
I. Introduction

Over the past decades, the data collected in the intensive 
care units (ICUs) has grown exponentially and been used 
selectively in data mining studies [1]. However, the large 
amounts of data are still underutilized for the care of criti-
cally ill patients in the ICUs. Moreover, considering the un-
availability and lack of human experts for various reasons, 
busy or novice physicians can overlook important details, 
while automated discovery tools built on various prediction 
models could analyze the raw data and extract high-level 
information for the decision maker enabling better decisions 
[2]. Likewise the ICU setting is particularly well suited for 
an implementation of a data-driven system which acquires a 
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large quantity of data to discover relationships for diagnos-
tic, prognostic, and therapeutic factors using well-designed, 
predictive data mining models. 
  However, development of a clinically applicable and scien-
tifically accurate critical care prediction tools is not an easy 
task, considering issues involved with complex data collec-
tion and inconsistent analysis methods. For instance, some 
data are not objectively measured (or recorded) which are 
then not recorded in a standardized format (e.g., categories 
of admitting diagnosis, categories of underlying chronic 
health issues, etc). Additionally, some data require constant 
updates at a reasonable interval range (e.g., daily physi-
ological values, active treatment including medication and 
procedures performed, etc). Moreover, challenges that are 
directly relevant to different data mining methods and sci-
entific validation for the produced results must be rigorously 
tested so that the predictive model can be applied in a criti-
cal care setting. A standard statistical method such as logistic 
regression has been well received by critical care profes-
sionals to predict the risk of mortality or adverse events for 
patients with critically illnesses or injuries admitted to ICU 
[3-7]. However, these predictions are not accurate enough 
for individual patients and no tools exist to reliably predict 
an individual patient’s progress on a critical care condition 
in a timely manner. Currently, new prediction approaches 
using machine learning algorithms, such as artificial neural 
networks (ANNs) and decision trees (DTs), have resulted in 
a number of prediction models in different critical care set-
tings [8-14]. However, an evaluation of the performance is 
still under discussion and very few studies have paid atten-
tion to reporting on the handling of missing and noise data, 
treatment of different types of data, and data dimension re-
duction techniques. 
  Therefore, it is our goal to develop a critical care mortality 
prediction model by comparing new computational tech-
niques including ANN, support vector machine (SVM), and 
DT to a conventional standard technique, the logistic regres-
sion model. To derive a well-performed, predictive model 
that uses various critical care data extracted from a large 
number of representative samples, University of Kentucky 
Hospital (UKH)’s ICU data was tested and the resulting 
models were assessed on their prediction performances. 

II. Methods

Three study goals to achieve are: 1) to construct an ICU pre-
diction model given the UKH-ICU study population and ex-
plore to what extent the constructed model can confirm pre-
vious results obtained from the previous logistic regression 

(LR)-based APACHE III prediction models; 2) to identify 
relevant clinical input factors for the ICU prediction models 
by using Logistic Regression; and 3) to compare prediction 
performance between DT, ANN, SVM, to LR. In this com-
parison, the measures of performance were assessed using 
the area under the receiver operating characteristic (ROC) 
curve (AUC). The following sections describe study setting 
and participants, variables included, and data analysis tech-
niques used.

1. Study Setting and Participants
The study data used in this study were retrospectively col-
lected from 23,446 patients (on 38,474 admissions) admitted 
to the UKH located in Lexington, KT, USA between Janu-
ary 1998 to September 2007. The UKH is a 489-bed, state-
operated, teaching academic and tertiary referral hospital. 
Over the past decades, the UKH has collected patients’ ICU 
data and the trained APACHE nursing staffs has carefully 
entered the data into the APACHE III Critical Care system 
[15]. According to the UKH APACHE data collection guide-
line, the patients under 20 years old, burned patients, several 
transplant patients except for renal and liver transplants, 
and patients with an ICU stay of less than four hours are not 
included in the APACHE system, Therefore, our study data 
does not include those cases in our analysis. Of the selected 
data, half of them (n = 19,227, 50%) were randomly selected 
and designated as training data set to be used for prediction 
models construction, and the remaining half (n = 19,247, 
50%) was used to test the performance of the constructed 
models (testing data set). Thus, both training and testing 
data set are mutually exclusive. Approval from University of 
Kentucky’s institutional review board, which meets federal 
criteria to qualify for exemption certification, was obtained. 
Therefore, patient identifiable data were removed before the 
data was available for the study.

2. Study Variables
The variable sets used in this study are shown in Table 1. It 
contains variable names, description and exemplary data 
values, and selected study variables to build the best predic-
tion model for our study. For the listed 41 variables includ-
ing outcome (survival status: 1 refers to death, 0 refers to 
alive) are listed in the first column by five variable categories 
such as demographic/admission, chronic health, physiology, 
cardiac, and outcome sections. The Yes mark in APACHE 
III column of Table 1 refers to the variables for LR-based 
APACHE III prediction model, while the Study Variables 
column refers to those variables used to build the mortal-
ity prediction for our study. Those study variables were first 
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Table 1. University of Kentucky Hospital intensive care unit (ICU) variables used in the study

Variable name 

(V = 40)
Description

APACHE III  

variables 

(V = 22)

Study  

variables  

(V = 15)

p-value

Demographic/Admission Information
Age Patient’s calculated age based on the hospital admission date. Yes <0.001b

Gender Patient’s race including male or female. 0.308a

Race Patient’s race including American Indian, Asian, Black, Hispanic, 
other, White.

0.077a

Physiology reserved points A calculated field of age weight plus chronic (0-40). Yes <0.001b

Admit category A calculated field of monitoring risk depending on active treat-
ment given. Between 0-4 values is assigned. 

Yes <0.001a

Admit service Indicate the clinical service of the physician who is directing the 
patient’s care in the ICU, 31 sites specific values are included.

<0.001a

Readmit Indicate Y or N, if the patient meets the APACHE readmission 
definition. 

<0.001a

Admit source Indicate one of seven designated locations from which the patient 
was directly admitted to the ICU.

Yes <0.001a

Chronic Health Information  
Disease group The specific disease category that the individual admitting diag-

nosis codes map to (0-103).
Yes Yes <0.001a

Chronic health item Code assigned to the chronic health item (0-16). Yes Yes <0.001a

Elective surgery If the patient has a surgical diagnosis, indicate whether the sur-
gery is elective by selecting 1 (Yes) or not 0 (No).

Yes <0.001a

On dialysis 1 (Yes) or not 0 (No) field as to whether or not the patient is on 
dialysis.

0.373a

Physiology Information 
Temperature The worst temperature for patient (20-43). Yes 0.512b

Mean arterial pressure (MAP) The worst MAP. Diastolic blood pressure (0-250) and systolic 
blood pressure (0-400).

Yes Yes <0.001b

Heart rate The worst heart rate value (1-300). Yes <0.001b

Respiratory rate (RR) The worst respiratory rate (range, 1-100). Yes Yes <0.001b

Ventilation Mechanically ventilated with worst RR, 1 (Yes) or 0 not (No) 
field.

Yes <0.001a

Glasgow Coma Score (GCS) The worst GCS, neurologic assessment is the sum of GCS-eyes, 
motor and verbal (3-15).

Yes Yes <0.001b

GCS on medication Check only if unable to obtain GCS due to Meds, anesthesia, or 
sedation. This is a 1 (Yes) or not 0 (No) field.

Yes <0.001a

Urine out Calculated 24-hr urine output equivalent (0-20,000). Yes <0.001b

White blood cell The worst white blood cell count (0.01-200). Yes Yes <0.001b

Hematocrit The worst hematocrit value (5-100). Yes <0.001b

Sodium The worst sodium value (80-200). Yes <0.001b

Blood urea nitrogen The worst  blood urea nitrogen value (1-255). Yes <0.001b

Creatinine The worst creatinine value (0.1-25). Yes <0.001b

Glucose The worst serum glucose value (1-3,000). Yes <0.001b

Albumin The worst albumin value (0.8-10). Yes Yes <0.001b

Bilirubin The worst bilirubin value (0.01-75). Yes Yes <0.001b

Arterial blood gas (ABG) The worst ABG assign score based upon Intubated-Fio2-PaO2-
PaCO2 relationship (0-15).

Yes Yes <0.001b

Aid-base abnormalities (ABA) The worst ABA score based upon pH-pCO2 relationship (0-12). Yes Yes <0.001b

aSign denotes Pearson’s chi-square test values less than 0.05 and bsign denotes Student’s t-test values less than 0.01.
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selected based on Pearson’s chi-square test for categorical 
variables and t-test for continuous variables (p-value < 0.05). 
The logistic regression (Forwarding) was then performed to 
finalize the study variables, which resulted in 15 variables 
checked in Table 1. All the acceptable data value ranges used 
in the study comply with the Cerner’s APACHE III Critical 
Care system [15]. 
  The distribution of cases used in the study is outlined in 
Table 2, which includes APACHE III scores, age, gender, 
ethnic, admission type, and admission origin that remained 
unchanged during the patient’s admission [16]. The variables 
encompass admission information, physiological variables, 
and chronic conditions. The ICU death outcomes, such as 
APACHE III scores and mortality, were also recorded. Physi-
ological variables extracted from the APACHE critical care 
system were manually entered within the defined physiol-
ogy data midpoints and acceptable data entry range. Some 
physiology data such as arterial blood gases (ABG)-related 
variables (ABG_Intubated, ABG_FiO2, ABG_PaO2, ABG_
PaCO2, and ABG_pH) were aggregated into two variables 
(ABG_PaO2 and AaDO2) in accordance with APACHE 
methodology to record the worst ABG. Glasgow Coma Score 
(GCS) variables were combined into a compound score. 

Remaining data was carefully audited for outliers, errone-
ous, and missing values. Missing data for the continuous 
variables were estimated with simple imputations using the 
median non-missing value. The method used to reduce di-
mensions (variables) is LR from SPSS PASW statistics (SPSS 
Inc., Chicago, IL, USA).

3. Measurements and Data Analysis
The primary outcome variable was the vital status (death or 
alive) at the time of ICU discharge captured in the APACHE 
III critical care system. APACHE uses only variables and 
data that are captured within the first 24 hours of ICU ad-
mission as accepted as conventional predictor variables. 
Therefore, the study did not capture changes in physiological 
status and the relative contributions of age and comorbidi-
ties. Given the same variables, the study compared the pre-
dictive accuracy of ANN, SVM, and DT derived from UKH’s 
ICU patients’ data with the APACHE III scoring system. The 
probability of ICU outcome prediction, p was derived from 
the APACHE III equation given in the section 1 of Knaus’ 
paper [4].
  The ANN architecture used in the study was a back-prop-
agation network with two-hidden layers, a layer between 

Table 1. Continued

Variable name 

(V = 40)
Description

APACHE III 

variables 

(V = 22)

Study  

variables  

(V = 15)

p-value

Cardiac Information 
CABG_IG For coronary artery bypass graft (CABG), whether the internal 

mammary artery graft performed, 1 (Yes) or not 0 (No).
<0.001a

CABG_Grafts For CABG, a total number of bypass grafts done (0-6). <0.001a

CABG_MI 1 (Yes) or not 0 (No) field whether patient had myocardial in-
farction (MI) during this hospitalization.

<0.001a

CABG_CC 1 (Yes) or not 0 (No) field whether patient had a cardiac cath-
eterization (CC) during this hospitalization.

<0.001a

Total grafts A total number of graft (0-6) done. <0.001b

Left ventricular ejection 
 fraction

In the field for pre-op left ventricular ejection fraction (%) indi-
cates a number between 0.0 and 99.00.

Yes <0.001a

Myocardial infarction  
 within 6 mo

1 (Yes) or not 0 (No) field whether or not the patient has had an 
MI within the last 6 mo.

<0.001a

Cardiac event occurred Indicates either a cardiac event occurred 1 (Yes) or not 0 (No). <0.001a

Location of cardiac event Location code of cardiac event occurred (0-7). <0.001a

Prediction Outcome Information
Death status Whether patient occurred a death 1 (Yes) or not 0 (No). Yes Yes

aSign denotes Pearson’s chi-square test values less than 0.05 and bsign denotes Student’s t-test values less than 0.01.
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Table 2. Characteristic of the study participants admitted to University of Kentucky Hospital intensive care unit

Variables Training set Testing set p-value

Age (yr) 55.51 ± 15.88 55.41 ± 16.06 0.25
Gender (male) 11,432 (59.92) 11,608 (59.85) 0.65
Race  0.97
   White 17,199 (90.14) 17,465 (90.05)
   African-American 1,373 (7.25) 1,341 (6.91)
   Hispanic 151 (0.79) 179 (0.92)
   Asian   49 (0.26) 48 (0.25)
   American Indian 20 (0.1) 10 (0.05)
   Other 234 (1.23) 281 (1.45)
APACHE III score  52.88 ± 28.08 52.76 ± 28.12 0.73
Intensive care unit length of stay in days  4.78 ± 8.58   4.9 ± 9.98 0.79
Outcome 0.37
    Survival  17,143 (89.16)  17,106 (88.88)
    Death  2,084 (10.84)  2,141 (11.12)
Operative status 0.08
   Non-operative 12,294 (64.43) 12,574 (64.83)
   Post-elective 4,867 (25.51) 4,910 (25.32)
   Post-emergency surgery 1,838 (10.06) 1,806 (9.85)
Chronic health 0.92
   Not present 7,265 (38.08) 7,509 (38.72)
   Diabetes mellitus 3,421 (17.93) 3,463 (17.86)
   Immunosuppression 2,581 (13.53) 2,669 (13.76)
   Dialysis 611 (3.2) 613 (3.16)
   Cirrhosis 522 (2.74) 490 (2.53)
   Solid tumor with metastasis 510 (2.67) 470 (2.42)
   Hepatic failure 353 (1.85) 369 (1.9)
   Leukemia 183 (0.96) 157 (0.81)
   Unavailable 88 (0.46) 97 (0.5)
   Lymphoma 67 (0.35) 80 (0.41)
10 most common disease group 0.95
   Coronary artery bypass grafting 966 (5.06) 894 (4.61)
   Congestive heart failure 785 (4.11) 812 (4.19)
   Acute myocardial 762 (3.99) 723 (3.73)
   Respiratory-other 736 (3.86) 721 (3.72)
   Pneumonia-bacterial 725 (3.8) 710 (3.66)
   Sepsis 705 (3.69) 710 (3.66)
   Head trauma 665 (3.48) 709 (3.66)
   Abdomen trauma-surgery for 621 (3.25) 653 (3.37)
   Abdomen trauma 533 (2.79) 607 (3.13)
   Gastrointestinal-location bleeding 528 (2.77) 545 (2.81)
Values are presented as mean ± SD or number (%). 
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the input and output layers. Estimated accuracy, an index 
of the accuracy of the predictions, was measured based on 
the differences between the predicted values and the actual 
values in the training data [17]. The number of units such 
as input, hidden, and output were recorded. The study used 
the exhaustive prune method. The method starts with “a 
large network and prunes the weakest units in the hidden 
and input layers as training proceeds” [17]. This method is 
usually the slowest for NN, because the network training 
parameters are chosen to ensure a very thorough search of 
the space of possible models to find the best one. However, it 
is known to yield the best results [17]. For the decision tree 
analysis, the Clementine’s C5.0 algorithm (SPSS Clementine 
is commercial data mining software that allows data process, 
analysis, and modeling to collaborate in exploring data and 
building models based on various built-in algorithms) was 
used. The model “works by splitting the sample based on the 
field that provides the maximum information gain and each 
subsample defined by the first split is then split again, until 
the subsamples cannot be split any further” [17]. Previous 
studies show that C5.0 models are quite robust in the pres-
ence of problems such as missing data and large numbers of 
input fields [17]. In addition, an easier interpretation and a 
powerful boosting method to increase accuracy of classifica-
tion are major strengths of the C5.0 models.
  The SVM is a classification and regression technique that 
“maximizes the predictive accuracy of a model without 
over fitting the training data” [17]. Our data set is very large 
volume with large number of predictor variables; therefore 
the SVM was chosen to bring as an option for developing 
optimal prediction model for the ICU mortality. The high-
dimensional variables are separated into categories and then 
a separator found between each category is transformed 
for further analysis. “Following this, characteristics of new 
data can be used to predict the group to which a new record 
should belong” [17]. To evaluate performance of the differ-
ent prediction models, the study reported AUC. The AUC 
was used to measure for “how well the model can discrimi-
nate between positives and negatives” based on specificity 
and sensitivity values [1]. In other words, the AUC was used 
to assess the ability of the system to distinguish between in-
dividual patients who lived and those who died [18].

III. Results

1. Overall Description of UKH Critical Care Data
A total record of 38,474 ICU encounters was obtained from 
23,446 patients (average number of visits per a patient, 1.64 
visits) admitted to UKH-ICU between January 1998 and 

September 2007. The demographic and clinical features are 
presented in Table 2. The average age of the patients was 
55.46 (standard deviation was ±15.97) and 59.88 percentage 
(n = 23,040) of the patients was male. Predicted APACHE 
III scores of the study participants, calculated within a day 
of ICU admission, was 50.98 (±28.80). Actual ICU length of 
stay (LOS) was 4.84 (±9.31) days, which was obtained from 
ICU discharge information. Non-operative encounters (n = 
24,868, 64.95%) were the most dominant in the study. The 
most frequently recorded chronic health item in the study 
group was diabetes (n = 6,884, 17.89%) followed by immu-
no-suppressed diseases (n = 5,250, 13.65%). Most commonly 
suspected diagnosis at admission included post-operative di-
agnosis of coronary artery bypass grafting (n = 1,860, 4.83%), 
congestive heart failure (n = 1,597, 4.15%) and acute myo-
cardial infarction (n = 1,485, 3.83%). Complete information 
about characteristics of the study participants and variable 
selected for each model can be found in Tables 1, 2.

2. Variables Selected
Forty variables (V = 41) including one outcome variable was 
the full set of the study dimensions obtained from APACHE 
III critical care system. A fifteen variable set (V = 15) was 
chosen using the logistic regression (forwarding) in Table 3. 
A complete list of study variables in each variable set along 
with p-value is listed in Table 3.The included variables are: a 
calculated field of age weight plus chronic (PhyResvPts), ad-
mission category, disease group, chronic health item, elective 
surgery, mean arterial pressure (MAP), respiratory rate (RR), 
GCS, GCS on medication, white blood cell (WBC), albumin, 
bilirubin, ABG, aid-base abnormalities (ABA), and death 
status. The study found that most cardiac-related variables 
(e.g., CABGIG, CABGGraft, etc.) were not included in the 
reduced variable set. In addition, some patient demographic 
and admission information such as gender, race, admission 
service and readmission were excluded in the reduced vari-
able set (V = 15). 

3. Overall Performances
All four models, APACHE III, C5.0, ANN, and SVM models, 
were constructed to predict the ICU outcome. The accuracy 
of these four methods for outcome prediction was measured 
to assess prediction performance in Table 4. Among four 
models, the best performing model is C5.0 (AUC, 0.892), 
followed by SVM (AUC, 0.876), APACHE III (AUC, 0.871), 
and ANN (AUC, 0.874). As resulted in our predicted models 
using only 15 chosen variables, two machine models, DT 
and SVM, performed slightly better than that of the con-
ventional APACHE III prediction model in our data set (V 
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Table 3. Dimension reduction by using logistic regression

Chosen variables B SE Wald p-value Odds ratio
Glasgow Coma Score (GCS) -0.227 0.008 896.04 <0.001 0.797
Mean arterial pressure -0.01 0.001 85.32 <0.001 0.99
Physiology reserved points 0.26 0.003 77.3 <0.001 1.027
White blood cell 0.018 0.002 73.7 <0.001 1.019
Arterial blood gas 0.093 0.005 372.4 <0.001 1.097
Respiratory rate 0.045 0.003 295.91 <0.001 1.046
Aid-base abnormalities 0.061 0.008 58.8 <0.001 1.063
Albumin -0.777 0.043 331.38 <0.001 0.46
Bilirubin 0.078 0.006 165.53 <0.001 1.082
GCSMEDS (Yes) 1.204 0.134 80.34 <0.001 3.332
Admit category (ACTIVE) 94.25 <0.001
    LR-MONITOR -0.934 0.113 49.02 <0.001 0.393
    HR-MONITOR -0.603 0.082 53.71 <0.001 0.547
    NP-ACTIVE 15.564 6,740.1 0 0.998 574,336.488
Elective surgery (Yes) -0.337 0.136 6.15 <0.05 0.714
Chronic health items 48.8 <0.001
    Acquired immune deficiency syndrome -0.445 0.315 2 0.157 0.641
    Chronic dialysis 0.205 0.118 3.04 0.081 1.228
    Cirrhosis 0.174 0.125 1.94 0.164 1.19
    Diabetes mellitus 0.056 0.063 0.78 0.377 1.058
    Hepatic failure 0.353 0.139 6.43 <0.05 1.423
    Immunosuppression 0.038 0.072 0.27 0.603 1.038
    Leukemia/myeloma 0.607 0.155 15.27 <0.001 1.835
    Lymphoma (non-Hodgkin’s) 0.829 0.234 12.53 <0.001 2.291
    Solid tumor with metastasis 0.415 0.136 9.35 <0.05 1.514
    Medical history unavailable 0.277 0.237 1.36 0.243 1.319
Disease group 674.45 <0.001
    Pneumonia, aspiration -0.576 0.248 5.42 <0.05 0.562
    Cardiac arrest 0.994 0.163 36.98 <0.001 2.701
    Cardiac shock 1.088 0.261 17.34 <0.001 2.969
    Diabetic ketoacidosis -1.028 0.401 6.58 <0.05 0.358
    Drug overdose -0.818 0.288 8.07 <0.05 0.441
    Genitourinary-other -1.171 0.377 9.67 <0.05 0.31
    Bleeding, GI from esophageal varies -0.607 0.211 8.27 <0.05 0.545
    Head (central nervous system) only trauma 0.974 0.154 39.88 <0.001 2.649
    Hemorrhage/hematoma, intracranial 1.062 0.162 43.03 <0.001 2.891
    Neurologic medical-other -2.128 1.023 4.33 <0.05 0.119
    Parasitic pneumonia 1.136 0.303 14.03 <0.001 3.116
    Rhythm disturbance -0.478 0.213 5.05 <0.05 0.62
    Surgical coronary artery bypass grafting -1.381 0.226 37.45 <0.001 0.251
    GI abscess/cyst-primary, surgery for 0.707 0.337 4.4 <0.05 2.027
    Cholecystectomy/cholangitis, surgery for -2.099 1.052 3.98 <0.05 0.123
    GI surgery-other -0.789 0.277 8.12 <0.05 0.454
    GI vascular ischemia, surgery for resection 0.604 0.27 4.99 <0.05 1.829
    Liver transplant -1.217 0.342 12.68 <0.001 0.296
    Seizure 0.376 0.146 6.59 <0.05 1.456
    Sepsis, renal/UTI including bladder 1.193 0.188 40.47 <0.001 3.296
    Stroke -1.076 0.316 11.64 <0.05 0.341

SE: standard error, GI: gastrointestinal, UTI: urinary tract infection.
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= 15). Among the machine learning models built, our study 
revealed that the DT slightly outperformed that of LR, SVM, 
and ANNs. This study result indicates that all four models 
performed within the level of a medically acceptable predic-
tion range, which is over 80% of the AUC. Typically, model 
developers require an AUC of the ROC curve to be 0.70 [19-21].
  Figure 1 visually shows the performances of the four mod-
els built. It is apparent that one of non-traditional methods, 
the decision trees using C5.0 algorithms, yielded larger ROC 
areas than that of a standard statistical method, LR. In ad-
dition, the results of ANN and SVM were as good as that of 
LR. Again, this assures that all of our four models built show 
very good discriminatory values with AUC ranging between 
0.80 and 0.90, achieving good to excellent calibration assess-
ments.
  As resulted in our study, the decision tree outperformed 
among the study models. In order for us to closely review the 
branches of the resulted decision tree, the following Figure 2 
illustrates a shorten version of the tree result. In this decision 
tree, split rules are explained with power of splitter, which 
explores further analysis on individual value ranges selected 
for each variable to branch-out to the next level of the deci-
sion performed. In our study result, the first level decision 
branch in this tree is GCS predictor which separates score 

more or equal to 11 followed by ABG less than or equal to 9. 
However, it may contain potential to visually depict critical 
care decisions, which can further be used to develop critical 
care practice guideline.

IV. Discussion

The primary goal of the study was to construct an ICU out-
come prediction model from 38,474 admissions only using 
the data captured within the first 24 hours at UKH-ICU. The 
three models were developed using the ICU data extracted 
from the UK APACHE III Critical Care system and included 
patient demographic, admission information, physiology, 
and chronic health conditions as predictor variables (input) 
and an ICU discharge status as a response (target) variable. 
  The most interesting outcome of this study was that the 
DT model outperformed those of LR and ANN-based mod-
els. For several reasons, in the past studies, decision tree 
algorithms are not the favored choice of data miners. For 
example, the following criticisms show limitation on the use 
of DTs: classes must be mutually exclusive, final decision tree 

Table 4. Comparison of DT, ANN, SVM, and LR performance

Methods AUC SE
95% Confidence 

interval

C5 0.892 0.004 0.884-0.900
ANN 0.874 0.004 0.866-0.881
SVM 0.876 0.004 0.868-0.883
APACHE III 0.871 0.003 0.865-0.877

DT: decision trees, LR: logistic regression, ANN: artificial neu-
ral network, SVM: support vector machine, AUC: area under 
the receiver operating characteristic curve, SE: standard error.

Figure 1. Receiver operating characteristic (ROC) results of pre-
diction models developed. ANN: artificial neural net-
work, SVM: support vector machine.

Figure 2. Abridged decision trees (DT) 
graph. GCS: Glasgow Coma Score, 
ABG: arterial blood gases.
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dependent upon order of attribute selection, errors in the 
training set can result in overly complex decision trees, and 
having missing values for an attribute make it unclear which 
branch to take when that attribute is tested. Nonetheless, 
the past studies have reported controversial findings on the 
C5 algorithm. For example, Delen et al. [22]’s result (C5.0 
was the best predictor with the highest accuracy of 93.6% 
in predicting breast cancer survivability) supports our find-
ing of the best prediction resulted from C5.0 methods in all 
three-performance measurement outcome. Unlike the study 
of Delen et al. [22], Ramon et al. [1] reported that the AUCs 
of decision tree based algorithms (decision tree learning, 
65%; first order random forests, 81%) yielded smaller areas 
compared to those of naive Bayesian networks (AUC, 85%) 
and tree-augmented naive Bayesian networks (AUC, 82%) in 
their preliminary study on a small data set containing 1,548 
mechanically ventilated ICU patients [1]. This result does 
not comply with our finding of the superiority of decision 
tree based models. Although the study was not intended for 
comparing multiple machine learning algorithms, Crawford 
et al. [23] concluded that a decision tree used in their study 
provided a clinically acceptable mining result in predicting 
susceptibility of prostate carcinoma patients at low risk for 
lymph node spread. 
  Considering the noticeable lack of information about the 
use of decision tree algorithm for predicting health out-
comes, this study contributes to our understanding of the 
performance of the decision tree-based algorithm such as 
C5.0 in comparison to those of the neural and logistic mod-
els. Furthermore, the major limitation for the use of ANNs 
is the lack of logic between input and output nodes, which 
are not explicit because of hidden layers. Some studies sug-
gest that decision trees can be applied to uncover the hidden 
layers in order to explain the hidden clinical implication in 
the ANN’s black box area. Therefore, a more elaborate com-
parison using a different decision tree algorithms (CART, 
CHAID, ID3, etc.) and ANN algorithms should be conduct-
ed to provide reliable and generalizable research findings. 
Previously studied data mining algorithms in predicting 
hospital or ICU outcomes have mostly used ANN methods 
whose performance was not compared to those of decision 
trees [24,25].
  To identify the best predictor variables for the model, the 
study performed an LR-based dimension reduction ap-
proach. The study confirmed that the reduced study variables 
in machine learning algorithms slightly better than those 
with conventional APACHE III variables. As confirmed by 
four AUC performance measures, the predictors included 
in three machine learning-based models performed slightly 

better with the statistically chosen variables than that of the 
APACHE III variables. The unanimous variables in both 
variable sets are disease group, chronic health item, MAP, 
RR, GCS, WBC, Albumin, Bilirubin, ABG, and ABA. These 
variables are mostly drawn from physiology lab values except 
for disease and chronic health items. This finding reassures 
the importance of physiology lab to predict ICU mortality as 
proven in APACHE prediction modeling. Within the critical 
care context, the UK hospital’s protocol of the Adult Trauma 
Alert Activation Criteria recommends critical variables such 
as MAP, RR, GCS, and ABG to be used as mandatory crite-
ria to provide rapid and efficient mobilization of personnel 
and resources essential for resuscitation, evaluation, diag-
nosis and treatment of the multiply injured patient. In this 
protocol, systolic BP less than 90 and GCS less than 8 are 
indicative of issuing an adult trauma patient. Although this 
protocol is not specifically intended for an overall mortal-
ity of ICU, the decision paths, critical variables, and cut-off 
values can be validated in our further study. Likewise, the 
previous findings suggest that the overall performance was 
improved as variables were reduced [26-28]. Therefore, this 
result led us for further justification of our findings against 
the previous studies which concluded a simple model with 
lesser variables was much more effective and likely to be ac-
cepted and used by clinicians working in critical care setting 
[29].
  The major contribution of the current study was the use of 
a large number of samples (n = 38,474), which represents al-
most every ICU patient admitted to UKH-ICU over the past 
decade. The use of small data sets has been identified as a 
major limitation in previous studies [17,30,31]. Considering 
the fact that the UKH is a largest and most comprehensive 
academic hospital within the state of Kentucky, the study 
findings are representative of public health observation in 
critical care services. In addition, secondary use of health 
data can greatly enhance critical care research, which can 
possibly suggest new ways of analyzing mined ICU data such 
as the results of decision tree paths. 
  The current study has several limitations, which have to be 
improved for prospective studies in ICU prediction model-
ing, if designed for a different research direction. First, the 
study only used the first day of ICU data, which did not 
capture intermediate progression on various treatment and 
physiology data changes. This limits the impact of clinical 
decision-making, since captured data is usually not updated 
during the patients’ ICU stay [2]. The use of intermedi-
ate information rather than static data can suggest a more 
meaningful clinical implication in critical care. In their Silva 
et al. [2] and Harrison and Kennedy [29], electrocardiogram 
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data and adverse events captured over the course of ICU 
treatments were used to build an ICU prediction model 
[29]. Therefore, in our next study, ICU data from the time 
of presentation (time dimension to be added for prediction 
modeling) will be performed which will also consider in pre-
dicting other ICU outcomes such as length of stay, days of 
ventilation, etc.
  Second, considering the benefits of using data mining tech-
niques, the data mining approach in clinical medicine should 
carefully be designed based on the capability and applica-
bility of the medical domain knowledge throughout every 
process of the data-mining task. Although the study did not 
intend to focus on a certain disease category such as acute 
coronary syndrome or sepsis, it is apparent that the next step 
of UKH ICU data mining will consider in dealing with the 
specific disease related approaches. In this regard, we plan to 
develop further prediction models with the top 10 popular 
disease groups identified in our data set. In addition, the use 
of domain expert prediction compared to machine learning 
predictions will give us a better validation of the produced 
results.
  Third, although our study used a large number of repre-
sentative samples from a large teaching hospital, the data 
were collected from only one center. The original source of 
APACHE III Critical Care series have collectively captured 
critical care data from more than one institution nationwide, 
we hope to expand our study to develop a prediction model 
at a multiple centers. As recommended, the “determination 
of the applicability and usefulness of any predictive model 
requires independent and external validation in a population 
that is intrinsically different from the development sample” 
[31]. Again, we believe that further research is required to 
assess the clinical applicability of the developed model with 
hybrid and multiple modeling approaches in a larger pool of 
critical care patients at a multiple institutions. 
  In this study, we developed a well-calibrated ICU predic-
tion model that outperformed the prevalent statistical mod-
el, APACHE III, using new machine learning algorithms 
such as C5.0, SVM, and ANN. The study used systematically 
collected critical care data from over a decade at a large aca-
demic teaching hospital. It confirms that machine-learning 
techniques generally improve the performance or accuracy 
of the outcome prediction. It is also clear that alternative ma-
chine learning, such as decision trees, which have not been 
investigated in many clinical settings, should be studied fur-
ther to validate our study’s finding. Moreover, further studies 
should give their attention to a multicenter-driven, hybrid 
machine learning-tested, special disease-focused and hu-
man expert-validated experimental design so that the overall 

quality, generalizability, and reproducibility can be improved 
in the study of machine learning in the critical care setting. 
In addition, the intensive care setting is well suited to imple-
ment a prediction tool that is being built on a wealth of criti-
cal care data populated every second. It will see more com-
pelling demands if UKH and other major medical centers 
are ready to use automatically collected real time ICU data 
that requires a clinical decision support system to predict 
clinically reliable patient outcome. Therefore, more atten-
tion should be given to utilize the critical care data available, 
which can be of further assistance to busy clinicians who can 
then effectively monitor data patterns for optimal care. Con-
clusively, the study believes that the new machine learning 
algorithms can be integrated into the development of stan-
dard critical care systems so that critical care decisions can 
be improved to ultimately save critically-ill patients.
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