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Abstract
We investigated the time course of associative recognition using the response signal procedure,
whereby a stimulus is presented and followed after a variable lag by a signal indicating that an
immediate response is required. More specifically, we examined the effects of associative fan (the
number of associations that an item has with other items in memory) on speed–accuracy tradeoff
functions obtained in a previous response signal experiment involving briefly studied materials
and in a new experiment involving well-learned materials. High fan lowered asymptotic accuracy
or the rate of rise in accuracy across lags, or both. We developed an Adaptive Control of Thought–
Rational (ACT-R) model for the response signal procedure to explain these effects. The model
assumes that high fan results in weak associative activation that slows memory retrieval, thereby
decreasing the probability that retrieval finishes in time and producing a speed–accuracy tradeoff
function. The ACT-R model provided an excellent account of the data, yielding quantitative fits
that were as good as those of the best descriptive model for response signal data.
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Associative recognition—the process of determining whether two items were previously
experienced together—is not instantaneous. It takes time to probe memory for associative
information and there are many variables that affect the time and accuracy of retrieval. In
the present study we focus on the effects of associative fan, which refers to the number of
associations that an item has with other items in memory. Past research has shown that the
time taken to recognize an item becomes longer as its fan increases, a finding known as the
fan effect (Anderson, 1974; for reviews, see Anderson, 2007; Anderson & Reder, 1999). As
we discuss below, the fan effect is thought to be due to a decrease in associative activation
that slows memory retrieval. However, little is known about the fine-grained temporal
structure of the slowed retrieval process.

To address this issue, we investigated fan effects on the time course of associative
recognition using the response signal procedure (Dosher, 1976, 1979; Reed, 1973, 1976;
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Schouten & Bekker, 1967; Wickelgren, 1977). In this procedure, a stimulus is presented and
followed after a variable lag by a signal indicating that an immediate response is required.
Varying the response signal lag allows one to map out the time course of processing in the
form of a speed–accuracy tradeoff function that shows how accuracy changes over time.
Below, we provide an overview of the response signal procedure and we review two
previous studies involving fan manipulations (Dosher, 1981; Wickelgren & Corbett, 1977).
We then report the results of a new response signal experiment involving well-learned
materials in a paradigm that is more typical of fan-effect studies.

At the heart of the present study is the development and evaluation of a formal model of fan
effects on the time course of associative recognition. We describe a model based on the
Adaptive Control of Thought–Rational (ACT-R) theory, which has a long history of success
in cognitive psychology (see Anderson, 2007; Anderson & Lebiere, 1998). More
specifically, we show how the extant ACT-R model of the fan effect, which applies to mean
reaction time (RT), can be extended in a straightforward manner to account for data from the
response signal procedure. We demonstrate that our ACT-R model not only accounts for fan
effects on the time course of associative recognition, but it does so with quantitative fits that
are as good as those of the best descriptive model for response signal data.

The Fan Effect and ACT-R
The fan effect is often demonstrated in the fact retrieval paradigm (Anderson, 1974),
wherein subjects memorize a set of fictional facts (e.g., person–location pairs):

The hippie is in the park.

The hippie is in the factory.

The detective is in the library.

The tourist is in the factory.

Some items occur in only one fact (e.g., detective occurs in only the third fact) whereas other
items occur in more than one fact (e.g., hippie occurs in the first and the second facts). The
number of facts in which an item occurs is the fan of that item (e.g., hippie has a fan of 2).
After memorizing the facts during a study phase, subjects perform a recognition task during
a test phase in which they have to distinguish between targets (studied facts) and foils (non-
studied facts, which are usually rearranged items from the studied facts; e.g., The detective is
in the park).

The main finding from fan manipulations in the fact retrieval paradigm is the fan effect:
recognition takes longer for items with higher fans (e.g., Anderson, 1974; King & Anderson,
1976; Pirolli & Anderson, 1985; for reviews, see Anderson, 2007; Anderson & Reder,
1999). Recognition accuracy also tends to be lower for items with higher fans, as reflected in
higher false alarm rates but mixed effects on hit rates (Dyne, Humphreys, Bain, & Pike,
1990; Verde, 2004; see also Postman, 1976). Fan effects have been observed not only in the
retrieval of fictional facts, but also in the retrieval of real-world knowledge (Lewis &
Anderson, 1976), faces (Anderson & Paulson, 1978), and alphabet-arithmetic facts (White,
Cerella, & Hoyer, 2007; Zbrodoff, 1995). In addition, fan effects have been observed not
only in behavioral data (e.g., RT and accuracy), but also in neuroimaging data (e.g.,
differences in brain activation; Danker, Gunn, & Anderson, 2008; Sohn, Goode, Stenger,
Carter, & Anderson, 2003; Sohn, Goode, Stenger, Jung, Carter, & Anderson, 2005). Thus,
the fan effect is a robust phenomenon and consistent with the general principle of cue
overload, which is the idea that a retrieval cue becomes less effective as it becomes
associated with more items in memory (Surprenant & Neath, 2009; Watkins & Watkins,
1975).
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The fan effect played an important role in the early development of the ACT-R theory of
cognition (Anderson, 1976, 1983). ACT-R is a cognitive architecture in which a production
system coordinates the activity of modules associated with perception, memory, and action
(Anderson, 2007; Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin, 2004). Research on
the fan effect helped shape the structure and functioning of the declarative memory module
in ACT-R, which is a repository of knowledge ranging from fictional facts learned in an
experiment (e.g., The hippie is in the park) to real-world information (e.g., Ottawa is the
capital of Canada). Knowledge is represented in units called chunks, which can be retrieved
from declarative memory and placed in the module's buffer for use by the rest of the ACT-R
system.

The mechanism for retrieving chunks from declarative memory is formally specified in
ACT-R (Anderson, 2007; Anderson & Lebiere, 1998). Each chunk has an activation level in
declarative memory that is given by:

(1)

where Ai is the total activation of chunk i, Bi is its base-level activation, and the last term is
the associative activation that the chunk receives from all sources j that are used as retrieval
cues. Base-level activation reflects the frequency and recency with which the chunk has
been used in the past, which provides an indication of how likely the chunk will be needed
in the future (Anderson & Schooler, 1991). Associative activation reflects the strength of
association between chunks in declarative memory:

(2a)

where Sji is the strength of association between chunks j and i, S is the maximum associative
strength, and P(i|j) reflects learning about the probability that chunk i will be needed when
chunk j is used as a retrieval cue (based on the rational analysis of Anderson, 1990, 1991;
see also Anderson & Reder, 1999). If all the chunks associated with chunk j occur with
equal probability, which is a reasonable assumption in many contexts, then P(i|j) = 1/fanj,
where fanj is the fan of chunk j. The strength of association between chunks can then be
expressed in terms of fan:

(2b)

Equation 2b indicates that as chunk j becomes associated with more chunks (i.e., its fan
increases), its strength of association with each of those chunks decreases. The amount of
associative activation for a chunk (the last term in Equation 1) is determined by weighting
the strength of association by the amount of activation allocated to each source j (Wj) used
as a retrieval cue for chunk i. Source activation is typically partitioned equally among all
sources and sums to a constant (W), which implies that Wj = W/J, where J is the number of
sources (Anderson, Reder, & Lebiere, 1996). Associative activation is summed across all
sources and added to a chunk's base-level activation to give its total activation (Equation 1).

The total activation of a chunk determines the time taken to retrieve the chunk from
declarative memory:
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(3)

where tretrieve is the retrieval time, A is the chunk's activation, and F is a parameter that
scales retrieval time. Considering Equations 1–3 together, as the fan of a source increases,
its strength of association with each chunk in declarative memory decreases (Equation 2b),
resulting in less associative activation and, by extension, less total activation (Equation 1),
yielding a longer retrieval time (Equation 3).

Equations 1–3 are the standard equations for declarative memory retrieval in ACT-R and
represent the basic model for the fan effect. To understand how the model produces the fan
effect, we return to the aforementioned fact retrieval paradigm where the recognition task is
to decide whether a specific person–location probe was studied. The person and the location
serve as sources of activation for retrieving facts from declarative memory. Each source
provides an amount of associative activation based on the source activation allocated to it
and its strength of association with facts in memory, with the latter being negatively related
to the source's fan (Equation 2b). The associative activation summed across both sources
contributes to the total activation of a specific fact (Equation 1) and determines the time
taken to retrieve it (Equation 3). The model retrieves the fact that has the greatest total
activation and compares it with the probe. If there is a match, as in the case of a target, then
the model makes a “yes” response. If there is a mismatch, as in the case of a foil, then the
model makes a “no” response. Thus, the model implements a recall-to-reject strategy for
foils, consistent with extant theorizing about associative recognition (e.g., Malmberg, 2008;
Rotello & Heit, 2000; Rotello, Macmillan, & Van Tassel, 2000).

The fan effect arises in the model from differences in associative activation from probes that
have different fans. For example, from the list of person–location pairs presented earlier, the
probe The detective is in the library involves person and location sources that each have a
fan of 1 because each source occurs in only one fact, whereas the probe The hippie is in the
factory involves person and location sources that each have a fan of 2 because each source
occurs in two facts. We refer to these as Fan 1 and Fan 2 probes, respectively. From
Equation 2b, the strength of association between probe sources and fact chunks in memory
will be greater for the Fan 1 probe than for the Fan 2 probe. Consequently, the Fan 1 probe
will produce more associative activation than will the Fan 2 probe (Equation 1), resulting in
more total activation and a shorter retrieval time (Equation 3). The difference in retrieval
times for probes that have different fans is the fan effect produced by the model.

The fan effect in the preceding example applies to targets, but the model produces a fan
effect for foils in a similar way. For example, the probe The tourist is in the library is a foil
that involves person and location sources that each have a fan of 1. However, unlike targets,
both sources do not provide activation for the same fact in memory because that specific
person– location pair was not studied. Instead, tourist is a source of activation for The tourist
is in the factory and library is a source of activation for The detective is in the library. One
of these two facts is retrieved and compared with the probe, yielding a mismatch that is used
to reject the foil. In this example, each source has a fan of 1, but one could construct other
foils that have higher fans. Given that retrieval works the same way for foils as for targets,
the model produces a similar fan effect for foils.

The ACT-R model has produced good quantitative fits to empirical fan effects in several
studies (e.g., Anderson, 1974; Anderson & Reder, 1999; Pirolli & Anderson, 1985; for a
review, see Anderson, 2007). In addition, the basic principles governing associative
activation in the model have been applied successfully to other cognitive phenomena,
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including a variety of list memory effects (Anderson, Bothell, Lebiere, & Matessa, 1998;
Anderson & Matessa, 1997) and set-size effects in multiple-choice behavior (Schneider &
Anderson, 2011). However, an important limitation of the model's account of the fan effect
in past studies is that its predictions applied only to mean RT. Attempts to account for RT
data in greater detail and the relationship between RT and accuracy have been rare (for early
exceptions concerning the latter, see Anderson, 1981; King & Anderson, 1976). The main
objective of the present study was to take a step toward addressing this limitation by
extending the model to account for fan effects on the time course of associative recognition,
as reflected in speed–accuracy tradeoff functions obtained using the response signal
procedure.

The Response Signal Procedure
It is well known that people can trade speed for accuracy in task performance, slowing down
to make fewer errors and speeding up at the risk of making more errors (Pachella, 1974;
Wickelgren, 1977). A popular method for investigating speed–accuracy tradeoff functions in
recognition is the response signal procedure (Dosher, 1976, 1979; Reed, 1973, 1976;
Schouten & Bekker, 1967; Wickelgren, 1977). In this procedure, a stimulus is presented for
a yes–no recognition task and followed after a variable lag by a signal indicating that an
immediate response is required (usually within 200–300 ms). The main dependent variable
is accuracy as a function of the time available for task processing. Accuracy is often
expressed as a d' measure to control for response bias and plotted against total processing
time (lag + mean RT, where RT is defined as the time from response signal onset to the
response). Varying the response signal lag allows one to map out the time course of
processing in the form of a speed–accuracy tradeoff function.

An idealized example of a speed–accuracy tradeoff function from the response signal
procedure is illustrated in Figure 1. At very short lags, accuracy is at chance because not
enough time has elapsed for task processing to yield any useful response information. At
very long lags, accuracy is at a high asymptote because enough time has elapsed for task
processing to finish, often resulting in selection of the correct response. At intermediate lags,
there is an intercept time at which accuracy begins to rise above chance, then accuracy
continues to grow in a negatively accelerated manner until it reaches asymptote (see Figure
1). This accuracy data pattern is often described by a shifted exponential function (SEF):

(4)

where λ is the asymptote for accuracy, δ is the intercept time marking the transition from
chance to above-chance accuracy, and β is the rate at which accuracy rises from chance to
asymptote. The time variable t equals lag + mean RT to address the likely possibility that
task processing does not stop precisely at the time the lag elapses and to account for any
changes in RT as a function of lag. Indeed, RT typically becomes shorter as the lag becomes
longer.

The SEF has been shown to provide a very good characterization of speed–accuracy tradeoff
functions obtained using the response signal procedure in several studies (e.g., Dosher,
1976, 1981; Gronlund & Ratcliff, 1989; Hintzman, Caulton, & Levitin, 1998; Hintzman &
Curran, 1994, 1997; McElree & Dosher, 1989; Wickelgren & Corbett, 1977; Wickelgren,
Corbett, & Dosher, 1980). An alternative to Equation 4 that yields similar fits to response
signal data is an expression for monotonic growth to a limit derived from the diffusion
model (see Ratcliff, 1978, 1980; for applications, see Dosher, 1981, 1984b; Gronlund &
Ratcliff, 1989; McElree & Dosher, 1989; Ratcliff & McKoon, 1982; Rotello & Heit, 2000).
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Typically, the SEF is fit to the speed–accuracy tradeoff functions associated with different
experimental conditions, allowing one or more of its parameters to vary across conditions.
For example, if there are two conditions, then there are eight possible SEF variants based on
whether each parameter (intercept, rate, or asymptote) is the same or different across
conditions. Each SEF variant is fit to the data and model comparison techniques are used to
determine which variant provides the best fit without excessive model complexity.

The parameters of the best SEF variant are often interpreted in terms of memory strength
and retrieval dynamics. Differences in asymptote among conditions are thought to reflect
differences in memory strength, such that a condition in which items are strongly
represented in memory (e.g., as a consequence of extensive learning) will have a higher
asymptote than a condition in which items are weakly represented. Differences in intercept
and rate among conditions are thought to reflect retrieval dynamics—the nature of the
process by which items are retrieved from memory. A condition with a shorter intercept
(reflecting earlier onset of retrieval) or a higher rate (reflecting faster speed of retrieval) than
another condition is considered to have faster retrieval dynamics.

The response signal procedure and fits of the SEF to speed–accuracy tradeoff functions have
been used to investigate fan effects on the time course of associative recognition in two
previous studies (Dosher, 1981; Wickelgren & Corbett, 1977). In Wickelgren and Corbett's
experiment, subjects studied lists of words organized into pairs and triples. Pairs consisted of
two words (denoted here as A and B), with A appearing on the left and B appearing on the
right. Given that each word was associated with only one other word, pairs can be classified
as Fan 1 items. Triples consisted of three words (denoted here as A, B, and C), with A
appearing on the left and B and C appearing on the right. Given that each word was
associated with two other words, triples can be classified as Fan 2 items.1 Each pair or triple
was presented for 3 s during a study phase, then associative recognition judgments were
made in a test phase involving the response signal procedure.

The empirical speed–accuracy tradeoff functions from Wickelgren and Corbett (1977),
averaged across subjects, are presented as points in Figure 2. It is clear that Fan 1 items have
higher asymptotic accuracy than do Fan 2 items, but it is less obvious whether there are rate
or intercept differences between fan conditions. The solid and dashed lines in Figure 2
represent the mean predictions from individual-subject fits of an ACT-R model and the best
SEF variant, respectively, both of which we discuss in detail later. At this point, we simply
note that the best SEF variant is one in which the asymptote and the intercept (but not the
rate) differ between fan conditions, consistent with what Wickelgren and Corbett found with
their fits. However, a very similar fit is obtained when the asymptote and the rate (but not
the intercept) differ between fan conditions.

Wickelgren and Corbett's (1977) basic findings were replicated by Dosher (1981). In
Dosher's experiment, subjects studied a list of three pairs of words (denoted here by letters)
for a study–test sequence involving one of two conditions. In the independent condition, the
pairs had no words in common (e.g., A–B, D–E, and F–C), which meant that each word had
a fan of 1. In the interference condition, the first and third pairs shared a word (e.g., A–B,
D–E, and A–C), which meant that the A word had a fan of 2. Each pair was presented for 3 s
during a study phase, then associative recognition judgments were made in a test phase
involving the response signal procedure. The critical results from Dosher concern the speed–
accuracy tradeoff functions for Fan 1 and Fan 2 items in the independent and interference
conditions, respectively. To avoid redundancy with our presentation of Wickelgren and

1Wickelgren and Corbett (1977) instructed subjects that they would never be tested on the B–C association, but such an association
was likely formed to some degree during the study phase.
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Corbett's results, we simply note that Dosher found that the best SEF variant for her data
was one in which the asymptote and either the rate or the intercept (but not both) differed
between fan conditions, mirroring the findings of Wickelgren and Corbett.

The results from Wickelgren and Corbett (1977) and Dosher (1981) concerning fan effects
on the time course of associative recognition are generally consistent with the standard
ACT-R model of the fan effect. A difference in asymptote between fan conditions suggests a
difference in memory strength, which is concordant with the ACT-R interpretation of fan
affecting the strength of association between items in memory. A small difference in
intercept or rate between fan conditions suggests a modest effect of fan on retrieval
dynamics. Given that differences in strength of association affect the time for declarative
memory retrieval in ACT-R, a fan effect on retrieval dynamics is consistent with the theory.
However, it is an open issue as to whether ACT-R can account for the quantitative (not just
qualitative) pattern of response signal data observed in previous studies. Before we address
this issue, we report the results of a new experiment in which response signal data were
collected in the context of the fact retrieval paradigm with well-learned materials.

A New Response Signal Experiment on the Fan Effect
One possible reason for the modest effects of fan on retrieval dynamics in the studies by
Wickelgren and Corbett (1977) and Dosher (1981) is that their experiments involved brief
study phases in which there was a limited opportunity to learn each study list (i.e., each item
on a list was presented just once for only 3 s). A practical advantage of the brief study phase
is that accuracy was kept below ceiling, making it easier to detect differences in asymptotic
accuracy and facilitating the calculation of d' (which poses definitional problems when
accuracy is perfect). However, a potential disadvantage is that the fan manipulation may not
have been very strong because the representations of items in memory and the associations
between them may have been somewhat weak due to limited learning. This raises the issue
of whether the results of these previous studies can be replicated with well-learned materials
that may elicit stronger fan effects.

To address this issue, we conducted a multi-session response signal experiment involving
the fact retrieval paradigm. In a study phase at the start of the first session, subjects were
presented with a list of person–location facts, half with a fan of 1 and the other half with a
fan of 2. Subjects then completed a cued recall test in which they answered questions of the
form Where is the person? and Who is in the location?. Each question had to be answered
correctly three times, thereby ensuring that the facts were well-learned (Rawson &
Dunlosky, 2011). In subsequent sessions there was an abbreviated study phase in which the
cued recall test involved answering each question correctly once. Following the study phase,
subjects completed a recognition test phase involving the response signal procedure. A
person–location probe was presented on each trial and subjects had to distinguish between
targets (studied facts) and foils (non-studied facts, which were rearranged persons and
locations that maintained their fan status). The test probe was followed after one of eight
lags by a response signal. Thus, our experiment was similar in many respects to the
experiments of Wickelgren and Corbett (1977) and Dosher (1981), with the main difference
being a more extensive study phase designed to promote better learning of the materials.

Method
Subjects

Ten individuals from the Carnegie Mellon University community each participated in five
sessions for monetary compensation. There was one session per day for five consecutive
days. The first session was 2 h in duration and subsequent sessions were each 1 h. Subjects
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were paid at a rate of $10/h, plus a bonus based on their performance (see below; the mean
bonus payment was $4 per session).

Apparatus
The experiment was conducted using Tscope (Stevens, Lammertyn, Verbruggen, &
Vandierendonck, 2006) on computers that displayed stimuli on monitors and registered
responses from QWERTY keyboards. Text was displayed onscreen in white 14-point
Courier font on a black background. Auditory response signals were presented over
headphones.

Materials
Each study fact was of the form The person is in the location. Study facts were created from
lists of 24 persons and 24 locations (see Appendix A). Word length was 3–9 letters (M =
6.25, SD = 1.59) for persons and 4–10 letters (M = 6.25, SD = 1.39) for locations. Each
subject received a random assignment of persons and locations to a study list of 32 person–
location facts. Half of the facts had a fan of 1 (i.e., the person and the location each occurred
in only one fact) and the other half had a fan of 2 (i.e., the person and the location each
occurred in two different facts). The facts on the study list were the targets in the recognition
test phase of the experiment. The foils in the test phase were drawn from a list of 32 non-
studied facts created by rearranging persons and locations from studied facts such that their
fan status was maintained (e.g., a Fan 2 foil was created using a person and a location from
different Fan 2 studied facts).

Procedure
Subjects were seated at computers in private testing rooms after providing informed consent.
Written instructions were presented to subjects and explained by the experimenter during the
first session. The instructions were available for subjects to review in subsequent sessions if
necessary. Each session was divided into a study phase and a test phase.

In the study phase for the first session, the study list of 32 facts was presented. Each fact
appeared in the center of the screen for 5000 ms and was followed by a 500-ms blank
screen. Subjects were instructed to read each fact and make an initial effort to memorize it.
After all the facts were presented, subjects completed a cued recall test in which they
answered questions of the form Where is the person? and Who is in the location?. There
were 24 person questions and 24 location questions representing all studied items (see
Appendix A). On each trial, a single question appeared in the center of the screen with an
answer prompt below it. Subjects had to type the appropriate answer to the question based
on the facts in the study list (e.g., when asked about a person, they had to recall the
location(s) the person was in). Questions about Fan 1 and Fan 2 facts required one- and two-
word answers, respectively. Multiple words were separated by commas and the Enter key
was pressed to submit the answer. There was no time limit for giving the answer. If the
answer was correct, there was no feedback and the next question appeared after a 500-ms
blank screen. If the answer was incorrect, the word INCORRECT and the correct answer
were displayed for 2500 ms, followed by the 500-ms blank screen.

An answer to a question about a Fan 1 fact was judged as incorrect if: (a) the answer was
blank; (b) a single word was submitted, but it did not match the studied word; or (c) multiple
words were submitted, even if one of them matched the studied word. An answer to a
question about a Fan 2 fact was judged as incorrect if: (a) the answer was blank; (b) a single
word was submitted, even if it matched one of the studied words; (c) two words were
submitted, but one or both did not match the studied words; or (d) more than two words
were submitted, even if one or two of them matched the studied words. The words for a Fan
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2 answer could be entered in any order. Subjects were instructed to submit a blank answer if
they could not recall anything. As noted above, they would then receive the correct answer
as feedback, which served as a learning opportunity. They were also instructed to use any
mnemonics or mental strategies that might help them memorize the facts (e.g., forming a
semantic association between the person and the location in a fact).

The questions were presented in random order according to a dropout procedure: If a
question was answered correctly, it was dropped from the list; if a question was answered
incorrectly, it was presented again later, after all the other questions had been asked. A block
of trials ended when each of the 48 questions had been answered correctly once. Subjects
completed three blocks of trials in this manner; thus, each question was answered correctly
three times by the end of the study phase of the first session. The remaining sessions
involved an abbreviated study phase in which the initial presentation of the study list was
omitted and the cued recall test involved only one block of trials, which served as an
assessment of subjects’ memory for the study list from one session to the next.

In the test phase, subjects performed a recognition task in blocks of trials involving the
response signal procedure. Each trial began with a fixation cross presented in the center of
the screen for 1000 ms, after which time the cross disappeared and a test probe of the form
Is the person in the location? was presented in the center of the screen. The test probe was
followed after one of eight lags (200, 500, 800, 1100, 1400, 1800, 2400, or 3000 ms) by a
response signal consisting of an 800 Hz tone for 50 ms and offset of the test probe (resulting
in a blank screen). Subjects were instructed to make a yes–no recognition response within
300 ms after the tone by pressing either the “/” key to respond “yes” or the “Z” key to
respond “no” with their right or left index fingers, respectively. If they had determined their
response before hearing the tone (which was likely at the longest lags), they were instructed
to wait until the tone and then make the response immediately. If they had not determined
their response by the time of the tone (which was likely at the shortest lags), they were
instructed to immediately make whichever response they thought was most likely. It was
emphasized that they should always try to respond within 300 ms after the tone.

After making their response, subjects received feedback about their trial performance for
1500 ms, followed by a 500-ms blank screen before the next trial commenced. There were
three pieces of feedback. First, subjects were informed as to whether their response was
correct or incorrect. Second, they were informed of their RT from response signal onset.
Third, they received a message characterizing their performance. If they responded before
the response signal, the message was TOO EARLY. If they responded longer than 300 ms
after the response signal, the message was TOO LATE. If they responded within 300 ms
after the response signal and correctly, the message was BONUS. If they responded within
300 ms after the response signal but incorrectly, there was no message. The BONUS
message referred to a bonus system designed to motivate compliance with the response
signal procedure and accurate performance. A correct response within 300 ms after the
response signal earned one bonus point. Bonus points were accumulated over trials and
converted to bonus pay at the end of the experiment (1 bonus point = 1 cent).

The test phase was divided into nine blocks, with 64 trials per block. At the start of each
block, subjects were informed of the number of bonus points earned in the previous block
and their cumulative number of bonus points earned in the session. The 64 trials in each
block consisted of the 32 targets and 32 foils described earlier, presented in random order
subject to the constraint that no person or location was repeated across consecutive trials.
The eight response signal lags were randomly assigned to probes such that each lag occurred
twice with each combination of probe (target or foil) and fan (1 or 2). Thus, each condition
in the full 2 (probe) × 2 (fan) × 8 (lag) experimental design was represented twice per block,
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giving a total of 18 observations per condition in each session and 90 observations per
condition in the entire experiment. Excluding the first session and the first block of each
subsequent session as practice, there were 64 observations per condition for each subject's
experimental data.

Results and Discussion
Study phase

The mean frequency with which questions about Fan 1 and Fan 2 facts were asked during
each block of the cued recall test in each session is provided in Table 1. Question frequency
can be interpreted as a measure of the difficulty in learning the facts (with higher frequency
indicating greater difficulty). The minimum possible frequency was equal to 1 because each
question had to be answered correctly at least once per block. In the first session, subjects
initially had more difficulty learning Fan 2 facts than Fan 1 facts, but the difference in
frequency essentially disappeared by the second and third blocks, suggesting that all the
facts had been memorized equally well by the end of the session. In subsequent sessions,
question frequency was at or near the minimum of 1 and approximately equal for Fan 1 and
Fan 2 facts, suggesting that subjects maintained good memory for the facts from one session
to the next.

These observations are supported by the results of two repeated-measures analyses of
variance (ANOVAs). First, a 3 (block) × 2 (fan) ANOVA on question frequency for the first
session revealed a significant main effect of block, F(2,18) = 32.55, MSE = 0.42, p < .001,
ηp

2 = .78, a significant main effect of fan, F(1,9) = 25.45, MSE = 0.21, p < .01, ηp
2 = .74,

and a significant interaction between block and fan, F(2,18) = 15.29, MSE = 0.21, p < .001,
ηp

2 = .63, reflecting the decrease in the difference in question frequency between fan
conditions across blocks. Second, a 5 (session) × 2 (fan) ANOVA on question frequency for
the third block of the first session and the blocks of all subsequent sessions revealed no
significant effects, all ps > .1, reflecting the stable, near-minimum question frequency across
sessions.

Test phase
The data from the first session and the first block of each subsequent session were excluded
as practice. Trials with RTs shorter than 100 ms or longer than 350 ms were also excluded
from all analyses (following Hintzman et al., 1998; Hintzman & Curran, 1994, 1997; Rotello
& Heit, 2000) because the shorter RTs likely reflect anticipations and the longer RTs may
reflect substantial post-lag task processing (indicating non-compliance with the instructions
to respond immediately after the response signal). Only 5.7% of trials were excluded for not
meeting the RT criteria, indicating that subjects were generally compliant with the demands
of the response signal procedure. We present the group data in the figures below and we
provide the individual-subject data in Appendix B.

Mean accuracy (proportion correct) is plotted as a function of lag + mean RT in Figure 3A
for each combination of probe (target or foil) and fan (1 or 2). At the shortest lag, accuracy
was near chance, but it increased rapidly with more processing time until it was at or near
ceiling at the longest lag in all conditions. Accuracy was slightly higher for foils than for
targets at the shortest lag, reflecting an initial bias to respond “no,” but the difference
disappeared at later lags. Accuracy was higher for Fan 1 items than for Fan 2 items,
predominantly at the intermediate lags, although there were small numerical differences at
the longest lags. These results represent evidence of a fan effect on the time course of
associative recognition.
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These observations are supported by the results of a 2 (probe) × 2 (fan) × 8 (lag) repeated-
measures ANOVA on accuracy (proportion correct). There was a significant main effect of
fan, F(1,9) = 61.20, MSE = 0.004, p < .001, ηp

2 = .87, a significant main effect of lag,
F(7,63) = 180.01, MSE = 0.007, p < .001, ηp

2 = .95, and a significant interaction between
fan and lag, F(7,63) = 7.28, MSE = 0.003, p < .001, ηp

2 = .45. There were no significant
effects involving probe (target versus foil), all ps > .2.

To illustrate the fan effect in an alternative way, mean accuracy is plotted in terms of d', as a
function of lag + mean RT, as points in Figure 4 for each fan condition (d' was calculated
separately for each individual subject, then averaged across subjects). To permit calculation
of d' when accuracy was perfect, the raw accuracy values (proportion correct) were adjusted
by adding 0.5 to the number of “yes” responses and dividing by the total number of
responses + 1.0 (Hintzman & Curran, 1994, 1997; Rotello & Heit, 2000; Snodgrass &
Corwin, 1988). Figure 4 shows there were typical speed–accuracy tradeoff functions in both
fan conditions, with what appears to be a higher rate of rise to asymptote for Fan 1 items
than for Fan 2 items. There was also a difference in d' at the longest lag for Fan 1 and 2
items, but this difference should be interpreted with caution because d' still appears to be
rising at the longest lag in the Fan 2 condition, suggesting that the asymptote had not yet
been reached. Moreover, the model fits we present later do not provide evidence in favor of
different asymptotes.

Mean RT is plotted as a function of lag in Figure 3B for each combination of probe (target
or foil) and fan (1 or 2). The most prominent effect was that RT became shorter as the lag
became longer, which is typical of response signal data. However, there were also
differences in RT between the fan conditions that are not particularly evident in Figure 3B.
To make the fan differences clearer, Figure 5A shows the data collapsed over targets and
foils, and Figure 5B shows the fan effect (the difference in RT between Fan 2 and Fan 1
items) as a function of lag. There was a small but statistically significant fan effect of 3 ms
and it varied across lags, being almost non-existent at the shortest lag, emerging at the
second-shortest lag, and then gradually decreasing back to zero by the longest lags (see
Figure 5B). Thus, our experiment revealed a fan effect not only on accuracy, but also on the
lag function for RT.

These observations are supported by the results of a 2 (probe) × 2 (fan) × 8 (lag) repeated-
measures ANOVA on mean RT. There was a significant main effect of fan, F(1,9) = 66.18,
MSE = 9.9, p < .001, ηp

2 = .88, reflecting the 3-ms fan effect. Given that RTs in the response
signal procedure are very short and have low variance, it is not unusual for small differences
between conditions to be statistically significant (e.g., see Hintzman et al., 1998). There was
also a significant main effect of lag, F(7,63) = 172.65, MSE = 86.2, p < .001, ηp

2 = .95, and
a significant interaction between fan and lag, F(7,63) = 5.50, MSE = 19.2, p < .001, ηp

2 = .
38, reflecting the modulation of the fan effect across lags. The only significant effect
involving probe (target versus foil) was an interaction between probe and lag, F(7,63) =
4.36, MSE = 19.5, p < .01, ηp

2 = .33.

Summary
The results of our experiment complement those of Wickelgren and Corbett (1977) and
Dosher (1981) by revealing fan effects on the time course of associative recognition, but
with materials that were well-learned instead of briefly studied. The data from the study
phase support the conclusion that all the studied facts were represented strongly in memory
by the end of the cued recall test in the first session and in subsequent sessions (see Table 1).
The data from the test phase indicate that our materials and procedure yielded typical speed–
accuracy tradeoff functions, with fan primarily affecting the rate of rise to asymptotic
accuracy (see Figures 3A and 4). In addition, we found that RT became shorter as the lag

Schneider and Anderson Page 11

Cogn Psychol. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



become longer (see Figure 3B) and there was a small fan effect on RT that varied across lags
(see Figure 5). Collectively, the results constitute an important challenge for the ACT-R
model of the fan effect, which has not addressed response signal data. In the next section, we
present an extension of the ACT-R model that overcomes this limitation and we assess how
well it accounts for speed– accuracy tradeoff functions compared with variants of the SEF.

An ACT-R Model for the Response Signal Procedure
Model Description

We extended the standard ACT-R model of the fan effect in a straightforward manner to
account for data from the response signal procedure. Memory retrieval is still a central
process in the model, but other processes involved in task performance need to be included
to generate a time course for associative recognition. The four kinds of processes in the
model—encoding, retrieval, guessing, and responding—are summarized in Table 2 and
described below in the context of the fact retrieval paradigm. To aid in the understanding of
when each process is active during a trial, Figures 6A and 6B illustrate the organization of
the model's processing stages at long and short lags, respectively.

Encoding—There are two things that need to be encoded on every trial: the probe stimulus
and the response signal. Stimulus encoding begins at stimulus onset (see Figure 6) and
results in a representation of the probe. The time to encode the stimulus, tstim, is a free
parameter. Response signal encoding begins at response signal onset (see Figure 6) and
results in a representation of the signal. Given that the response signal is typically a simple
tone, we set the time to encode the response signal, tsignal, equal to 50 ms, which is the
default time for simple tone detection in ACT-R (based on work by Meyer & Kieras, 1997).

Retrieval—Memory retrieval involves using the encoded stimulus to probe declarative
memory and retrieve a fact. Targets and foils retrieve matching and nonmatching studied
facts, respectively, with a match resulting in selection of a “yes” response and a nonmatch
resulting in selection of a “no” response. For simplicity, we assume that retrieval is an error-
free process (e.g., a target will never retrieve an alternative studied fact), although there are
variants of the retrieval process in ACT-R that allow errors to arise from partial matching
(Anderson & Lebiere, 1998). Consequently, if retrieval has time to finish, then the model
will always produce a correct response.

Retrieval begins as soon as stimulus encoding has finished (see Figure 6) and retrieval time,
tretrieve, is determined by Equation 3, which we repeat here:

(3)

Recall that the activation of fact i (Ai) in memory is determined by its base-level activation
(Bi) and associative activation (see Equation 1). Given that facts are typically tested equally
often and practice effects are generally not a concern, we assume equal base-level activation
for all facts and set Bi = 0. As described earlier, associative activation varies as a function of
the total source activation (W), the maximum associative strength (S), and the fan from the
person and location sources used as retrieval cues (see Equations 1 and 2b). We set W = 1.0,
which is the default value in ACT-R (Anderson et al., 1996), and we set S = 1.5, which is an
arbitrary value that we have used previously (Schneider & Anderson, 2011). We fixed S
because it trades off with F, which is a free parameter that scales retrieval time in Equation
3.
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A critical feature of the response signal procedure is that there is limited time available for
retrieval (determined by the response signal lag). If there were a constant retrieval time in
the model, then its resulting time-course function would be a step function: Retrieval would
never have time to finish at very short lags, resulting in low accuracy, and it would always
finish at very long lags, resulting in high accuracy. An abrupt shift from low to high
accuracy would occur at some intermediate lag where retrieval time equaled the time
available for retrieval. However, it is clear from response signal data that empirical time-
course functions are not step functions (e.g., see Figures 2 and 4).2

For the model to produce a more appropriate time-course function, there has to be some
variability in retrieval time. Variability can be introduced by adding noise to the activation
of facts in memory. The default in ACT-R is for activation noise to be distributed
logistically (Anderson, 2007) with a mean equal to 0 and variability controlled by a free
parameter s. In this situation, retrieval times will follow a log-logistic distribution
(Schneider & Anderson, 2011). Having a distribution of retrieval times means that, for a
given response signal lag, there will be some probability that retrieval has finished. To
determine this probability, one must first determine the time available for retrieval. It is not
simply equal to the lag because some time is needed to encode the probe stimulus and the
response signal. As mentioned earlier, we assume that retrieval begins when stimulus
encoding has finished (see Figure 6), so stimulus encoding time must be subtracted from the
lag. We also assume that retrieval can go on in parallel with response signal encoding (tone
detection) because the two processes involve different modules in ACT-R (the declarative
memory module and the auditory module, respectively). Consequently, response signal
encoding time can be added to the lag. The total time available for retrieval, tavail, can be
expressed as (see Figure 6):

(5)

Knowing the time available for retrieval and that retrieval time follows a log-logistic
distribution, one can determine the probability that retrieval has finished in the time
available, pretrieve, from the cumulative distribution function (CDF) of the log-logistic
distribution:

(6)

Examples of the log-logistic CDF (with tretrieve = 500 ms and s = 0.2 or 0.4) are shown in
Figure 7. Comparing the two solid curves, one can see how the retrieval function becomes
closer to a step function as s decreases (i.e., as the noise becomes less variable). The
crossing point of the two curves—which is where the step would occur for a step function—
corresponds to the median of the retrieval time distribution, which is equal to tretrieve
(Equation 3). The two sets of broken lines show how the probability of retrieval changes as a
function of the time available for retrieval in the context of a specific retrieval time
distribution (indicated by the solid black curve). When tavail = 700 ms (dashed line), pretrieve
= .70, meaning that retrieval would not finish in the time available on 30% of trials (in
which case the model resorts to guessing, as described below). Assuming that stimulus
encoding time and response signal encoding time do not vary with lag, then lengthening the

2The curved time-course functions for the group data in Figures 2 and 4 are not artifacts from averaging individual-subject data. No
subject in Wickelgren and Corbett's (1977) experiment or in our experiment had a data pattern that resembled a step function (see
Appendix B for individual-subject data).
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lag by 300 ms results in tavail = 1000 ms (dotted line) and pretrieve = .85, showing that
retrieval is more likely to finish at longer lags. As noted earlier, we assume that retrieval is
an error-free process; therefore, a higher probability of retrieval results in a higher level of
accuracy (an equation for the model's accuracy that involves pretrieve is presented below).
Moreover, retrieval is a discrete, all-or-none process because it either finishes or does not
finish in the time available. There is no partial information from an unfinished retrieval
process to guide the model's selection of a response. We discuss the issue of retrieval being a
discrete (as opposed to a continuous) process and the absence of partial information further
when we compare our model with other models of response signal data in the General
Discussion.

The preceding discussion is based on the assumption that the lag is used to generate an
external deadline (tavail) for the retrieval process (Equation 5). As a result, given a long
enough lag, retrieval will always finish and accuracy will be perfect. This might be
reasonable for a situation in which facts are well-learned (e.g., our experiment) and subjects
know that a fact can ultimately be retrieved if there is enough time to do so. However, it is
less reasonable for a situation in which facts are briefly studied (e.g., Wickelgren & Corbett,
1977) and, as a result, have low activation in memory and may take a long time to retrieve.
If subjects have some perception of the degree to which facts are active in memory, then
they may set an internal deadline to limit the time spent on futile attempts to retrieve facts
with low activation that might ultimately never be retrieved. If an internal deadline is set for
the retrieval process, then retrieval fails if it is taking too long. A standard aspect of the
retrieval process in ACT-R is that retrieval fails if it takes longer than an internal deadline,
tfailure, given by:

(7)

which is a variant of Equation 3 in which activation (A) is replaced by an activation
threshold (τ). To determine the probability that retrieval finishes before the failure time, one
simply replaces tavail with tfailure in Equation 6. The two sets of broken lines in Figure 7 can
then be reinterpreted as illustrating the effect of varying the threshold, with a high threshold
(dashed line) resulting in a shorter failure time and a lower probability of retrieval than a
low threshold (dotted line).

If the internal and external deadlines represented by tfailure and tavail, respectively, are both
present during a trial, then the probability of retrieval is determined by whichever deadline is
shorter. For example, if the dashed line in Figure 7 is associated with tfailure and the dotted
line is associated with tavail (i.e., tfailure < tavail), then pretrieve is determined by tfailure and
equals .70. Similar logic applies when tavail < tfailure. Critically, when tfailure falls within the
range of available times bounded by the shortest and longest lags (i.e., it is between the
shortest and the longest values of tavail), it determines the asymptotic level of accuracy
achieved by the model. Continuing with the example of the dashed line in Figure 7 being
associated with tfailure, the mean accuracy of the retrieval process would never exceed .70—
even at the longest lags—because failure time is not affected by lag (compare Equation 7
with Equation 5). For modeling asymptotic levels of accuracy that are below ceiling, τ is a
free parameter. For modeling asymptotic levels of accuracy that are at or near ceiling, we
show in our model fits below that one can justify setting τ = –∞, which is similar to having
no internal deadline or, more precisely, an infinitely long internal deadline that would never
be reached, which is functionally equivalent to having no internal deadline. More generally,
one could set τ equal to any value that makes the internal deadline exceed the longest
external deadline. In this situation, accuracy will be perfect whenever tavail is long enough
for retrieval to finish.

Schneider and Anderson Page 14

Cogn Psychol. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



At very short lags there may not be any time available for retrieval (i.e., tavail ≤ 0) because
stimulus encoding has not finished. For example, the shortest lag in Wickelgren and
Corbett's (1977) experiment and in our experiment was 200 ms, which is most likely
insufficient for stimulus encoding. Indeed, in a fan experiment involving associative
recognition of person–location facts in which eye movements were monitored, Anderson,
Bothell, and Douglass (2004) found that mean first-gaze duration for the probe stimulus was
400 ms, suggesting that it may have taken that long to encode the stimulus. In our model, if
stimulus encoding has not finished then retrieval is not initiated; instead, the model resorts to
guessing. This is true even in the case where there may be sufficient time to encode one part
of the stimulus (e.g., the person) but not the other (e.g., the location). Anderson et al. found
no evidence that retrieval began with the first gaze, suggesting that both parts of the stimulus
have to be encoded before retrieval is initiated. This seems sensible because even if retrieval
were initiated by part of the stimulus (e.g., the person) and was able to finish in time, it
would not be possible to respond accurately because the retrieved fact (e.g., a person–
location pair) would match the encoded part of the stimulus regardless of whether the
stimulus was a target or a rearranged foil (i.e., item recognition alone is insufficient).
Accurate responding is possible only when the retrieved fact is matched against the entire
stimulus, and for that to happen, both parts of the stimulus have to be encoded.

Guessing—If the stimulus has been encoded and retrieval has enough time to finish (i.e.,
tretrieve is shorter than the shortest deadline represented by tfailure or tavail), then the model
waits until the response signal is encoded before it executes a response based on the match
or mismatch between the retrieved fact and the probe (see Figure 6A). If retrieval is not
initiated because the stimulus has not been encoded or it is initiated but does not finish
because it either fails (i.e., it reaches the internal deadline represented by tfailure) or there is
not enough time available (i.e., it reaches the external deadline represented by tavail), then
the response is determined by guessing. Guessing starts after the response signal has been
encoded and occurs only if retrieval has not finished or been initiated (see Figure 6B). It
does not occur in parallel with retrieval (cf. Meyer, Irwin, Osman, & Kounios, 1988) and the
response is not determined by retrieval even if retrieval happens to finish while guessing is
in progress. The contingency of guessing on unfinished retrieval is based on the assumption
that subjects do not guess unless the need arises.

We assume a simple guessing process whereby the model guesses “yes” with a probability
equal to bias and “no” with a probability equal to 1 – bias. For predicting d', which controls
for response bias, as a simplifying assumption we set bias = 0.5, although it would be a free
parameter when predicting other accuracy measures such as proportion correct for targets
and for foils. Note that the bias parameter is fixed across lags and the guessing process does
not change as a function of lag because an unfinished retrieval process provides no partial
information. Given that retrieval is error-free, guessing is the sole source of errors in the
model. For simplicity, we set the time to take a guess, tguess, equal to 50 ms, which is the
default time for firing a single production (condition–action rule) in ACT-R (Anderson,
2007). Thus, our model implements a guessing process (cf. Ollman, 1966; Yellott, 1967,
1971) that is triggered by the response signal and contingent on unfinished retrieval.

Responding—Once a response has been determined either by retrieval or by guessing, it
is executed (see Figure 6). For simplicity, we assume that response execution is an error-free
process. The time to execute a response, trespx, is a free parameter.

Predictions—To understand how the model predicts speed–accuracy tradeoff functions,
consider what happens at long and short lags. At a long lag (see Figure 6A), stimulus
encoding and memory retrieval both have time to finish before the lag elapses.
Consequently, the model has determined the correct response during the lag and simply
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waits until the response signal is encoded, then the response is executed. Accuracy is high
because retrieval is an error-free process. At a short lag (see Figure 6B), there may be
insufficient time available to finish stimulus encoding and memory retrieval. For the
example in Figure 6B, retrieval is only about halfway done by the time the response signal is
encoded. Given that retrieval is unfinished, the model resorts to guessing and then executes
the guessed response. Accuracy is low because guessing is an error-prone process.

The accuracy (proportion correct) predicted by the model is determined by the probability
that retrieval finished (Equation 6) and the probability of a correct guess, pcguess, which is
controlled by the bias parameter (i.e., pcguess = bias for targets and pcguess = 1 – bias for
foils):

(8)

In other words, overall accuracy is a mixture of perfect accuracy based on retrieval
(reflected in the multiplication of pretrieve by 1) and imperfect accuracy based on guessing
(pcguess < 1). Given that the probability of retrieval increases as the lag becomes longer,
accuracy increases across lags. The shape of the speed–accuracy tradeoff function produced
by the model is based on the log-logistic CDF for the probability of retrieval (Equation 6).

Besides accuracy, the model also makes predictions for RT. When retrieval has time to
finish, RT is the sum of response signal encoding time and response execution time (see
Figure 6A). When retrieval does not finish, RT is the sum of response signal encoding time,
response execution time, and guessing time (see Figure 6B). The mean RT predicted by the
model is a mixture of times that do and do not include guessing time, as determined by the
probability that retrieval finished (Equation 6):

(9)

Given that the probability of retrieval increases as the lag becomes longer, RT gets shorter
across lags due to the reduced contribution of guessing time. As noted earlier, RT typically
becomes shorter across lags in the response signal procedure (e.g., see Figure 3B). It follows
from Equation 9 that the difference in RT between the shortest and the longest lags will be
approximately equal to the guessing time (assuming retrieval never finishes at the shortest
lag and always finishes at the longest lag), a point we consider further in the General
Discussion.

Summary—Our ACT-R model includes all the processes taking place in the time course of
associative recognition in the response signal procedure: encoding, retrieval, guessing, and
responding (see Figure 6 and Table 2). Stimulus encoding results in a representation of the
probe that is used to access memory. Retrieval is an all-or-none, error-free process that
involves retrieving a fact from memory for comparison with the probe. The probability of
retrieval is determined by the distribution of retrieval times (which is affected by the amount
of associative activation and the level of activation noise) and the time available for retrieval
(which is affected by lag and the activation threshold). When retrieval does not finish, the
model resorts to guessing, which is an error-prone process subject to response bias.
Responding involves executing the response determined by retrieval or by guessing. The
model is completely specified by Equations 1–3 and 5–9, allowing for precise quantitative
predictions. Its predictions for accuracy and for RT are strongly determined by the
probability of retrieval, which increases as the lag becomes longer, resulting in higher
accuracy and shorter RT across lags.
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Modeling Details
We evaluated our ACT-R model of the response signal procedure by fitting it to the
individual-subject data from Wickelgren and Corbett (1977) and from our experiment (see
Figures 2 and 4), then comparing its fits to those of different SEF variants.3 Before
presenting the modeling results, we summarize the ACT-R model and SEF parameters,
describe the fitting process, explain how models were compared, and discuss simulations of
the ACT-R model.

Model parameters—For fitting the ACT-R model to d' accuracy data, there are only four
free parameters: tstim, F, s, and τ. The only constraints on free parameter values were that
tstim and F had to be greater than 0 because time cannot be negative. In the modeling results
presented below, we also consider a variant of the model in which we set τ = –∞, which is
equivalent to having no internal deadline for the retrieval process. We set the other
parameters in the model equal to the fixed values mentioned earlier (see Table 2). Thus,
there was a maximum of four free parameters for fitting the 16 d' accuracy data points in
each experiment (2 fan conditions × 8 lags; see Figures 2 and 4). Note that there are no free
parameters that distinguish between fan conditions or vary as a function of lag. Thus, fan
effects on accuracy and changes in accuracy across lags are predictions of the model that
reflect its basic structure and functioning.

For fitting the ACT-R model to RT data, we set all encoding, retrieval, and guessing
parameters equal to their fixed values or to their best-fitting values from the fit to accuracy
data. This leaves only one free parameter, trespx, which functions merely as an intercept shift
for overall RT when fitting the 16 mean RT data points in our experiment (see Figure 5).
Once again, note that there no free parameters that distinguish between fan conditions or
vary as a function of lag. Thus, fan effects on RT and changes in RT across lags are
predictions of the model that reflect its basic structure and functioning. The model was fit
sequentially to d' accuracy and RT data for our experiment,4 but only to d' accuracy for
Wickelgren and Corbett's (1977) experiment because they did not report individual-subject
RT data.

For fitting the SEF to d' accuracy data, there are between three and six free parameters
depending on the SEF variant. As noted earlier, if there are two conditions, as is the case
with the fan manipulation of interest here (i.e., Fan 1 versus Fan 2), then there are eight
possible SEF variants based on whether each parameter (intercept, rate, or asymptote) is the
same or different across conditions. The model with the fewest free parameters assumes no
difference between fan conditions for any parameter and the model with the most free
parameters assumes a difference between fan conditions for every parameter, with the other
models falling in between these extremes. There were no constraints on free parameter
values.

Model fitting—For fitting the ACT-R model and the SEF to d' accuracy data, we followed
an approach involving maximum likelihood estimation (Liu & Smith, 2009; for overviews,
see Lewandowsky & Farrell, 2011, Ch. 4; Myung, 2003), using a likelihood function based
on the probability density function for the normal distribution and minimizing the negative
log-likelihood value.5 For fitting the ACT-R model to mean RT data, we performed least-

3We did not fit any data from Dosher (1981) because she did not report individual-subject data; however, her group data were similar
to the data of Wickelgren and Corbett (1977).
4We followed a sequential model-fitting approach because we were primarily interested in the fit of the ACT-R model to accuracy
data and how that compared with fits of SEF variants. Given that the SEF only addresses accuracy data, it seemed fair to use the fit of
the ACT-R model only to accuracy data for comparison purposes, then to evaluate the fit of the ACT-R model to RT data (constrained
by its earlier fit to accuracy data).
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squares estimation, minimizing the root mean squared deviation (RMSD) between data and
model predictions. The ACT-R model and the SEF were both implemented in MATLAB
(The MathWorks, Inc., Natick, MA) and we used an implementation of the simplex
algorithm (Nelder & Mead, 1965) for parameter optimization. We used multiple sets of
starting parameter values covering a large region of the parameter space to avoid local
minima. All the modeling results reported below are based on fits to individual-subject data,
although we also include the results of fits to group data. We report individual-subject
parameter values and fit indices in tables, but to simplify the visual presentation of the
results, the means of the individual-subject predictions are shown in figures. Individual-
subject modeling results are provided in Appendix B.

Model comparison—We conducted model comparisons to determine the best SEF
variant and to assess the adequacy of the ACT-R model. Model comparisons for fits to
response signal data often involve computing an adjusted R2 statistic for each model that
takes into account the number of free parameters:

(10)

where di is data point i,  is the model's prediction for data point i,  is the mean of the data
points, n is the number of data points, and k is the number of free parameters in the model.
For models with identical fits, Equation 10 will yield a higher R2 value for the model with
fewer free parameters. Although we report R2 values, we focus on a more principled
approach to model comparison involving information criterion measures that quantify
goodness of fit while penalizing model complexity (Lewandowsky & Farrell, 2011; Liu &
Smith, 2009; Wagenmakers & Farrell, 2004). The two measures we use are the Akaike
information criterion (AIC), given by:

(11)

and the Bayesian information criterion (BIC), given by:

(12)

where L is the likelihood value, k is the number of the free parameters, and n is the number
of data points. Equation 11 is a variant of the AIC that includes a correction for small
sample size (the last term in the equation), which is recommended when the ratio of data
points to free parameters (n/k) is less than 40 (Wagenmakers & Farrell, 2004). The AIC and
the BIC are commonly used for model selection and comparison purposes, allowing one to
choose the simplest model that provides an adequate fit to the data (the model with the
lowest AIC or BIC value is to be preferred). In the present context, model selection involves
determining which SEF variant is the best descriptive model of the data and model

5All ACT-R model fits reported in this article were repeated by fitting raw accuracy data (proportion correct) with a likelihood
function based on the probability mass function for the binomial distribution (Lewandowsky & Farrell, 2011; see also Usher &
McClelland, 2001). These fits were to all 32 cells in the 2 (probe) × 2 (fan) × 8 (lag) experimental design and involved making
separate predictions for targets and for foils, as well as allowing bias to be a free parameter. The results of these fits are reported in
Appendix B.
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comparison involves determining whether the ACT-R model fits as well as the best SEF
variant.

To facilitate model selection and comparison, we consider two measures based on the AIC
and the BIC. The first measure is the rank of a model's fit to data. One can assign a rank
from 1–9 to the ACT-R model and the eight SEF variants based on the AIC and the BIC
values for their fits to each individual-subject data set, with lower ranks corresponding to
lower AIC and BIC values (i.e., better fits). One can then compute the mean rank of a given
model across subjects to get a sense of how well it fares when compared with the other
models. The second measure is the model weight, which is the probability that a given
model is the best model in the set being compared (Liu & Smith, 2009; Wagenmakers, 2007;
Wagenmakers & Farrell, 2004). The weight for model i, wi, is calculated as:

(13)

where IC is the value of either the AIC or the BIC, and Δi(IC) is the difference between the
IC value of model i and the lowest IC value from the set of J models. One can compute the
mean weight of a model across subjects to get sense of its overall probability of being the
best model.

Finally, one can directly compare the fits of two models by calculating the likelihood ratio in
favor of one model over the other, which is simply the ratio of their model weights (Glover
& Dixon, 2004; Liu & Smith, 2009; Wagenmakers & Farrell, 2004). We use likelihood
ratios to compare the fits of the ACT-R model with and without a threshold as a way of
determining whether an internal deadline is necessary during retrieval. To provide a
summary of the likelihood ratio across subjects, we report the group likelihood ratio, which
is the product of the individual-subject likelihood ratios, and the average likelihood ratio,
which is the geometric mean of the individual-subject likelihood ratios (Liu & Smith, 2009).

Simulation—The ACT-R model we fit to the data is completely specified by Equations 1–
3 and 5–9. Although this analytic version of the model has the practical advantage of
making model fitting fast and accurate, it has the disadvantage of underrepresenting the
amount of variability in processing. More specifically, the model has just one source of
variability—the distribution of retrieval times—but there is undoubtedly variability in the
times associated with other processes. To determine the extent to which these sources of
variability may be important, the analytic model fits are accompanied by simulation results
for comparison.

Simulation of the model involved six sources of variability: retrieval time, stimulus
encoding time, response signal encoding time, guessing time, guessing accuracy, and
response execution time. The variability in retrieval time (and, by extension, the probability
of retrieval) was simulated by sampling from a logistic distribution for activation noise and
adding it to the activation of the fact retrieved on each trial (i.e., Equation 6 was not
computed in the simulation). The variability in the times for stimulus encoding, response
signal encoding, guessing, and response execution was simulated by sampling from a
uniform distribution specific to each process, with the boundaries of the distribution being t
± t/2, where t is the mean time for the process (see Anderson, Taatgen, & Byrne, 2005;
Meyer & Kieras, 1997). The variability in guessing accuracy was simulated by sampling a
random number between 0 and 1 from a uniform distribution, then determining whether it
was above or below the bias parameter.
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The model was simulated for each subject using that subject's best-fitting parameter values
from the analytic fits. A total of 3.2 million trials were simulated per subject, representing
100,000 trials for each of the 32 cells in the 2 (probe) × 2 (fan) × 8 (lag) experimental
design. The simulation fit indices are reported in parentheses beside the analytic fit indices
in the tables of modeling results (see also Appendix B).

Modeling Results
Wickelgren and Corbett (1977) —The means of the individual-subject predictions for d'
accuracy from the best-fitting ACT-R model (with a threshold) appear as solid lines in
Figure 2. It is evident that the ACT-R model provides an excellent fit to the data, not only
capturing the basic shape of each speed–accuracy tradeoff function, but also reproducing the
large difference in asymptotic accuracy at the longest lags and the modest difference in the
rate of rise to the asymptote across fan conditions. These fan effects were produced by the
model because Fan 2 items are retrieved more slowly than are Fan 1 items due to less
associative activation for the former than for the latter (see Equations 1–3). The rate
difference predicted by the model is a direct reflection of the difference in retrieval time.
The asymptote difference predicted by the model reflects a combined effect of the difference
in retrieval time and the threshold. Recall that the threshold determines the failure time
(Equation 7), which is an internal deadline for retrieval to finish. For a specific threshold,
the probability that retrieval finishes before the internal deadline is lower for Fan 2 items
than it is for Fan 1 items because retrieval times are longer for the former than for the latter.
Given that retrieval accuracy is directly related to the probability of retrieval (Equation 8), it
follows that asymptotic accuracy will be lower for Fan 2 items than for Fan 1 items.

The best-fitting parameter values (for F, s, tstim, and τ) and fit indices (AIC, BIC, and R2) for
individual subjects are presented in Table 3. All the parameter values seem reasonable, with
the sole exception of a very short stimulus encoding time of 32 ms for subject CM.6 The
AIC and the BIC values are not particularly interpretable in isolation, so we discuss them
only in the context of model comparisons below. The ACT-R model yielded good fits in
terms of R2, with a mean R2 = .921 for the individual-subject fits and R2 = .981 for the group
fit. The fit indices from simulations of the model (see Table 3) are similar to the analytic fit
indices, indicating that the lack of extra variability in the analytic version of the model was
not detrimental to its fits.

The predictions in Figure 2 are for the ACT-R model with a threshold, which fit better than
did the model without a threshold (i.e., with τ = –∞). Individual-subject likelihood ratios
favored the threshold model over the no-threshold model for all six subjects. The group
likelihood ratio, expressed in terms of the threshold model over the no-threshold model,
equaled 3.1 × 1027 for AIC and 4.1 × 1028 for BIC, and the average likelihood ratio equaled
3.8 × 104 for AIC and 5.9 × 104 for BIC. These results are not surprising because large
empirical differences in asymptotic accuracy can only be captured by using an internal
deadline set by a threshold. The presence of an internal deadline seems reasonable when
facts are briefly studied and may never be retrieved due to their low activation, even when
there is a long time available for retrieval.

The means of the individual-subject predictions for d' accuracy from the best SEF variant
appear as dashed lines in Figure 2. The best variant across all subjects (based on the rank
and model weight statistics presented below) was the one in which the asymptote and the
intercept (but not the rate) differed between fan conditions, consistent with what Wickelgren

6If stimulus encoding time is constrained to be ≥ 100 ms, then there is a modest decrement in the quality of the fit to the data from
subject CM (AIC = 17.5, BIC = 16.9, R2 = .947; cf. Table 3).
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and Corbett (1977) found with their fits. The mean R2 = .935 for this variant and its mean
parameter values were δ1 = 455 ms, δ2 = 498 ms, 1/β = 312 ms, λ1 = 4.01, and λ2 = 2.72,
where the subscripts 1 and 2 denote the Fan 1 and Fan 2 conditions, respectively. However,
a similar fit was obtained with a variant similar to the ACT-R model, where the asymptote
and the rate (but not the intercept) differed between fan conditions. Table 4 shows the best-
fitting parameter values and fit indices for the best variant (based on BIC values) for each
individual subject (which did not necessarily correspond to the best variant over all
subjects). For four of the six subjects and for the group, the best variant involved different
asymptotes between fan conditions, indicating a fan effect on memory strength. For all six
subjects, the best variant involved either different intercepts or different rates (or both)
between fan conditions, indicating a fan effect on retrieval dynamics. Interestingly, the best
variant for the fit to the group data involved only different asymptotes (see Table 4),
providing an example of a group fit not corresponding exactly with the individual-subject
fits (Cohen, Sanborn, & Shiffrin, 2008) and supporting our decision to focus on modeling
individual-subject data.

We assessed the adequacy of the ACT-R model (with a threshold) by comparing its fit with
those of the eight SEF variants. The mean rank statistics appear in Figure 8A and the mean
model weights appear in Figure 8B. In terms of rank, the ACT-R model compares favorably
with the two SEF variants mentioned above (involving different asymptotes and either
different intercepts or different rates). The ACT-R model has the lowest mean rank based on
AIC, being ranked in the top 3 for four of the six subjects, and it has the third-lowest mean
rank based on BIC, being ranked in the top 3 for two of the six subjects. In terms of model
weight, the results are similar. The ACT-R model has the highest mean weight based on AIC
and the third-highest mean weight based on BIC. These model comparison results indicate
that the ACT-R model produced quantitative fits that were as good as those of the best SEF
variants.

Our experiment—The means of the individual-subject predictions for d' accuracy from
the best-fitting ACT-R model (without a threshold) appear as solid lines in Figure 4. The
ACT-R model provides an excellent fit to the data, reproducing the very high accuracy at the
longest lags and the difference in the rate of rise in accuracy between fan conditions. The
very high accuracy was predicted because no threshold was used for these fits (justification
is provided below), meaning that there was no internal deadline that prevented retrieval from
finishing at long lags. Consequently, the probability that retrieval finished was near 1.0 at
the long lags, resulting in accuracy that was at or near ceiling (with very small differences in
proportion correct at long lags being magnified when expressed in terms of d') and no
difference in asymptote between fan conditions. The fan effect was produced by the ACT-R
model for the reasons discussed earlier.

The best-fitting parameter values (for F, s, and tstim) and fit indices (AIC, BIC, and R2) for
individual subjects are presented in Table 5. All the parameter values seem reasonable.7 The
ACT-R model yielded good fits in terms of R2, with a mean R2 = .939 for the individual-
subject fits and R2 = .992 for the group fit. Once again, the fit indices from simulations of
the model (provided in parentheses in Table 5) are similar to the analytic fit indices.

7Direct comparisons between the parameter values for the model fits to our experiment data and to Wickelgren and Corbett's (1977)
data are complicated by the many methodological differences between the experiments. For example, the largest difference in
parameter values is for stimulus encoding time (tstim), with means of 178 and 386 ms for the fits to Wickelgren and Corbett's data and
to our data, respectively. We suspect this difference in parameter values may reflect a difference in the complexity of the test probes.
In Wickelgren and Corbett's experiment the probe was simply a pair of words, whereas in our experiment it was a question of the form
Is the person in the location? It likely took subjects longer to read the probe in our experiment than in Wickelgren and Corbett's
experiment, which would be reflected in a longer stimulus encoding time in the model.
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The predictions in Figure 4 are for the ACT-R model without a threshold, which fit better
than did the model with a threshold. Individual-subject likelihood ratios favored the no-
threshold model over the threshold model for most of the subjects (eight subjects based on
AIC; seven subjects based on BIC). The group likelihood ratio, expressed in terms of the no-
threshold model over the threshold model, equaled 8180.9 for AIC and 108.9 for BIC, and
the average likelihood ratio equaled 2.5 for AIC and 1.6 for BIC. These results are not
surprising because the very high empirical accuracy at long lags suggests that retrieval was
not subject to an internal deadline (or it was subject to an internal deadline that exceeded the
longest external deadline). The lack of a role of an internal deadline seems reasonable when
facts are well-learned and can ultimately be retrieved if there is sufficient time available for
retrieval.

The means of the individual-subject predictions for d' accuracy from the best SEF variant
appear as dashed lines in Figure 4. The best variant across all subjects (based on the rank
and model weight statistics presented below) was the one in which only the rate (and neither
the asymptote nor the intercept) differed between fan conditions, consistent with the ACT-R
model. The mean R2 = .956 for this variant and its mean parameter values were δ = 675 ms,
1/β1 = 387 ms, 1/β2 = 917 ms, and λ = 4.48, where the subscripts 1 and 2 denote the Fan 1
and Fan 2 conditions, respectively. Table 6 shows the best-fitting parameter values and fit
indices for the best variant (based on BIC values) for each individual subject (which did not
necessarily correspond to the best variant over all subjects). For all ten subjects, the best
variant involved either different intercepts or different rates (or both) between fan
conditions, indicating a fan effect on retrieval dynamics. For six of the subjects and for the
group, the best variant involved different rates rather than different intercepts. For none of
the ten subjects did the best variant involve different asymptotes between fan conditions.
This result may seem paradoxical given that fan is assumed to affect memory strength,
which is reflected in the strength of association between items in memory in ACT-R and
thought to be reflected in the asymptote of the speed–accuracy tradeoff function (as
measured by the SEF). We contend that fan does affect memory strength, but there will be
no fan effect on the asymptote when low and high fan items can both be retrieved accurately
from memory, given sufficient time for retrieval. Such a situation exists when the materials
are well-learned, as they were in our experiment, and subjects do not set an internal deadline
for retrieval, as suggested by the results for the no-threshold ACT-R model.

We assessed the adequacy of the ACT-R model (without a threshold) by comparing its fit
with those of the eight SEF variants. The mean rank statistics appear in Figure 9A and the
mean model weights appear in Figure 9B. In terms of rank, the ACT-R model compares
favorably with the best SEF variant mentioned above (involving different rates). The ACT-R
model is tied with that SEF variant for the lowest mean rank based on AIC, being ranked in
the top 2 for seven of the ten subjects, and it has the second-lowest mean rank based on BIC,
being ranked in the top 2 for seven of the ten subjects. In terms of model weight, the results
more strongly favor the ACT-R model, which has the highest mean weights based on both
AIC and BIC. These model comparison results indicate that the ACT-R model produced
quantitative fits that were as good as those of the best SEF variant.

Recall that the ACT-R model also makes predictions about RT (Equation 9), for which
individual-subject data were available from our experiment. The means of the individual-
subject predictions for RT from the best-fitting ACT-R model (without a threshold) appear
as solid lines in Figure 5. The ACT-R model not only provides a good fit to the shape of the
RT function in Figure 5A, but it also correctly predicts the change in the fan effect across
lags in Figure 5B (although the model overestimates the magnitude of the fan effect at
intermediate and long lags). What is remarkable about these predictions is that they are zero-
parameter, quantitative predictions of the ACT-R model. The only free parameter in the fit
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was for response execution time, which functioned merely as an intercept shift for overall
RT.

The model explains the RT function in Figure 5A in terms of the contribution of guessing
time to RT (see Equation 9). At short lags, retrieval rarely finishes in the time available, so
the model has to guess (see Figure 6B). At long lags, retrieval almost always finishes in the
time available, so the model rarely has to guess (see Figure 6A). Given that it takes some
time to guess (tguess = 50 ms), it follows from Equation 9 that RT will become shorter across
lags as guessing becomes less frequent. Note that Equation 9 and the changing contribution
of guessing time to RT reflect the fact that there is a discrete point in time when retrieval is
finished and the assumption that guessing is contingent on unfinished retrieval. The model's
prediction of the change in the fan effect across lags in Figure 5B arises from differences in
the contribution of guessing time to RT between fan conditions. At the shortest lag, retrieval
almost never finishes for Fan 1 or Fan 2 items, which means that guessing occurs
approximately equally often in both conditions. As a result, there is a similar contribution of
guessing time to RT for both conditions, producing almost no fan effect. However, at the
intermediate lags, retrieval finishes more often for Fan 1 items than for Fan 2 items, which
means that guessing occurs more often for Fan 2 items. As a result, there is a larger
contribution of guessing time to RT for Fan 2 items, producing a fan effect. The fan effect
decreases as the lag becomes longer because the difference in the probability of retrieval
between Fan 1 and Fan 2 items diminishes. By the longest lag, retrieval almost always
finishes for both Fan 1 and Fan 2 items, which means that guessing rarely occurs in both
conditions. As a result, the lack of a contribution of guessing time to RT is similar for both
conditions, producing almost no fan effect. Thus, the shape of the RT function and the
change in the fan effect across lags are natural predictions of the model (as evidenced by the
fact that they are zero-parameter predictions) based on the relative contributions of retrieval
and guessing to performance over time.

The best-fitting parameter values (for trespx) and fit indices (RMSD and R2) for individual
subjects are presented in Table 7. All the parameter values seem reasonable. The ACT-R
model yielded good fits in terms of RMSD, with a mean RMSD = 5.8 ms, and in terms of
R2, with a mean R2 = .879. The fit indices from simulations of the model (provided in
parentheses in Table 7) are similar to the analytic fit indices, indicating that the lack of extra
variability in the analytic version of the model was not detrimental to its fits to RT data.

Summary—Our ACT-R model provided an excellent account of the d' accuracy data from
Wickelgren and Corbett (1977) and from our experiment. It captured the shapes of the
speed–accuracy tradeoff functions in both experiments, including fan effects on asymptotic
accuracy and the rate of rise in accuracy across lags (see Figures 2 and 4). It produced these
results with only three or four free parameters (depending on whether a threshold was
involved) and no free parameters that distinguished between fan conditions. Its fits were as
good as those of the best SEF variant(s) for each experiment (see Figures 8 and 9),
indicating that its quantitative predictions were satisfactory. An important advantage of our
ACT-R model over the SEF is that the former is a process model that provides a
psychological explanation of the data based on a cognitive theory, whereas the latter is more
of a descriptive model that specifies a speed–accuracy tradeoff function without explaining
how it is realized in a complete information-processing stream. One example of the
advantage of using a complete process model is that our ACT-R model could also provide
an account of the RT data from our experiment. It captured the shape of the RT function and
the changes in the fan effect across lags. These results were zero-parameter, quantitative
predictions of the model. Collectively, the modeling results show that our ACT-R model is
capable of accounting for fine-grained data from the response signal procedure.
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General Discussion
The purpose of the present study was to investigate fan effects on the time course of
associative recognition and to develop an ACT-R model that could explain them. We
focused on speed–accuracy tradeoff functions obtained with the response signal procedure in
a previous experiment involving a fan manipulation (Wickelgren & Corbett, 1977) and in a
new experiment. When materials were studied briefly, fan had a large effect on asymptotic
accuracy at long lags and a modest effect on retrieval dynamics. When materials were well-
learned, fan predominantly affected the rate of rise in accuracy across lags. We found that
both data patterns could be explained by applying the standard ACT-R model of the fan
effect to the response signal procedure. Memory retrieval plays a central role in the model,
with high fan resulting in weak associative activation that slows memory retrieval, thereby
decreasing the probability that retrieval finishes in time and producing a speed–accuracy
tradeoff function. We fit the model to the data from Wickelgren and Corbett and from our
experiment, comparing its fits with those of the SEF that is commonly used to describe
response signal data. Our ACT-R model provided an excellent account of the data from both
experiments, yielding quantitative fits to the accuracy data that were as good as those of the
best SEF variant, as well as good quantitative fits to the RT data. To our knowledge, the
present study represents the first successful application of ACT-R to response signal data,
thereby expanding the scope of the theory to account for fine-grained behavioral data
concerning the time course of associative recognition.

Comparisons with Other Models of Response Signal Data
Several process models have been developed for or applied to response signal data. These
models include the cascade model (McClelland, 1979), the continuous activation model
(Dosher, 1982, 1984a), the diffusion model (Ratcliff, 1978, 1988, 2006, 2008), a dual-
process integration model (Göthe & Oberauer, 2008), the exemplar-based random walk
model (Nosofsky, Little, Donkin, & Fific, 2011), the leaky competing accumulator model
(Usher & McClelland, 2001), REM models (Diller, Nobel, & Shiffrin, 2001; Malmberg,
2008; Wagenmakers, Steyvers, Raaijmakers, Shiffrin, van Rijn, & Zeelenberg, 2004), and
the tandem random walk model (Nikolić & Gronlund, 2002). Dosher (1976, 1981, 1984a)
has also simulated speed–accuracy tradeoff functions for a serial search model (based on
Anderson, 1974; Anderson & Bower, 1973; Thorndyke & Bower, 1974), a spreading
activation model (based on Collins & Loftus, 1975), and the random storage model of
Landauer (1975). In this section we discuss some of the similarities and differences between
these models and our ACT-R model.

Discrete versus continuous processing—Dosher (1981, 1982, 1984a) noted that
empirical speed–accuracy tradeoff functions are compatible with memory retrieval being
either a discrete or a continuous process. Most models of response signal data assume that
retrieval is continuous, with activation or evidence accruing over time (e.g., Diller et al.,
2001; Dosher, 1982, 1984a; McClelland, 1979; Nikolić & Gronlund, 2002; Nosofsky et al.,
2011; Ratcliff, 1978, 1988, 2006, 2008; Usher & McClelland, 2001; Wagenmakers et al.,
2004). For example, in Ratcliff's diffusion model, evidence is sampled continuously from
memory and accumulated in favor of making either a “yes” or a “no” recognition response.
When the accumulated evidence favors one response over the other by a relative difference
criterion, the favored response has been selected and retrieval is finished. The speed–
accuracy tradeoff function produced by the model depends on the distribution of finishing
times for retrieval (the sampling process is stochastic) and whether partial information (i.e.,
the evidence accumulated at any point prior to the end of retrieval) is available for making a
decision when retrieval has not finished.
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In contrast, our ACT-R model and the aforementioned model simulations by Dosher (1976,
1981, 1984a) assume that retrieval is a discrete, all-or-none process: It is either finished or
not finished in the time available for retrieval, with no intermediate stage of progress (e.g., a
fact cannot be partly retrieved from memory). However, similar to a continuous model, a
discrete model can produce a speed–accuracy tradeoff function by having a distribution of
finishing times for retrieval. In our ACT-R model, retrieval times follow a log-logistic
distribution controlled by the level of activation noise (see Equation 6 and Figure 7).
Although we have presented a discrete version of our ACT-R model, it may be possible to
develop a continuous version that yields similar results. Anderson (2007, pp. 131–134)
explained how the standard equation for retrieval time in ACT-R (Equation 3) can be related
to the finishing time of a continuous evidence accumulation process (viz., a leaky
accumulator model).8 Van Maanen and Van Rijn (2007, 2010; Van Maanen, Van Rijn, &
Taatgen, in press) developed a variant of the declarative memory retrieval mechanism in
ACT-R that is based on a continuous sampling process. Thus, the discrete–continuous
processing dichotomy may not be critical for modeling speed–accuracy tradeoff functions in
general or for the formulation of our ACT-R model in particular.

The role of partial information—A related issue concerns the role of partial information
in response selection when retrieval does not have time to finish. There is no partial
information in our ACT-R model because retrieval is a discrete, all-or-none process.
Consequently, when retrieval does not finish, the model makes an uninformed guess that is
affected only by a response bias (i.e., a general tendency to guess “yes” or “no”). In contrast,
continuous models of response signal data allow for the possibility of responding based on
partial information (for relevant discussion, see Meyer et al., 1988). Returning to the
example of the diffusion model, if retrieval has not finished (i.e., the criterion for response
selection has not been reached) by the time of the response signal, then the model can
respond based on the evidence it has accumulated up to that point, choosing to go with the
response for which there is more evidence (e.g., Ratcliff, 2006, 2008). An alternative
approach is to use partial information to make an informed or biased guess. For example, in
Nikolić and Gronlund's (2002) tandem random walk model, if retrieval has not finished in
the time available, then the accumulated evidence is used to set a starting-point bias in favor
of the response with more partial information for a subsequent guessing process. However,
the availability of partial information in these models need not imply its use. Partial
information could be ignored and a continuous model could make an uninformed guess in
the same way as our ACT-R model. In the few instances where partial information and
guessing versions of continuous models have been compared, it has been found that both
versions yield very similar fits to response signal data (e.g., Nosofsky et al., 2011; Ratcliff,
2006, 2008). Thus, the absence of partial information in our ACT-R model may not be
crucial for modeling speed–accuracy tradeoff functions.

Explanations of RT data—Despite the interest in modeling speed–accuracy tradeoff
functions, very little attention has been paid to explaining RT data from the response signal
procedure. As noted earlier, RT typically becomes shorter as the lag becomes longer in
response signal experiments (e.g., see Figure 3B). This RT function is generally thought to
reflect either variation in response preparedness across lags (i.e., subjects are more prepared
to respond at long lags than at short lags) or some sort of dual-task interference effect (i.e.,
task processing is impaired or postponed by having to process the response signal, especially
at short lags when the two processing streams are likely to overlap; Pashler, 1994).

8The relationship can be interpreted in terms of a retrieval process whereby there is continuous accumulation of evidence for
retrieving an item from memory, but the item is only delivered to the retrieval buffer in ACT-R when its accumulated evidence
reaches a threshold. This process is analogous to models of eye movements in which evidence accumulates for making a saccade but
the saccade itself is ballistic (e.g., Hanes & Schall, 1996).
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However, as pointed out by Reed (1976), RT data may provide useful information for
evaluating models (see also Nikolić & Gronlund, 2002; Ratcliff, 2006). Indeed, in our
experiment we observed a fan effect on RT that varied across lags (see Figure 5) and our
ACT-R model was able to predict it quantitatively with zero free parameters.

Our ACT-R model explains the RT function in terms of the changing contribution of
guessing time to RT across lags, although it does not exclude the possibility that either
response preparedness or dual-task interference may play a role.9 As discussed earlier,
retrieval rarely finishes at short lags, forcing the model to guess (see Figure 6B), whereas
retrieval almost always finishes at long lags, making guessing unnecessary (see Figure 6A).
Given that it takes some time to guess (a point that is overlooked in many models), it
follows from Equation 9 that RT will become shorter across lags as guessing becomes less
frequent, with the difference in RT between the shortest and the longest lags being
approximately equal to the guessing time. For modeling the RT data from our experiment,
we set the guessing time, tguess, equal to 50 ms, which is the default time for firing a single
production in ACT-R (Anderson, 2007). This turned out to be nearly optimal for predicting
the magnitude of the change in RT across lags (54 ms; see Figure 5A). While there are other
experiments in which the differences between the longest and shortest RTs were in the same
ballpark (e.g., Corbett, 1977; Hintzman et al., 1998; Hintzman & Curran, 1997; Ratcliff,
2006; Wickelgren & Corbett, 1977), there are others in which differences greater than 100
ms were found (e.g., Dosher, 1976, 1981, 1982, 1984a). We suspect the discrepancies
between studies are primarily methodological, reflecting differences in the instructions,
motivation, and feedback given to subjects about their RTs, coupled with varying criteria for
excluding long RTs from data analyses. However, it is also possible that guessing may take
longer than 50 ms in some situations. Thus, to accommodate larger RT differences, it might
be preferable to allow guessing time to be a free parameter when fitting certain data sets.

Consideration of Response Signal Evidence for Dual Processes in Recognition
The ACT-R model presented in this article assumes that associative recognition reflects a
single process: retrieval of an associative chunk from declarative memory. This single-
process account was sufficient for explaining the time course of recognition in contexts
where subjects had to discriminate between studied and rearranged pairs of items. However,
there are response signal studies involving other types of discriminations that implicate more
than one process in recognition. A representative example is a study by Rotello and Heit
(2000). In their Experiment 1, subjects studied a list of word pairs, then they were tested
with three kinds of probes: targets (studied word pairs), rearranged foils (alternative pairings
of studied words), and new foils (completely new word pairs). The test phase involved the
response signal procedure and the task was to recognize whether the probe words had been
studied together. Rotello and Heit found that accuracy increased monotonically across lags
for targets and for new foils, whereas it decreased across the early lags and then increased
across the late lags for rearranged foils (as reflected by an initial increase and then a
decrease in the false alarm rate). The nonmonotonic time-course function for rearranged
foils was interpreted as evidence for two processes involved in recognition: an early process
that discriminated between studied words (which composed the targets and the rearranged
foils) and non-studied words (which composed the new foils), and a late process that
discriminated between studied and non-studied word pairs (targets and rearranged foils,
respectively).

9Nikolić and Gronlund (2002) modeled the RT function in a similar way, albeit with a more elaborate guessing process that was
supplemented by a dual-task interference effect.
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Nonmonotonic time-course functions of this sort have been observed in several response
signal studies (Dosher, 1984b; Göthe & Oberauer, 2008; Gronlund & Ratcliff, 1989;
Hintzman & Curran, 1994; McElree, Dolan, & Jacoby, 1999; McElree & Dosher, 1989;
Ratcliff & McKoon, 1982, 1989; Rotello & Heit, 2000; for a review, see Rotello, 2000). One
interpretation of these functions is that they reflect the retrieval of item and associative
information at different points in time, with item information being retrieved more quickly
than associative information. Applied to Rotello and Heit's experiment, the retrieval of item
information was the early process that led to the increase in the false alarm rate for
rearranged foils because they were recognized as being composed of studied words, whereas
the retrieval of associative information was the late process that led to the subsequent
decrease in the false alarm rate because the words were recognized as not having been
studied together. The retrieval of associative information to reject the rearranged foils is the
recall-to-reject strategy implemented in our ACT-R model. Rotello and Heit argued that
their nonmonotonic time-course functions represented evidence that such a strategy is used
in associative recognition (see also Rotello, 2000).

According to the preceding interpretation, the two processes underlying nonmonotonic time-
course functions do not necessarily involve different retrieval mechanisms; rather, they
involve the retrieval of different kinds of information (viz., item and associative). An
alternative but related interpretation of nonmonotonic time-course functions is that they
reflect two qualitatively different recognition processes: familiarity and recollection.
According to many dual-process theories of recognition (e.g., Atkinson & Juola, 1974;
Diana, Reder, Arndt, & Park, 2006; Jacoby, 1991; Mandler, 1980; Yonelinas, 1994; for a
review, see Yonelinas, 2002), familiarity reflects a fast assessment of a probe's continuous
memory strength (often modeled as a signal-detection process), whereas recollection reflects
a slower, recall-based mechanism by which qualitative or associative information about the
probe is retrieved. Applied to Rotello and Heit's (2000) experiment, familiarity was
responsible for the early increase in the false alarm rate for rearranged foils because studied
words were represented more strongly in memory than were non-studied words, whereas
recollection was responsible for the subsequent decrease in the false alarm rate because the
retrieval of associative information enabled rejection of rearranged foils. Thus, the main
difference between the two dual-process interpretations concerns the first process (retrieval
of item information versus familiarity), whereas the second process (retrieval of associative
information versus recollection) is essentially the same in both cases.

In contrast with the modeling work cited earlier, computational models of nonmonotonic
time-course functions are relatively rare. Malmberg (2008) presented simulation results for a
dual-process REM model and showed that it produced a nonmonotonic time-course
function, although he did not compare its predictions with experimental data. Göthe and
Oberauer (2008) presented analytic results for variants of a dual-process model based on
either integration of accumulated evidence from familiarity and recollection or dominance of
an all-or-none recollection process over a continuous familiarity signal. Both model variants
were able to produce the nonmonotonic time-course function observed in their data.
However, their model provides only an abstract characterization of the underlying
familiarity and recollection processes (e.g., evidence accumulation for each process is
modeled with an SEF). Ratcliff (1980) derived an expression from the diffusion model for a
nonmonotonic time-course function based on a change in the rate of evidence accumulation
during retrieval (which might occur if new information becomes available later in
processing) and it has been shown to do fairly well at capturing the shapes of empirical
nonmonotonic time-course functions (e.g., Dosher, 1984b; Gronlund & Ratcliff, 1989;
McElree & Dosher, 1989; Rotello & Heit, 2000). However, even though the diffusion model
is a process model, its applications to nonmonotonic time-course functions have tended to be
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more descriptive than explanatory (e.g., the diffusion model is neutral with respect to what
kind of information changes the rate of evidence accumulation).

Our ACT-R model, in its present form, does not produce nonmonotonic time-course
functions because there is only one retrieval process and only associative information is
retrieved. It may be possible to address this limitation by creating a dual-process version of
the model. Following the first dual-process interpretation described earlier, the retrieval of
associative information (the process currently in our model) could be preceded by the
retrieval of item information (for relevant empirical work concerning the fan effect, see
Anderson, 1975). Applied to Rotello and Heit's (2000) experiment, item information would
serve as the basis for rejecting new foils and falsely accepting rearranged foils at short to
intermediate lags, whereas associative information would serve as the basis for rejecting
rearranged foils at long lags. This extension to the model seems feasible in principle,
although future work will be needed to determine the best way of implementing both
retrieval processes and to assess the extended model's adequacy in accounting for empirical
nonmonotonic time-course functions.

Prospects for Modeling RT Distributions
By showing how ACT-R can be applied successfully to speed–accuracy tradeoffs in
response signal data, the present study provides a foundation for further applications of
ACT-R to fine-grained temporal data. In particular, it allows one to make predictions for RT
distributions in free-response paradigms, wherein response signals are absent and subjects
are free to respond as soon as they have selected a response. Subjects tend to show
considerable variability in their responding, as reflected in RT distributions that are often
unimodal and positively skewed (e.g., see Luce, 1986).

Our ACT-R model for response signal data can be adapted to the free-response paradigm by
having response execution immediately follow memory retrieval in the information-
processing stream. Assuming there is activation noise in memory, retrieval times will follow
a log-logistic distribution (see Equation 6), which under many parameterizations is unimodal
and positively skewed (see Figure 7). However, the overall RT distribution produced by the
model also depends on the distributions of times for stimulus encoding and response
execution. To produce the simulation results mentioned earlier, we assumed each process
had a uniform distribution of finishing times, with the boundaries of the distribution being t
± t/2, where t is the mean time for the process (see Anderson, Taatgen, & Byrne, 2005;
Meyer & Kieras, 1997). This assumption was made for simplicity and to limit the number of
free parameters. However, it would be reasonable to consider alternative distributions (e.g.,
exponential or gamma) for these processes when modeling free-response RT distributions.

Another important consideration concerns the modeling of errors and error RT distributions.
In our ACT-R model for response signal data, errors arise solely from guessing, which is
contingent on whether retrieval beats the external deadline (tavail) determined by the
response signal and the internal deadline (tfailure) set for the retrieval process. Given that
there is typically no external deadline in the free-response paradigm, guessing occurs only if
retrieval takes longer than the internal deadline (i.e., tretrieve > tfailure), resulting in errors that
are slower on average than correct responses.

In empirical data from choice RT tasks in free-response paradigms, errors can be slower or
faster than correct responses depending on experimental conditions such as task difficulty
and speed–accuracy emphasis (e.g., Luce, 1986; Ratcliff & Rouder, 1998). For our ACT-R
model to produce fast errors, one would have to change assumptions about the guessing
process. One approach would be to remove the contingency of guessing on unfinished
retrieval (e.g., by eliminating the internal deadline) and have a probabilistic guessing process
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that either runs in isolation (i.e., the model guesses without attempting retrieval on some
trials; e.g., Luce, 1986; Ollman, 1966; Yellott, 1967, 1971) or races in parallel against
retrieval (in which case, guessing time serves as an internal deadline for retrieval; Yellott,
1971). If the guessing process is faster than retrieval, then errors (which come only from
guessing) would be faster than correct responses (which come from guessing and retrieval)
and the error RT distribution would reflect the distribution of guessing times.

For example, consider an alternative version of our ACT-R model for response signal data in
which a guessing process is initiated early during a trial and runs in parallel with stimulus
encoding and memory retrieval. Assume that the guessed response is used only if retrieval
has not finished by the time the response signal is encoded; otherwise, the retrieved response
is used, even if the guessed response is available first. In other words, use of the outcome of
guessing—rather than the initiation of the guessing process—is contingent on unfinished
retrieval. This alternative model would produce the same speed–accuracy tradeoff function
in the response signal procedure as does our original model because in both cases the
contribution of guessing to accuracy depends on the probability that retrieval finishes in time
(see Equations 6 and 8). However, in the context of a free-response paradigm, wherein a
response can be made as soon as either guessing or retrieval has finished, the alternative
model would produce errors that are faster than correct responses because guessing would
sometimes finish before retrieval. Whether this alternative or some other variant of our
ACT-R model could capture the full pattern of behavioral data (viz., the probabilities of
correct and error responses and their corresponding RT distributions) in a free-response
paradigm involving associative recognition is an intriguing issue that warrants further
investigation.
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Appendix A
Appendix A

Persons and locations used for the facts in our experiment

Person Location

actor farmer pirate airport garage office

chef gardener queen attic hallway park

coach hippie scientist bank hotel prison

cowboy inventor sheriff barn kitchen school

dancer judge soldier castle laboratory stadium

detective maid spy church library studio

doctor musician teacher clinic museum temple

engineer pilot tourist factory nightclub theater
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Appendix B
Individual-subject data and modeling results are available as supplementary material. (See
the Excel file linked to this manuscript.)
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Highlights

• We examine how associative fan affects the time course of recognition.

• High fan lowers asymptotic accuracy or the rate of rise in accuracy, or both.

• We develop an ACT-R model that produces speed–accuracy tradeoff functions.

• The model provides an excellent account of fan effects in response signal data.
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Figure 1.
Idealized example of a speed–accuracy tradeoff function from the response signal
procedure.
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Figure 2.
Speed–accuracy tradeoff functions for the Fan 1 and Fan 2 conditions in Wickelgren and
Corbett (1977). Points denote data, solid lines denote ACT-R model predictions, and dashed
lines denote shifted exponential function (SEF) predictions.
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Figure 3.
Data from our experiment as a function of probe (target or foil) and fan (1 or 2). A:
Accuracy data. B: Reaction time data.
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Figure 4.
Speed–accuracy tradeoff functions for the Fan 1 and Fan 2 conditions in our experiment.
Points denote data, solid lines denote ACT-R model predictions, and dashed lines denote
shifted exponential function (SEF) predictions.
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Figure 5.
Reaction time data (points) and ACT-R model predictions (solid lines) for our experiment.
A: Reaction time for the Fan 1 and Fan 2 conditions. B: Fan effect.
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Figure 6.
Schematic illustration of the organization of the ACT-R model's processing stages at long
and short lags (panels A and B, respectively).
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Figure 7.
Examples of the log-logistic cumulative distribution function for two levels of activation
noise (s).
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Figure 8.
Model comparison results for the fits to data from Wickelgren and Corbett (1977). The first
eight pairs of bars refer to different variants of the shifted exponential function involving
either one or two intercepts (δ), rates (β), and asymptotes (λ) for the Fan 1 and the Fan 2
conditions. The last pair of bars refers to the ACT-R model. A: Rank statistics (lower is
better). B: Model weights (higher is better).

Schneider and Anderson Page 43

Cogn Psychol. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Model comparison results for the fits to data from our experiment. The first eight pairs of
bars refer to different variants of the shifted exponential function involving either one or two
intercepts (δ), rates (β), and asymptotes (λ) for the Fan 1 and the Fan 2 conditions. The last
pair of bars refers to the ACT-R model. A: Rank statistics (lower is better). B: Model
weights (higher is better).
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Table 2

Summary of ACT-R model parameters

Process Parameter Value Description

Encoding tstim * Stimulus encoding time

tsignal 50 ms Response signal encoding time

Retrieval W 1.0 Total source activation

S 1.5 Maximum associative strength

F * Scales retrieval time

s * Controls the variability of activation noise

τ * or –∞ Activation threshold

Guessing tguess 50 ms Guessing time

bias 0.5 Bias to guess “yes”

Responding trespx * Response execution time

*
denotes free parameters
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Table 7

ACT-R model parameter values and fit indices for fits to reaction time data without a threshold in our
experiment

Parameter Fit index

Subject trespx RMSD R2

1 172 3.5 (4.0) .962 (.950)

2 191 7.0 (7.1) .880 (.875)

3 207 7.1 (7.3) .900 (.894)

4 165 5.6 (5.5) .931 (.933)

5 174 7.6 (7.1) .814 (.835)

6 180 6.8 (6.6) .725 (.739)

7 201 6.7 (6.8) .891 (.888)

8 169 6.9 (6.7) .759 (.769)

9 205 2.2 (2.5) .987 (.984)

10 160 4.6 (4.4) .942 (.948)

Mean 182 5.8 (5.8) .879 (.881)

Group 182 2.8 (2.9) .976 (.974)

Note. “Mean” indicates the mean of the individual-subject values and “Group” indicates the value from a fit to the group data. Values in
parentheses are from simulation of the model using the parameters obtained from the analytic fits to the data.
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