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A b s t r a c t

IInnttrroodduuccttiioonn::  Recent evidence suggests that the implantation of bone marrow-
derived mesenchymal stem cells improves peripheral nerve regeneration. In this
study we aimed to investigate whether adipose-derived stem cells (ADSCs) can
be used for peripheral nerve repair.
MMaatteerriiaall  aanndd  mmeetthhooddss::  In a rat model, nerve regeneration was evaluated across
a 15 mm lesion in the sciatic nerve by using an acellular nerve injected with
allogenic ADSCs. The walking behaviour of rats was measured by footprint
analysis, and electrophysiological analysis and histological examination were
performed to evaluate the efficacy of nerve regeneration. 
RReessuullttss::  Cultured ADSCs became morphologically homogeneous with a bipolar,
spindle-like shape after ex vivo expansion. Implantation of ADSCs into the rat
models led to (i) improved walking behaviour as measured by footprint analysis,
(ii) increased conservation of muscle-mass ratio of gastrocnemius and soleus
muscles, (iii) increased nerve conduction velocity, and (iv) increased number of
myelinated fibres within the graft. 
CCoonncclluussiioonnss::  Adipose-derived stem cells could promote peripheral nerve repair
in a rat model. Although the detailed mechanism by which ADSCs promote
peripheral nerve regeneration is being investigated in our lab, our results suggest
that ADSCs transplantation represents a powerful therapeutic approach for
peripheral nerve injury.

KKeeyy  wwoorrddss::  adipose-derived stem cells, peripheral nerve repair, cell transplantation,
sciatic nerve.

Introduction

Mesenchymal stem cells (MSCs) are an attractive cell source for the
regeneration of nerve tissue due to their self-renewal ability, high growth
rate and multi-potent differentiation properties [1]. In particular, the
implantation of bone marrow-derived mesenchymal stem cells (BMMSCs)
has been shown to exert a beneficial effect on peripheral nerve
regeneration [2-5]. However, it is a highly invasive and painful procedure
to isolate BMMSCs and the frequency of MSCs in bone marrow is relatively
low [6]. Therefore, an alternative cell source is in urgent demand [7, 8].

Adipose-derived stem cells (ADSCs) have similar phenotypic and gene
expression profiles to BMMSCs [9, 10], but have unique advantages: they
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can be harvested easily by a safe and conventional
liposuction procedure from subcutaneous fat tissue;
the frequency of ADSCs in adipose tissue is much
higher than that of MSCs in bone marrow [11]; and
ADSCs proliferate significantly faster than BMMSCs
[12, 13]. The apparent advantages of ADSCs led us
to investigate whether they may be ideal trans -
plantable cells for peripheral nerve repair. In this
study we employed a rat model of peripheral nerve
injury and demonstrated that implantation of
ADSCs promotes peripheral nerve repair.

Material and methods

PPrreeppaarraattiioonn  aanndd  cchhaarraacctteerriizzaattiioonn  ooff  aaddiippoossee--
ddeerriivveedd  sstteemm  cceellllss

Rat ADSCs were isolated as described previously
[14]. Briefly, the inguinal fat pad was harvested from
a 4-week old male Wistar rat and the adipose tissue
was carefully dissected. The adipose tissue was
digested using collagenase type I (Gibco, USA) and
then dissociated mechanically. The suspension was
centrifuged to separate the floating adipocytes from
the stromal vascular fraction. The cells in the
stromal vascular fraction were cultured in DMEM
(Gibco) supplemented with 10% fetal bovine serum
(FBS, Gibco) and the culture medium was changed
24 h later to eliminate the non-adherent cells. The
cells were passaged 3-5 times before being used
for subsequent experiments. To characterize the
multi-potential differentiation capacity of ADSCs,
the cells grown to at least 80% confluence were
treated for 3 weeks with either osteogenic induction
medium or adipogenic induction medium. Osteo -
genic induction medium was DMEM supplemented
with 10% FBS, 0.1 µM dexa metha sone, 50 µM
ascorbate-2-phosphate, and 10 mM β-glycero -
phosphate. Adipogenic induction medium was
DMEM supplemented with 10% FBS, 0.5 mM
isobutyl-methylxanthine (IBMX), 1 µM dexametha -
sone, 10 µM insulin, and 200 µM indo methacin. Rat
ADSCs were then stained with Alizarin Red S or Oil-
Red O to confirm the osteo genic and adipogenic
differentiation, respectively.

IInn  vviittrroo  ccoonnssttrruuccttiioonn  ooff  nneerrvvee  ggrraafftt  

A total of 2 × 106 ADSCs in 100 µl DMEM were
injected into a 1.5-cm long acellular nerve allograft
using a microinjector under an SXP-10 microscope
at 10× magnification. To perform the injection, the
microinjector was inserted through the full length
of the nerve section, and cells were injected in
equal volumes at four evenly spaced points as the
injector was withdrawn. Another set of acellular
nerve was used as the control group with no ADSC-
laden grafts, in which 100 µl DMEM was injected
into the nerve grafts. The nerve grafts were then
incubated in DMEM supplemented with 10% FBS

in a humidified atmosphere with 5% CO2 at 37°C
for 48 h after which they were quickly used for in
vivo experiments.

GGrraaffttiinngg  pprroocceedduurree  

Twenty adult female Wistar rats (200-250 g),
divided into ADSC-treated (n = 10) and control 
(n = 10) groups, were anesthetized with chloral
hydrate (350 mg/kg) during all surgical procedures.
After skin incision, the sciatic nerve was exposed
using a muscle splitting incision. With the aid of
an operation microscope, the right sciatic nerve 
(15-mm) was severed and removed near the
obturator tendon in the mid-thigh. A 15-mm nerve
graft was interposed into this nerve gap. The graft
was coapted to the host nerve stumps by
epineurial neurorrhaphy using one 9-0 Ethilon
suture at each end. The ADSC-treated group
received ADSC-laden grafts and the control group
received non-ADSC-laden grafts. Both proximal and
distal nerve stumps were anchored into the graft
with 9-0 nylon microsutures, and the skin was
closed with wound clips.

WWaallkkiinngg--ttrraacckk  aannaallyyssiiss

Functional recovery was assessed by calculating
the sciatic functional index (SFI) value [15]. SFI = 
–38.3[(EPL-NPL)/NPL] + 109.5[(ETS-NTS)/NTS] + 
+ 13.3[(EIT-NIT)/NIT] – 8.8 based on analysis of
walking tracks [16, 17]. Postoperatively, animals were
assessed every 4 weeks to week 12. The investi -
gators were blinded to the animal groups during
walking-track analysis.

EElleeccttrroopphhyyssiioollooggiiccaall  aannaallyyssiiss

The rats were anesthetized with chloral hydrate
(350 mg/kg) and the right sciatic nerve was
exposed thoroughly. A crook-shaped silver needle
electrode was placed on the proximal end and distal
end of grafts. The proximal end was stimulated, and
was record at the distal end. The distance between
the two electrodes was measured with a sliding
caliper of 0.2 mm precision. Nerve conduction
velocity, latent period, and peak amplitude were
recorded. 

WWeeiigghhtt  ooff  tthhee  ggaassttrrooccnneemmiiuuss  aanndd  ssoolleeuuss
mmuusscclleess

The rats were anaesthetized with chloral hydrate
(350 mg/kg) 12 weeks after operation. The gastrocne -
mius and soleus muscles were harvested from the
experimental and control sides, tendons were
trimmed and muscles were weighed. A conservation
muscle-mass ratio was recorded for each animal by
dividing the experimental-side muscle mass by the
control-side muscle mass [18, 19].
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HHiissttoollooggiiccaall  eexxaammiinnaattiioonn  

The segments of the nerves were immersed in
2.5% Na-cacodylate-buffered glutaraldehyde
solution for 2 h, and fixed for 2 h in 2% Na-caco -
dylate-buffered osmium tetroxide, then serially

dehydrated in increasing concentrations of ethanol,
infiltrated and embedded in Epon 812 (Ted Pella,
CA, USA). A 1-µm-thick cross-section was obtained
and then stained with toluidine blue to evaluate
the efficacy of nerve regeneration. 

SSttaattiissttiiccaall  aannaallyyssiiss

The data were expressed as mean ± SD and
analysed by SPSS 13.0 software. Analysis of variance
was used for significant difference test. Student’s
t-test was used for inter-group comparison. Value
of p < 0.05 was considered statistically significant. 

Results

CChhaarraacctteerriizzaattiioonn  ooff  ccuullttuurreedd  aaddiippoossee--ddeerriivveedd
sstteemm cceellllss

Rat ADSCs within 3-5 passages appeared as
a monolayer of large and flat cells (Figure 1 A).
When induced with appropriate lineage-specific
induction medium, ADSCs underwent adipogenesis
(Figure 1 B) and osteogenesis (Figure 1 C), demons -
trating that we successfully isolated ADSCs with
stem cell characteristics. 

AAddiippoossee--ddeerriivveedd  sstteemm  cceellllss  iimmppllaannttaattiioonn
pprroommootteess  nneerrvvee  rreeggeenneerraattiioonn

None of the 20 rats developed any serious post-
surgical complications. Wounded tissues healed
spontaneously, and there were no trophic ulce -
rations on the operated legs. About 3 or 4 weeks
later, muscular atrophy of operated legs of con trol
groups was obvious. The adherence was very slight
between the grafts and around tissues with no
formation of neuroma.

To evaluate the efficacy of ADSCs in functional
improvement in peripheral nerve injured rats, we
first compared the SFI between the ADSC-treated
group and the control group. Typical walking tracts
obtained from the rats 12 weeks after surgery are
shown in Figure 2. The SFI analysis showed that
functional recovery of the ADSC-treated group was
significant better than that of the control group 
(p < 0.05) (Table I). 

In addition, electrophysiological analysis revealed
higher nerve conduction velocities and peak
amplitudes, and shorter incubation period in the
ADSC-treated group compared to the control group
and the differences were statistically significant 
(p < 0.05) (Table II). After 12 weeks of nerve injury,
the right gastrocnemius and soleus muscles
degenerated and lost weight. The muscle-mass
conservation ratio showed that ADSC trans -
plantation could reduce sciatic nerve injury-induced
weight loss (Table II).

To evaluate the regeneration efficacy of
myelinated nerves after grafting with nerve grafts,

FFiigguurree  11..  Rat ADSCs exhibit properties of stem cells.
Rat ADSCs were passaged 3-5 times after initial
plating of the primary culture. AA – under phase
contrast microscope, cultured ADSCs appeared as
spindle-shaped. Rat ADSCs could undergo multi-
lineage differentiation, including osteogenesis (BB)
and adipogenesis (CC), as visualized by staining with
Alizarin Red S or Oil-Red O, respectively (light
microscope, ×200)

AA

BB

CC
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we examined semi-thin sections of the distal ends
of the grafts. Light microscopic examination of
toluidine blue-stained cross-sections of these distal
ends revealed an obvious difference between the
experimental and control group. In particular, the
experimental ADSC grafts had a comparatively
higher density of well-myelinated fibres in the distal
portion of the graft (Figure 3 B). In contrast, the
control grafts showed a relatively low density of well-

PPoossttooppeerraattiivvee  CCoonnttrrooll  ggrroouupp  AADDSSCC--ttrreeaatteedd  
wweeeekk ggrroouupp

4 –97.50 ±0.12 –96.18 ±0.57

8 –90.70 ±0.09 –82.82 ±0.49*

12 –86.79 ±0.4 –80.51 ±0.09*

TTaabbllee  II.. Functional nerve regeneration (SFI)

Values were mean ± SD, *p < 0.05 compared to control group

GGrroouupp  ccoonnsseerrvvaattiioonn  NNeerrvvee  ccoonndduuccttiioonn IInnccuubbaattiioonn  ppeerriioodd  PPeeaakk  aammpplliittuuddee  MMuussccllee--mmaassss  rraattiioo  
vveelloocciittyy  [[mm//ss]]  [[mmss]]  [[mmmm]] [[%%]]

Control 8.16 ±0.42 1.85 ±0.05 3.04 ±0.31 38.13 ±3.76

ADSC-treated 10.72 ±0.58* 1.39 ±0.07* 6.29 ±0.52* 44.50 ±4.63*

TTaabbllee  IIII..  Electrophysiological index and conservation muscle-mass ratio of gastrocnemius and soleus muscles (n = 10)

Values were mean ± SD, *p < 0.05 compared to control group

GGrroouupp  MMyyeelliinnaatteedd  ffiibbrree  nnuummbbeerr  MMyyeelliinn  sshheeaatthh  tthhiicckknneessss  MMyyeelliinnaatteedd  ffiibbrreess//ttoottaall  nneerrvveess  
[[rroooott//mmmm22]]  [[µµmm]]  [[%%]]

Control 1378 ±91 0.47 ±0.07 39.63 ±3.50 

ADSC-treated 1671 ±122* 0.92 ±0.09* 50.88 ±6.08*

TTaabbllee  IIIIII..  Regeneration of myelinated fibre (n = 6) 

Values were mean ± SD, *p < 0.05 compared to control group

AA BB

FFiigguurree  22..  Walking tract analysis. AA – control group. 
BB – ADSC-treated group

AA BB

FFiigguurree  33..  Improved nerve regeneration after ADSC graft. Semi-thin cross-sections of the distal portion of nerve graft
were subjected to Toluidine blue stain 12 weeks post-surgery. AA – the control, non-ADSC-laden graft group showed
impaired regeneration with thin remyelinization. BB – the ADSC-laden graft showed a higher density of well-myelinated
nerve fibres. Scale bar = 50 µm
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myelinated fibres (Figure 3 A). The percentages of
nerve fibre density and nerve fibre diameter were
significantly higher in the experimental group
compared to the control group (Table III). These data
indicate greater axonal regeneration in ADSC-laden
acellular nerve grafts than in non-ADSC-laden grafts.

Discussion

Cell transplantation has emerged as a novel
therapeutic approach for peripheral nerve defects.
The ideal transplantable cells should be easily
accessible, proliferate in culture and successfully
integrate into host tissue with immunological
tolerance [20]. Adipose-derived stem cells can be
isolated simply by conventional liposuction pro -
cedures from abundant subcutaneous fat deposits.
Furthermore, these cells can be expanded in culture
for extended periods and proliferate rapidly [13, 21]. 

In the present study, we provided several lines
of evidence that ADSC implantation could promote
the repair of 10-mm nerve defects in acellular nerve:
(i) improved walking behaviour as measured by
footprint analysis, (ii) increased conservation of
muscle-mass ratio of gastrocnemius and soleus
muscles, (iii) increased nerve conduction velocity,
and (iv) increased the number of myelinated fibres
within the graft. These data indicate that ADSCs
have great potential to promote the regeneration
of peripheral nerve. 

However, it is important to note that we only
examined the effects of ADSC implantation on the
regeneration of peripheral nerve 12 weeks after the
grafting, which is one limitation of the present
study. Future multiple-time-point and long-term
investigations are necessary to find out how long
implanted ADSCs can promote the peripheral nerve
regeneration and at what time point the ADSCs
exhibit the best effects.

In conclusion, our study demonstrated that
ADSCs promote peripheral nerve repair in a rat
model. Although the detailed mechanism by which
ADSCs promote peripheral nerve regeneration is
being investigated in our lab, our results reported
here suggest that ADSC transplantation represents
a powerful therapeutic approach for peripheral
nerve injury.
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