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The AMP-activated kinase (AMPK) senses the energy status of cells
and regulates fuel availability, whereas hypothalamic AMPK
regulates food intake. We report that inositol polyphosphate
multikinase (IPMK) regulates glucose signaling to AMPK in a path-
way whereby glucose activates phosphorylation of IPMK at
tyrosine 174 enabling the enzyme to bind to AMPK and regulate
its activation. Thus, refeeding fasted mice rapidly and markedly
stimulates transcriptional enhancement of IPMK expression while
down-regulating AMPK. Also, AMPK is up-regulated in mice with
genetic depletion of hypothalamic IPMK. IPMK physiologically
binds AMPK, with binding enhanced by glucose treatment. Regu-
lation by glucose of phospho-AMPK in hypothalamic cell lines is
prevented by blocking AMPK-IPMK binding. These findings imply
that IPMK inhibitors will be beneficial in treating obesity and
diabetes.

AMP-activated protein kinase (AMPK) is a principal cellular
fuel gauge. In response to energetic stresses, ATP is con-

verted to AMP, which activates AMPK (1–3). AMPK phosphor-
ylates a variety of substrates to alter diverse cellular functions,
including fatty acid synthesis and oxidation, cholesterol and gly-
cogen synthesis, mitochondrial biogenesis, gluconeogenesis, and
protein synthesis (2). For instance, by phosphorylating acetyl-
CoA carboxylase, AMPK inhibits fatty acid synthesis (4). In intact
organisms, AMPK plays a major role in hypothalamic signaling
that regulates food intake (5, 6).
Inositol polyphosphate multikinase (IPMK) is a key regulatory

enzyme in inositol phosphate disposition. It is the principal phys-
iologic generator of inositol pentakisphosphate (IP5) and, thus,
is rate-limiting in the formation of the inositol pyrophosphates
such as diphosphoinositol pentakisphosphate (IP7) (7–9). IPMK
also possesses physiologic PI3-kinase activity, which regulates Akt
signaling (10). Acting in a noncatalytic fashion, IPMK binds to
mTOR (mammalian target of rapamycin), stabilizing the mTOR-
raptor complex and enhancing protein synthesis (11).
Besides influencing carbohydrate and lipid metabolism,

AMPK is an important regulator of protein synthesis, an area of
possible linkage to IPMK. AMPK phosphorylates and, thereby,
activates tuberous sclerosis complex (TSC)2, a GTPase activat-
ing protein, which is a negative regulator of mTOR signaling
(12). Moreover, AMPK phosphorylates raptor, dissociating the
mTOR complex and, thereby, inhibiting protein synthesis (13).
mTOR interacts reciprocally with AMPK in influencing food
intake with mTOR regulating responses to amino acids, whereas
AMPK responds selectively to dietary carbohydrate alterations (2,
5, 14, 15). These interfaces of IPMK and AMPK prompted us to
explore their molecular interactions. We show that IPMK binds to
AMPK to enhance its signaling. Glucose exposure elicits tyrosine
phosphorylation of IPMK, enabling its stimulation of AMPK.

Results
Reciprocal Regulation of IPMK and AMPK in the Hypothalamus and
Cell Lines in Response to Nutrients. Kahn and coworkers demon-
strated dramatic alterations of activated phospho-AMPK in

response to fasting and refeeding (5), which we confirm and
extend to IPMK regulation (Fig. 1A). We provided 2 h of
refeeding to fasted mice, examining phospho-AMPK and protein
levels of IPMK, as well as monitoring mTOR signaling via levels
of phospho-S6 kinase and phospho-S6. As reported previously,
refeeding markedly decreases levels of phospho-AMPK while
eliciting major increases in phospho-S6 kinase and phospho-S6
(5, 14). In fasted mice, IPMK levels in the hypothalamus are
barely detectable but are increased dramatically by refeeding.
Quantitative RT-PCR reveals that refeeding markedly increases
mRNA for IPMK (Fig. 1B), indicating that the enhanced levels
of IPMK protein reflect transcriptional augmentation.
We wondered whether IPMK physiologically regulates AMPK

activity in the hypothalamus. We deleted hypothalamic IPMK by
injecting the ventral hypothalamus of floxed-floxed IPMK mice
with an adenovirus expressing either GFP or GFP-Cre recom-
binase (Fig. 1 C and D). The injection was targeted to the area of
the ventral hypothalamus containing the arcuate nucleus, which
is critical for AMPK-mediated food intake. Western blot analysis
reveals virtual abolition of IPMK in the ventral hypothalamus
following viral treatment (Fig. 1C). By contrast, no alteration in
IPMK is evident in the dorsal hypothalamus (Fig. S1 A and B).
The IPMK deletion is accompanied by an almost twofold in-
crease in hypothalamic phospho-AMPK, with no changes in
AMPK protein level (Fig. 1 C and D).
We substantiated the regulation of phospho-AMPK by IPMK

using mouse embryonic fibroblasts (MEFs) from floxed-floxed
IPMK mice (Fig. 1E). In WTMEFs, exposure to lowered glucose
markedly augments phospho-AMPK. This increase is abolished
in IPMK deleted MEFs.

IPMK Physiologically Binds and Regulates AMPK Activity. We won-
dered whether the regulation of AMPK by IPMK derives from
direct interactions between the two proteins. In overexpression
systems, we demonstrate binding between the two proteins (Fig.
2A). We also show physiologic binding between endogenous
IPMK and AMPK in hypothalamic lysates of mouse brain (Fig.
2B). Binding between the two proteins is dynamically regulated
by glucose availability (Fig. 2C). Thus, glucose deprivation for
2 h markedly decreases IPMK-AMPK binding, which is fully
restored by a 30-min reexposure to glucose.
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We developed a dominant-negative construct of IPMK as
a probe to elucidate functional consequences of IPMK-AMPK
binding. We mapped sites on IPMK that are required for AMPK
binding (Fig. 3A). Two portions of IPMK appear to be critical
for binding: (i) exon 4, which occurs in the linker region between
the inositol phosphate binding site and the kinase domain; and (ii)
exon 6, which is part of the kinase domain of IPMK. We used exon
4, which codes for amino acids 125–182 of IPMK, as a dominant-
negative in the GT1-7 cell line, which derives from hypothalamic
neurons (16) (Fig. 3). Overexpression of IPMK-exon 4 markedly
disrupts IPMK-AMPK binding. The considerable enhancement of
IPMK-AMPK binding elicited by glucose is abolished in prepa-

rations treated with IPMK-exon 4 (Fig. 3 B and C). We then in-
vestigated whether IPMK-AMPK binding is responsible for the
regulation of phospho-AMPK by glucose. The striking decrease in
phospho-AMPK elicited by glucose is abolished by treatment with
IPMK-exon 4 (Fig. 3D). These findings establish that interactions of
IPMK with AMPK are responsible for the regulation of phospho-
AMPK by glucose.

Tyrosine Phosphorylation of IPMK Determines Its Regulation of
AMPK. Regulation by glucose of IPMK-AMPK binding and
AMPK activity raises questions about mechanisms that might
determine IPMK binding to AMPK. Catalytic activity of the two
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Fig. 1. IPMK physiologically regulates AMPK activation in
response to nutrients. (A and B) Effects of refeeding on IPMK
gene expression in the hypothalamus. Mice fasted for 24 h
were refed for 2 h, the whole hypothalami were isolated, and
RNA or protein extracts were prepared as described in Mate-
rials and Methods. (A) Westerns blots are shown for P-AMPKα,
P-S6K, P-S6, and IPMK. (B) Quantification of IPMK mRNA levels
in fasted and refed mice (n = 5 per group). (C and D) Loss of
hypothalamic IPMK leads to elevated P-AMPKα in ad libitum
mice. IPMKlox/lox mice were injected with adenovirus express-
ing either GFP or Cre recombinase. Mice were fed ad libitum
and killed. (C) Westerns blots are shown of P-AMPKα, AMPK,
IPMK, and GAPDH. (D) Relative quantifications of P-AMPKα
expression levels are shown in GFP-infected (black bar) or GFP-
Cre-infected (open bar) mice. Values are corrected for corre-
sponding total AMPK antibody (*Student t test; P < 0.005). (E)
IPMK flox/flox (WT) and IPMK−/− (KO) MEFs were incubated
with DMEM media containing either high glucose (4.5 g/L) or
low glucose (1.5 g/L).
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Fig. 2. IPMK regulates AMPK activation through interaction
of IPMK-AMPK in response to glucose availability. (A) IPMK
interacts with AMPKα2. GST-AMPKα2 was cotransfected in
HEK293T cells with myc-IPMK, followed by GST pull-down
assay. The precipitated proteins and the input proteins were
detected by immunoblotting with antibodies to GST or myc.
(B) Hypothalamic lysate (500 μg) was used for immunopre-
cipitation (IP) against Rabbit IgG antibody or IPMK antibody
to determine the physiological binding of AMPKα2. (C) HA-
AMPKα2 and Myc-LKB1 were cotransfected in GT1-7 cells
with GST or GST-IPMK as indicated. Cells were deprived of
glucose for 3 h and stimulated with glucose for 30 min. GST
pull-down assay was performed to determine IPMK and
AMPKα2 interaction.
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proteins does not appear to be critical. Thus, AMPK-K45R,
which is catalytically dead, and AMPK-T172D, which is consti-
tutively active, do not display altered binding to IPMK (Fig.
S2A). Also, kinase-dead IPMK binds normally to AMPK
(Fig. S2B).
We wondered whether phosphorylation of IPMK might in-

fluence its interactions with AMPK. Our earlier studies estab-
lished that phosphorylation of IPMK plays a role in its regulation
of Akt, but specific kinases influencing IPMK were not identi-
fied (10). We immunoprecipitated with antibodies to phospho-
tyrosine, phospho-serine, and phospho-threonine, using cells
maintained in the absence or presence of glucose (Fig. 4A). This
model of stringent glucose starvation and repletion is typically
used to highlight actions of glucose on AMPK, whereas com-
parisons of high- and low-glucose media are often used to mimic

physiologic and mild modulation. Total levels of IPMK protein
are the same under all conditions. By contrast, tyrosine phos-
phorylation of IPMK, absent in preparations not exposed to
glucose, displays robust levels in glucose treated samples. Although
we detect phosphorylation of IPMK at serines and threonines,
we fail to observe major changes with glucose treatment. To
determine the site of tyrosine phosphorylation on IPMK, we
used Scansite (www.mit.edu) analysis, which suggested tyrosines
110 and 174 as candidates. Mutation to phenylalanine of tyrosine
174 abolishes the glucose-stimulated tyrosine phosphorylation of
IPMK, whereas mutation of tyrosine 110 has no effect (Fig. 4B).
Thus, tyrosine phosphorylation of IPMK can be fully attributed
to tyrosine 174. Mutation of tyrosine 174 to phenylalanine does
not alter IPMK catalytic activity (Fig. S3B).
We investigated whether tyrosine 174 phosphorylation medi-

ates the regulation by IPMK of AMPK (Fig. 4C). In WT prep-
arations, glucose deprivation markedly decreases IPMK-AMPK
binding. By contrast, we observe no change in binding using
IPMK-Y174F.

Discussion
Our study establishes that IPMK is a physiologic regulator of
AMPK function. Thus, glucose signaling strikingly augments
phosphorylation of IPMK at tyrosine 174, which facilitates the
binding of IPMK to AMPK that, in turn, inhibits phosphoryla-
tion of AMPK and its catalytic activity (Fig. 4E).
Mechanisms whereby tyrosine phosphorylation of IPMK

impacts its binding to AMPK are unclear. Src homology (SH)2
domains of proteins typically bind phosphotyrosines, but AMPK
lacks SH2 domains. Our mapping studies indicate that exon 4 of
IPMK determines binding to AMPK. Because tyrosine 174
occurs within exon 4, tyrosine phosphorylation might influence
nearby clusters of amino acids that are responsible for binding.
Although our data establishes that tyrosine phosphorylation of

IPMK regulates its binding to AMPK, the impact of the phos-
phorylation upon hypothalamic AMPK activity is not known.
Conceivably, one could ascertain whether virally administered
constructs for WT or Y174F-IPMK differentially rescue hypo-
thalamic AMPK activity of IPMK knockout mice. In intact mice,
feeding regulates total protein levels of IPMK which, in turn,
influences AMPK. Whether refeeding also alters tyrosine phos-
phorylation of hypothalamic IPMK is unknown. Evidence for
IPMK regulating AMPK includes the use of a dominant-negative
construct that blocks IPMK-AMPK binding and abrogates the
influence of glucose upon AMPK activity. We have developed
evidence in intact mice showing that IPMK regulates phospho-
AMPK, which determines feeding behavior (5). Thus, genetic
depletion of hypothalamic IPMK markedly diminishes the effect
of feeding upon hypothalamic phospho-AMPK.
Besides IPMK, there exist other upstream regulators of

AMPK. LKB1 (liver kinase B1) phosphorylates and activates
AMPK in a fashion that appears to be constitutive under normal
physiological conditions (17, 18). AMP stimulates AMPK by
binding to the γ regulatory subunit, which exposes the site of
LKB phosphorylation (19, 20). Calmodulin kinase-kinase
(CAMKK)2 also phosphorylates AMPK in a calcium-dependent
fashion (21, 22). Accordingly, AMPK function can be influenced
by diverse signaling mechanisms that alter intracellular calcium.
Conceivably, the impact of IPMK on AMPK interfaces with one
or more of these other phosphorylating systems. As LKB1 is the
proximal determinant of AMPK phosphorylation, we speculate
that tyrosine phosphorylation of IPMK leads to its altering the
sensitivity of AMPK to phosphorylation by LKB1 (Fig. 4E) or to
dephosphorylation, perhaps by PP2C, which is known to de-
phosphorylate phospho-AMPK (23). Mechanisms whereby glu-
cose treatment stimulates tyrosine phosphorylation of IPMK are
unknown. Tyrosine kinases regulated by glucose include focal
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Fig. 3. Physical interaction between IPMK and AMPK is required for IPMK-
mediated modulation of AMPK. (A) Mapping of binding region of IPMK
responsible for AMPK interaction. GST, GST-IPMK or GST–IPMK exon
fragments (exon 1: 1–62, exon 2: 63–92, exon 3: 93–124, exon 4: 125–182,
exon 5: 183–208 and exon 6: 209–416) were pull-downed from HEK293T
cells cotransfected with AMPKα2. Coimmunoprecipitation of AMPKα2 was
determined by Western blots. (B–D) Dominant-negative IPMK exon 4 dis-
rupts the IPMK-AMPK interaction. (B) HA-AMPKα2, Myc-IPMK, and EGFP or
EGFP-IPMK exon 4 were cotransfected into GT1-7 cells as indicated. Cells
were deprived of glucose for 3 h and stimulated with glucose for 30 min
before lysis. HA-AMPKα2 was immunoprecipitated and coimmunoprecipi-
tates of Myc-IPMK were determined by Western blot (C ) Relative quanti-
fications of bound AMPKα2 and IPMK levels are shown. Values are ex-
pressed as means ± SD of three determinations (*Student t test; P < 0.005).
(D) EGFP or EGFP-exon 4 was transfected into HEK293 cells as indicated.
Cells were deprived of glucose for 3 h and stimulated with or without
glucose for 30 min before lysis. Proteins were extracted and analyzed by
Western blotting.
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adhesion kinase (FAK), insulin receptor kinase, and Src kinase
(24–26).
By phosphorylating a variety of targets, AMPK influences

a wide range of signaling systems to mediate its pleiotropic cel-
lular actions. AMPK acts upon the mTOR system in several
ways. It phosphorylates the GTPase TSC2 to augment catalytic
activity, which inhibits the ability of Rheb, a small G protein, to
activate mTOR (27, 28). Via this mechanism, AMPK down-
regulates mTOR signaling. AMPK also phosphorylates raptor,
a key component of the mTORC1, rapamycin-sensitive system
that stimulates protein translation (13). Phospho-raptor dis-
sociates from mTOR so that its phosphorylation by AMPK also
impairs mTOR signaling. By inhibiting AMPK activity, IPMK
would be anticipated to increase mTOR signaling. Other actions
of IPMK may also increase mTOR pathways. Thus, IPMK, via its
PI3-kinase activity, stimulates Akt kinase activity, which leads to
augmented mTOR signaling (10). In a kinase-independent
fashion, IPMK binds to mTOR, stabilizing its binding inter-
actions with raptor and also increasing mTOR signaling (11).
AMPK also plays a potentially important role in subtypes of

autophagy. It phosphorylates and activates ULK1, unc-51 like
kinase1 Atg13 and FIP200, enhances selectively the autophagic
degradation of mitochondria (29). IPMK might impact autoph-
agy via its influences upon AMPK.

IPMK may influence the regulation of feeding behavior by
hypothalamic centers that are regulated by AMPK. In our experi-
ments, selective depletion of hypothalamic IPMK prevents the
influence of feeding alterations on phospho-AMPK. Whereas
refeeding fasted animals virtually abolishes hypothalamic phos-
pho-AMPK, this treatment dramatically increases IPMK protein
levels within 2 h of refeeding. This finding implies a very rapid turn-
over rate for IPMK, which would be consistent with a role in the
dynamic regulation of phospho-AMPK and other signaling systems.
Our findings may have clinical ramifications. By augmenting

various catabolic systems, AMPK activation may be therapeutic
in type 2 diabetes and related conditions. For instance, AMPK is
a major stimulant to lipolysis and an inhibitor of fatty acid syn-
thesis (1, 4). Moreover, AMPK increases glycolysis. Metformin,
one of the principal antidiabetic drugs, acts, at least in part, by
stimulating AMPK activity. The exact molecular mechanism of
action of metformin is unknown, but its effects are lost in the
absence of LKB1 (30). Conceivably, metformin and related
drugs act via some link to IPMK.

Materials and Methods
Cells and cDNA Transfection. GT1-7 cells (a generous gift from Dr. Pamela
Mellon, University of California, San Diego, CA) andMEFs were maintained in
a humid atmosphere of 95% air and 5% CO2 at 37 °C in DMEM (Invitrogen)
supplemented with 10% FBS (Gemini Bio-Products), L-glutamine (2 mM;

Total
Myc-IPMK

pTyr
Myc-IPMK

H L H L H L

WT Y110F Y174F

Myc-AMPKα2

Myc-rat IPMK
IP: IPMK

Input
Myc-AMPKα2

Myc-rat IPMK

H L H L Glucose

WT Y174F

Myc-rat IPMK

High GlucoseLow Glucose

IPMK
Y174

APMK T172

P

LKB1

LKB1

APMK T172

IPMK
Y174

P

B
in

di
ng

 A
rb

itr
ar

y 
U

ni
t

0

0.5

1

WT Y174F

High Glucose
Low Glucose

A B

C D

E

Fig. 4. IPMK phosphorylation is required for AMPK interaction on the high glucose. (A) High glucose induces IPMK phosphorylation. GT1-7 cells were
transfected with Myc rat-IPMK. Cells were starved of glucose for 3 h and resupplied with glucose (5 mM) for 30 min. Phosphorylated protein was immu-
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Invitrogen), and penicillin (100 units/mL)/streptomycin (100 μg/mL) (Invi-
trogen). Transfection of HEK293T cells (2 million cells per 100-mm plate) was
performed by using Polyfect transfection reagent (Qiagen), according to the
protocol of the manufacturer.

Cell Treatment with Glucose. Cells were glucose-deprived in Kreb’s Ringer
bicarbonate buffer [118 mM NaCl/20 mM Hepes/12 mM NaHCO3/4.6 mM KCl/
1 mM MgCl2/0.5 mM CaCl2/0.2% (wt/vol) BSA (pH 7.4)] for 2 h. Then, cells
were incubate with 0, 5, or 25 mM glucose in Kreb’s Ringer bicarbonate
buffer for 30 min.

Immunoprecipitation. Cells were lysed in 50 mM Tris at pH 7.4, 150 mM NaCl,
1% Triton X-100, 15% glycerol, phosphatase inhibitor mixture 2&3 (Sigma),
and protease inhibitor mixture 1&2 (Roche). Total protein (500 μg) was in-
cubated with 2 μg of antibodies as indicated for 16 h at 4 °C and precipitated
with 50 μL of TrueBlot anti-rabbit Ig IP beads and TrueBlot anti-mouse Ig IP
beads (eBioscience) for an additional 3 h. For endogenous interaction, rabbit
IgG antibody or against IPMK antibody was added to the hypothalamic
lysates (1 mg) and performed on immunoprecipitates as described above.
Then, samples were washed five times with lysis buffer, and SDS-loading
sample buffer was added. Samples were separated by SDS/PAGE and

analyzed by immunoblotting as described elsewhere (13). For coimmuno-
precipitates of Myc-IPMK blots, Mouse TrueBlot ULTRA: anti-mouse Ig HRP-
conjugated secondary antibody (eBioscience) was used for detection with
SuperSignal West Pico chemiluminescence reagent (Thermo Scientific).

[3H]Inositol Labeling of Cells. Cells were seeded at a density of 2 × 106 cells per
10-cm dish and then labeled with 200 μCi (1 Ci = 37 GBq) [3H]inositol (Perkin–
Elmer Life Sciences) for 4 d. Soluble inositol phosphates were extracted from
labeled cells as described previously (10). Inositol incorporated into lipids
were measured by extracting the remaining cell pellet with 0.1 M NaOH and
0.1% Triton X-100 overnight at room temperature with shaking and
counting a fraction of the solubilized material in a liquid scintillation
counter. The [3H]-labeled inositol phosphates were resolved by HPLC as
described above. Soluble inositol phosphate levels were normalized against
total lipid inositol content for each cell line.
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