibrinolytic in-
hibitor plasminogen activator inhibitor (PAI)-1 and in the 
activation of  the transcription factor nuclear factor kappa 
B (NF-κB) in cultured endothelial and vascular smooth 
muscle cells[14].

Ruboxistaurin is a specific inhibitor of  the β isoform 
of  PKC. In a variety of  experimental models of  DKD, 
ruboxistaurin normalized glomerular hyperfiltration, 
decreased urinary albumin excretion, preserved kidney 
function and was associated with structural benefits, 
including reduction of  mesangial expansion, glomerulo-
sclerosis and tubulointerstitial fibrosis. Regarding clinical 
studies, initial works of  PKC-β inhibition in type 2 dia-
betic patients with DN under treatment with angiotensin 
converting enzyme inhibitors (ACEi) and/or angiotensin 
receptor blockers (ARB) showed a reduction of  urinary 
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Figure 2  Sorbitol-aldose reductase pathway activation in diabetes mel-
litus. NAD: Nicotinamide adenine dinucleotide; NADPH: Nicotinamide adenine 
dinucleotide phosphate. 

Table 1  Mechanisms and consequences related to protein 
kinase C activation-mediated harmful effects in diabetes 
mellitus

Reduction of nitric oxide production
Increased endothelin-1, prostaglandin E2 and thromboxane A2
Induction of growth factor expression: Transforming growth factor-β 
and vascular endothelial growth factor
Accumulation of microvascular matrix, fibronectin and type Ⅳ collagen
Overexpression of fibrinolytic inhibitor plasminogen activator
inhibitor-1
Activation of the transcription factor nuclear factor kappa B
Increased nicotinamide adenine dinucleotide phosphate oxidase 
activity
Blood-flow abnormalities
Alteration of vascular permeability
Induction of angiogenesis
Organ fibrosis
Capillary occlusion
Induction of inflammatory mediators
Stimulation of oxidative stress
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albumin excretion and stabilization of  the glomerular 
filtration rate. In addition, secondary analyses of  clinical 
trials in patients with diabetic retinopathy or neuropathy 
have suggested that ruboxistaurin appears safe and may 
also prevent the onset of  DKD[15].

Advanced glycation end-products
Nonenzymatic protein glycation by glucose is a complex 
cascade of  reactions yielding a heterogeneous class of  
compounds, collectively called AGEs. This process be-
gins with the Maillard reaction, by which the carbonyl 
group (aldehyde or ketone) of  the reducing sugar re-
acts with the amino group of  the biomolecule to form 
a reversible Schiff  base. After this initial process, the 
Schiff  bases can undergo an intramolecular rearrange-
ment to form the Amadori products, which finally form 
irreversible AGEs. When AGEs are formed at critical 
sites in enzymes or proteins, they may alter the structure 
and function of  these molecules in plasma, as well as in 
the arterial wall, mesangium and glomerular basement 
membranes. AGEs can elicit their effects via ligation to 
specific receptors (RAGEs) on different cells, including 
podocytes, endothelial and smooth muscle cells, as well as 
mesangial and tubular epithelial cells. The AGE-RAGE 
interaction determines the activation of  intracellular sig-
naling pathways leading to diverse consequences, includ-
ing generation of  reactive oxygen species (ROS), release 
of  inflammatory cytokines such as tumor necrosis factor 
alpha (TNF α) and interleukin (IL)-1 and 6, activation of  
transcription factors such as NF-κB, and expression of  
adhesion molecules and growth factors like connective 
tissue growth factor (CTGF) or TGF-β[16-19].

AGEs represent a potential target in the treatment of  
DN. This therapeutic strategy includes different possibili-
ties, from inhibition of  AGE formation to blockade of  
their receptors[20,21]. Aminoguanidine, one of  the earliest 
identified inhibitors of  AGE-formation, reduces AGE 
accumulation by scavenging free reactive carbonyl groups. 
In addition, different agents widely used in diabetic pa-
tients, including aspirin, metformin, ACEi and ARB, 
have also demonstrated the capacity to decrease AGE 
accumulation. Another therapeutic approach is based on 
cross-links cleavage within and between tissue proteins 
and other organic compounds. Thus, new agents such as 
N-phenacylthiazolium bromide and alagebrium chloride 
allow the clearance of  glycated proteins via scavenger 
receptors and subsequent renal excretion. Finally, experi-
mental studies have shown that it is possible to block the 
binding of  AGEs to their specific receptor with soluble 
forms of  RAGE (produced either from alternative gene 
splicing or by proteolysis) or by using neutralizing RAGE 
antibodies. These therapeutic approaches based on anti-
AGE actions are associated with beneficial effects, such 
as reduction of  cellular oxidative stress or modulation of  
inflammation. 

Oxidative stress
Oxidative stress is caused by an imbalance between the 
production of  oxidants or ROS and the capacity of  a bi-

ological system to readily detoxify the reactive intermedi-
ates or repair the resulting damage. The final result is the 
oxidation of  important macromolecules, including pro-
teins, lipids, carbohydrates and DNA. Growing evidence 
indicates that oxidative stress plays a pivotal role in the 
development of  both micro and macro vascular diabetic 
complications[22]. 

ROS include free radicals such as superoxide, hydrox-
yl and peroxyl, and nonradical species such as hydrogen 
peroxide. It is important to note that there is also a reac-
tive nitrogen species produced from similar pathways, 
which include the radicals nitric oxide and nitrogen di-
oxide, as well as the nonradical peroxynitrite. There are a 
number of  enzymatic and nonenzymatic sources of  ROS 
in the diabetic kidney, including autoxidation of  glucose, 
advanced glycation, polyol pathway flux, mitochondrial 
respiratory chain deficiencies, xanthine oxidase activity, 
peroxidases and NAD(P)H oxidase. Importantly, a direct 
relationship has been demonstrated between the severity 
of  renal injury and the degree of  oxidative stress in DN. 
Moreover, histological studies have shown the presence 
of  glyco- and lipo-oxidation products in the mesangial 
matrix and nodular lesions of  DN[23,24].

Growing evidence indicates that metabolic abnormali-
ties in diabetes lead to mitochondrial superoxide produc-
tion, which results in the activation of  major biochemical 
harmful pathways, including increased AGE formation, 
activation of  protein kinase C, increased flux through 
the polyol pathway, and overactivity of  the hexosamine 
pathway, each of  which, in addition, can initiate and/or 
perpetuate cellular ROS generation[23,24].

The ability of  individual cell types to process glucose 
is the most important factor in the excessive intracellular 
generation of  ROS induced by hyperglycemia. Thus, the 
control of  glucose influx into the cytosol in presence 
of  elevated glucose concentrations is critical in order to 
maintain an adequate intracellular glucose homeostasis. 
However, certain renal cell populations, such as endothe-
lial, mesangial, epithelial and tubular cells, are particularly 
susceptible since they are unable to decrease glucose 
transport rates adequately. Therefore, intensive glycemic 
control and interventions that decrease cellular glucose 
uptake may limit ROS generation in the diabetic kidney[25].

In addition to approaches aimed to reduce ROS pro-
duction, a critical factor to avoid oxidative damage is the 
adequate function of  endogenous antioxidant systems, 
including free radical scavengers and enzymes, such as 
superoxide dismutase (SOD), glutathione peroxidase 
(GPx) and catalase. A reduction in expression and activ-
ity of  these antioxidant enzymes have been reported in 
diabetic micro vascular disease. Importantly, overexpres-
sion of  SOD or catalase protects against end organ dam-
age in models of  DN[24]. Finally, the therapeutic use of  
antioxidants might be a useful approach. However, con-
ventional antioxidants are unlikely to be effective because 
these compounds neutralize reactive oxygen molecules 
on a one-for-one basis, whereas hyperglycemia-induced 
overproduction of  superoxide is a continuous process. 
On the contrary, based on the beneficial effects of  anti-
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oxidant enzymes overexpression, the catalytic antioxidant 
SOD/catalase mimetic has demonstrated beneficial ef-
fects in experimental models[22,23,24]. 

Growth factors
Extracellular matrix (ECM) comprises an insoluble net-
work of  different molecules (glycoproteins, elastins, col-
lagens) that provides mechanical support for renal cells 
and participates in cell-cell interactions as well as between 
cells and other elements[25]. ECM abnormalities are a 
structural hallmark in DN and fibrosis, characterized by 
ECM accumulation and angiogenesis, and is a critical 
pathophysiological process directly related to renal func-
tion alterations and renal disease progression. Growth 
factors are molecules participating in the regulation of  
ECM formation and turn-over, with evidence of  their 
important role in the pathogenesis of  diabetic long-term 
complications. 

Transforming growth factor-β: TGF-β is considered 
the main pro-fibrotic factor in DN, playing a critical role 
in the hypertrophic process and fibrotic/sclerotic mani-
festations, including glomerulosclerosis and interstitial 
fibrosis. Multiple mediators in the diabetic environment 
converge to up-regulate TGF-β in the diabetic kid-
ney[26,27]. TGF-β is crucial in the induction and mainte-
nance of  interstitial fibrosis due to its regulatory effect 
on cell proliferation and the synthesis and degradation of  
the extracellular matrix. In addition, TGF-β promotes the 
increased production of  extracellular matrix components, 
as well as mesenchymal cell proliferation, migration and 
accumulation following inflammatory responses[28].

Specific inhibition of  TGF-β with neutralizing an-
tibodies or TGF-β1 antisense oligodeoxynucleotides in 
experimental models of  DN have resulted in the preven-
tion of  glomerular enlargement and the attenuation of  
the excess matrix expression[28,29].

Connective tissue growth factor: CTGF is a mediator 
of  TGF-β effects, promoting glomerular damage through 
increased production of  extracellular matrix proteins and 
induction of  changes in cytoskeletal structure. However, 
CTGF is able to mediate profibrotic activity directly and 
also participates in processes related to cell proliferation, 
migration and differentiation. CTGF also has the poten-
tial to modulate other factors such as VEGF and bone 
morphogenic proteins, which are involved in the repair 
process inherent to renal fibrogenesis[30,31].

Down-regulation of  CTFG expression in murine 
models of  diabetes is associated with a reduction in me-
sangial matrix expansion and the components involved 
in glomerulosclerosis and interstitial fibrosis, with a lesser 
degree of  kidney disease[32].

Vascular endothelial growth factor: The primary func-
tion of  the VEGF is to maintain the integrity and viability 
of  the endothelium throughout diverse actions, including 
promotion of  endothelial cell proliferation, differentiation 

and survival, participation in interstitial matrix remodeling, 
and mediation of  endothelium-dependent vasodilatation. 

In the kidney, VEGF expression is most prominent in 
podocytes and tubular epithelial cells, while VEGF recep-
tors are mainly found on endothelial cells. It has recently 
been proved that VEGF participates in processes of  neo-
vascularization and glomerulosclerosis[33,34] and growing 
evidence highlights the relevance of  VEGF in the patho-
genesis of  DN. Different studies suggest that podocyte-
derived VEGF is directly involved in the glomerular 
capillary hyperpermeability of  macromolecules[35]. VEGF 
expression is significantly increased in the diabetic state 
and stimulation of  VEGF secretion by podocytes can af-
fect blood flow, glomerular endothelial cell function and 
also have an autocrine effect, altering podocyte synthesis 
of  glomerular basement membranes constituents and 
foot processes[36,37]. 

From a therapeutical perspective, animal studies using 
inhibition of  VEGF activity by neutralizing antibodies 
or small molecule inhibitors of  VEGF receptor kinase 
signaling have demonstrated a marked amelioration of  
albuminuria in the diabetes setting[38-40].

Adipocytokines
Adipocytokines are cell-to-cell bioactive peptides secreted 
by the adipose tissue that act locally and distally through 
autocrine, paracrine and endocrine effects. These mol-
ecules have been related to multiple functions as well as 
to pathophysiological processes.

Adiponectin: The most abundant adipocytokine in the 
human plasma is adiponectin, which has been inversely 
correlated with body mass index and insulin resistance[41]. 
The role of  this molecule has been highlighted in the 
pathogenesis of  obesity-related illnesses, including Type 
2 DM, because it is an important factor in the regulation 
of  insulin sensitivity as well as vascular endothelial func-
tion[42]. Adiponectin has been implicated in the functions 
of  endothelial and inflammatory cells, including preserva-
tion of  endothelial NO by directly shifting the balance 
between this molecule and ROS generation in a direction 
favorable to NO availability. Adiponectin acts through its 
receptors Adipo-R1 and Adipo-R2, with participation of  
diverse downstream signaling mechanisms including the 
AMP-activated protein kinase (AMPK) and the cAMP-
dependent protein kinase (cAMP/PKA) pathways. 

Experimental studies have shown that adiponectin 
improves insulin sensitivity through the stimulation of  
glucose utilization and fatty acid oxidation in skeletal 
muscles and liver, facilitating glucose uptake and delet-
ing hepatic gluconeogenesis[43,44]. A negative relationship 
between systemic oxidative stress and circulating adipo-
nectin levels has been shown in rodent models of  obesity 
and the metabolic syndrome[45]. Additionally, adiponectin 
suppresses inflammatory changes in endothelial cells in-
duced by TNF-α. Finally, the accumulation of  this adipo-
cytokine in the injured kidney has been described, which 
is able to prevent glomerular and tubulointerstitial injury 
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through modulating inflammation and oxidative stress[46].
In the clinical setting, the interrelationships between 

adiponectin, inflammation and renal damage are contro-
versial. Thus, reduced levels of  adiponectin have been 
associated with elevated concentrations of  inflammatory 
parameters, such as C-reactive protein (CRP) and IL-6, 
and correlated with metabolic syndrome[47]. However, in 
type 1 diabetic patients, plasma adiponectin concentra-
tions are found to be significantly elevated compared to 
healthy controls[48,49] and, moreover, DN and progression 
to ESRD are found to be associated with higher serum 
adiponectin levels in these patients[50,51]. On the contrary, 
reduced adiponectin levels have been reported in patients 
with type 2 diabetes in the basal state with impaired utili-
zation of  adiponectin in the coronary artery and/or the 
heart, which has been suggested as a promoting factor 
for the development of  atherosclerosis[52,53]. In addi-
tion, genetic variability in the adiponectin gene has been 
related to plasma adiponectin isoforms and the risk of  
DN[54,55].

From a therapeutic perspective, both non-pharmaco-
logical strategies, such as weight reduction and lifestyle 
modifications[56-59], as well as pharmacological interven-
tions, treatment with thiazolidinediones[60-65], blockade 
of  the renin-angiotensin system with ACEI or ARB[66-71], 
clonidine-like sympatho-inhibitory antihypertensive 
agents[72], fenofibrate[73] and the cannabinoid-1 receptor 
blocker rimonabant[74], have been demonstrated to be 
able to enhance adiponectin levels, which might provide a 
scientific rationale for the use of  these drugs in order to 
increase plasma adiponectin concentrations in high-risk 
populations.

Leptin: Leptin plays a key role in regulating energy intake 
and expenditure. In addition, this molecule has been 
related to diverse potentially pro-inflammatory effects, 
such as impairment of  endothelial function, stimulation 
of  inflammatory signaling pathways, increase in oxidative 
stress, stimulation of  platelet aggregation and migration, 
and stimulation of  hypertrophy and proliferation of  vas-
cular smooth muscle cells. 

Leptin levels have been reported to be increased in 
both type 1 and type 2 diabetic patients with microalbu-
minuria or macroalbuminuria[75,76]. In this context, direct 
and indirect renal effects of  leptin could be relevant for 
the development and progression of  nephropathy. Endo-
thelial cells express leptin receptors, showing an increased 
ROS production in response to leptin stimulation. In ad-
dition, leptin stimulates the proliferation of  glomerular 
endothelial cells, increases TGF-β1 synthesis and col-
lagen type IV production. It also stimulates hypertrophy 
in cultured rat mesangial cells and, moreover, infusion 
of  leptin into normal rats promotes the development of  
glomerulosclerosis and proteinuria[77].

Visfatin: Visfatin is preferentially produced by visceral fat 
and promotes B cell maturation and inhibits neutrophil 
apoptosis. 

Recent investigations suggest the participation of  
visfatin in the pathogenesis of  DN. Experimental in vivo 
and in vitro studies have shown that visfatin is produced 
by renal cells (podocytes, mesangial and proximal tubular 
cells) and diabetic animals produce higher levels of  this 
adipocytokine. In these models, plasma visfatin levels are 
elevated in the early stages of  diabetes, which are posi-
tively correlated with body weight, fasting plasma glucose 
and microalbuminuria[78,79]. In vitro studies have demon-
strated that visfatin treatment of  cultured cells resulted 
in the activation of  downstream signaling pathways (in-
cluding Erk-1, Akt and p38 MAPK) and increased NF-
κB transcriptional activity, leading to a marked increment 
in the synthesis of  profibrotic factors such as TGF-β1, 
plasminogen activator inhibitor-1 and type I collagen[78-80].

From a clinical perspective, plasma visfatin levels 
are significantly increased in diabetic patients compared 
to control subjects, showing a positive correlation with 
systolic blood pressure, body weight, fasting glucose, 
plasma level of  monocyte chemoattractant protein-1 
(MCP-1) and urine albumin excretion (UAE)[80].

Chemokines
Monocyte-specific chemokines attract macrophages to 
tissues, migrating from vessels following an endothelial 
gradient[81]. Experimental studies have demonstrated that 
kidney macrophage accumulation is associated with renal 
damage in DN.

The most potent chemokine factor for monocytes is 
the MCP-1, an essential molecule involved in monocyte 
traffic across endo and epithelial barriers[82]. It has been 
demonstrated that MCP-1-mediated macrophage accu-
mulation and activation is a critical mechanism in the de-
velopment of  early DN in animal models[83]. In addition, 
MCP-1 binding to the MCP-1 receptor 2 (CCR2) is able 
to induce a significant reduction in nephrin (both mRNA 
and protein expression) via a Rho-dependent mechanism 
in podocytes[84]. In streptozotocin-treated mice, MCP-1 
was overexpressed within the glomeruli and the absence 
of  MCP-1 reduced both albuminuria and downregulation 
of  nephrin[84]. In clinical studies, upregulation of  kid-
ney MCP-1 is associated with macrophage recruitment, 
albuminuria, tubulointerstitial damage and disease pro-
gression[85-88], indicating that blockade of  MCP-1 activity 
should be considered as a therapeutic target in the treat-
ment of  DN. 

Blockade of  the CCR2 pathway ameliorated glomeru-
losclerosis in experimental studies[89]. Others works in 
type 2 diabetic patients with DN have shown a reduction 
of  urinary MCP-1 levels as well as an improvement in 
renal function after blockade of  the renin-angiotensin-
aldosterone system by ACEi or aldosterone[90-92]. More 
recent studies have shown that vitamin D analogues can 
inhibit the synthesis and activity of  MCP-1 and amelio-
rate glomerular injury in diabetes[93].

Another molecule involved in chemoattraction is the 
colony-stimulating factor (CSF)-1, which is produced 
in diabetic kidneys and promotes macrophage accumu-
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lation, activation and survival. CSF-1 acts exclusively 
through the c-fms receptor, which is only expressed on 
cells of  the monocyte-macrophage lineage. One experi-
mental study has demonstrated that blockade of  c-fms 
can suppress the progression of  established DN in db/
db mice[94].

Adhesion molecules
Cell adhesion molecules are proteins located on the cell 
surface involved in the binding with other cells or with 
the extracellular matrix. These proteins are typically trans-
membrane receptors composed of  three domains: an 
intracellular domain that interacts with the cytoskeleton, 
a transmembrane domain, and an extracellular domain 
that interacts either with other adhesion molecules of  the 
same kind (homophilic binding) or different kind or the 
extracellular matrix (heterophilic binding). Four protein 
groups are the most important families of  cell adhesion 
molecules: the immunoglobulin superfamily, the integrins, 
the cadherins and the selectins.

Intercellular adhesion molecule-1: Intercellular adhesion 
molecule-1 (ICAM-1), also known as CD54, is an endothelial 
and leukocyte associated transmembrane protein with 
relevance in stabilizing cell-cell interactions and facilitating 
leukocyte endothelial transmigration. It is constitutively 
present in the membranes of  leukocytes and endothelial 
cells; upon cytokine stimulation, the concentrations greatly 
increase. ICAM-1 ligation produces proinflammatory ef-
fects such as inflammatory leukocyte recruitment by signal-
ing through cascades involving a number of  kinases[95].

This adhesion molecule is involved in the pathogen-
esis of  diabetic kidney disease[96,97]. Renal expression of  
ICAM-1 is elevated in DN and has been associated with 
progression of  renal damage[98,99]. Regarding clinical stud-
ies, several studies have shown that plasma concentra-
tions of  ICAM-1 are increased in both type 1 and type 2 
diabetic patients with DN[100,101].

It has been suggested that modulation of  ICAM-1 

activity (blockade of  receptor activation or reduction of  
expression) may be a therapeutic approach in DN. In a 
recent experimental study, colchicine administration to 
streptozotocin-induced diabetic rats significantly reduced 
UAE, inflammatory cell infiltration and extracellular ma-
trix accumulation. These beneficial effects were associat-
ed with inhibition of  inflammatory molecules expression 
in the renal tissue, including ICAM-1[102].

Vascular cell adhesion molecule-1: Vascular cell adhe-
sion molecule-1 (VCAM-1) mediates the adhesion of  
lymphocytes, monocytes, eosinophils and basophils to 
vascular endothelium. It also functions in leukocyte-en-
dothelial cell signal transduction and has been suggested 
to play a role in the development of  several pathological 
processes, including atherosclerosis, rheumatoid arthritis 
and DN.

Experimental works in diabetic mice demonstrated an 
increased expression of  VCAM-1 by endothelial as well 
as by infiltrating cells in the renal interstitium[103]. Studies 
in subjects with DN have shown elevated circulating con-
centrations of  VCAM-1[104,105]. Prospective studies in type 
2 diabetic subjects have shown that markers of  endothe-
lial dysfunction and inflammatory activity were related 
to elevated UAE during follow-up and, furthermore, 
elevated plasma levels of  soluble VCAM-1 and CRP were 
associated with an increased risk of  death[105]. 

Proinflammatory cytokines 
Inflammatory cytokines are key molecules involved in the 
inflammatory process, playing a significant role as regula-
tors as well as final effectors. Importantly, they have been 
involved in the pathogenesis of  several diseases, includ-
ing DN (Table 2). 

Interleukins: Macrophages incubated with glomerular 
basement membranes from diabetic rats produced signifi-
cantly greater concentrations of  IL-1 and TNF-α than 
macrophages incubated with membranes from normal 
animals, suggesting the potential role of  inflammatory cy-
tokines as pathogenic factors in DN for the first time[106]. 
Later studies have demonstrated that renal cells (endothe-
lial, mesangial, glomerular and tubular epithelial cells) are 
able to synthesize inflammatory cytokines[107-109]. 

IL- 1 and IL-6 are up-regulated in the diabetic kid-
ney[110,111]. IL-1 has been related to increased endothelial 
permeability, proliferation of  mesangial cells and matrix 
synthesis, and intraglomerular hemodynamic abnormali-
ties secondary to alteration of  prostaglandin produc-
tion[112,113]. IL-6 stimulates proliferation of  mesangial cells, 
increases fibronectin expression, affects extracellular 
matrix dynamics, and enhances endothelial permeabil-
ity[114,115]. Elevated concentrations of  IL-6 have been re-
ported in type 2 diabetic patients and overt nephropathy, 
with a direct association between membrane thickening 
and IL-6. In addition, IL-6 has been related to the pro-
gression of  renal disease[116].

IL-18 is an inflammatory cytokine recently involved 
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Table 2  Inflammatory cytokine-related effects potentially 
involved in the development and progression of renal injury 
in diabetes

Increase expression and synthesis of chemokines, adhesion molecules, 
transcription factors, cytokines, growth factors and mediators of inflam-
mation
Alteration of synthesis of prostaglandins and hyaluronan
Stimulation of oxidative stress
Induction of intraglomerular hemodynamic abnormalities
Increase of vascular endothelial cell permeability
Induction of cell proliferation and contraction, and inhibition of endo-
thelium relaxation
Increase fibronectin expression
Induction of cell apoptosis and necrosis
Induction of glomerular hypertrophy
Stimulation of plasminogen activator inhibitor-1 production 
Reduction of tissue factor inhibitor and thrombomodulin expression
Stimulation of inflammatory cells recruitment and activation
Induction of major histocompatibility complex antigen expression
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in the pathogenesis of  DN. Type 2 diabetic patients 
show elevated levels of  IL-18, which were related to the 
development of  increased urinary albumin excretion[117]. 
Later studies confirmed the independent and significant 
association between albuminuria and both serum and 
urinary IL-18 concentration and, moreover, these levels 
correlated positively with changes in urinary albumin 
excretion[118]. Finally, high levels of  IL-18 have been sug-
gested as a significant predictor of  early renal dysfunction 
in type 2 diabetes[119].

Tumor necrosis factor-α
Diverse cells, including monocytes, macrophages and 
intrinsic renal cells, are also able to synthesize this inflam-
matory cytokine[108,109,112,120]. Experimental studies have 
demonstrated that mRNA expression levels for TNF-α 
are increased by approximately 2.5-fold in the renal cor-
tex of  diabetic rats compared with the expression ob-
served in normal rats[121]. This is a relevant finding since 
this cytokine has a variety of  bioactivities that may pro-
mote renal injury[122,123], including intraglomerular blood 
flow dysregulation[124] and abnormalities of  the glomeru-
lar barrier function due to the induction of  local genera-
tion of  ROS[125]. 

Urinary albumin excretion significantly correlates with 
renal cortical expression levels and urinary TNF-α excre-
tion[121] and, moreover, elevated urinary TNF-α concen-
trations and increased TNF-α levels in the renal interstitial 
fluid preceded the increase in urinary albumin excre-
tion[126]. Clinical studies show similar results, with a direct 
and significant association between serum TNF-α and 
urinary protein excretion in diabetic patients with normal 
renal function and microalbuminuria, as well as in subjects 
with overt nephropathy and renal failure[127,128]. 

Importantly, modulation of  TNF-α activity may have 
an important therapeutic strategy for DN. Experimental 
studies have shown that administration of  infliximab (a 
chimeric anti-TNF-α antibody), etanercept (a soluble 
TNF-α receptor) or pentoxifylline (a phosphodiesterase 
inhibitor able to inhibit TNF-α mRNA accumulation 
and the transcription of  the TNF-α gene) to diabetic 
rats were associated with reduction of  albuminuria and 
urinary TNF-α excretion[127,129-133]. Moreover, clinical trials 
have shown that pentoxifylline reduces urinary protein 
excretion in diabetic patients with normal renal function 
as well as in those with renal insufficiency[128,134,135]. In 
addition, combination of  pentoxifylline and renin-angi-
otensin system blockers shows an additive antiproteinuric 
effect[136,137]. 

PERSPECTIVES
Significant advances have been made in recent years in re-
lation to the pathogenesis of  diabetic nephropathy, which 
have recognized the involvement of  inflammation in the 
development and progression of  renal damage in diabetic 
patients. This has expanded the state of  knowledge very 
significantly of  one of  the most important complications 

of  diabetes, allowing identification of  molecules and 
signaling pathways involved in the genesis and evolution 
of  renal damage in this context. Understanding these 
processes is a key factor to enable the identification of  
new therapeutic targets for the treatment of  this compli-
cation. In fact, there are clinical studies (so far based on 
the inhibition of  TNF-α) demonstrating that inhibition 
of  inflammatory factors is a strategy that can realistically 
be applied to patients. However, we are still unable to 
understand globally how these inflammatory pathways 
interact with each other or how they interact with other 
pathogenic factors. Moreover, once new potential thera-
peutic targets of  interest are identified, it is necessary to 
develop molecules that inhibit these inflammatory factors 
or pathways and conduct studies from the bench to the 
bedside that provide new strategies for the treatment of  
diabetic nephropathy.

CONCLUSION
Recent studies in the last decade have shown that inflam-
mation is a key process in the development of  diabetes 
mellitus and diabetic complications. Different inflamma-
tory molecules and pathways are involved in the patho-
genesis and progression of  DN. The growing knowledge 
and better understanding of  the role of  the inflammatory 
processes in the context of  DN will represent an impor-
tant therapeutic opportunity for the development of  new 
strategies that can be translated successfully into clinical 
applications for the treatment of  this complication.
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