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The study of animal cognition has provided valuable data throughout the years, yet its reliance on laboratory

work leaves some open questions. The main question is whether animals employ cognition in daily

decision-making. The following discussion uses sperm competition (SC) as a test case for demonstrating

the effect of cognition on routine choices, in this case, sexual selection. Cognition is manifested here by

males’ ability to represent the number of rivals competing with them. I claim that response to SC is driven

by quantity estimation and the ability to assess competition magnitude cognitively. Hence, cognition

can determine males’ response to SC, and consequentially it can be selected within this context. This

supports the argument that cognition constitutes an integral part of an individual’s toolbox in solving

real-life problems, and shows that physical and behavioural phenomena can expose cognition to selection

and facilitate its evolution.
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1. WHAT IS QUANTITY ESTIMATION?
Quantity estimation (QE) encompasses the range of per-

ceptual and cognitive aptitudes allowing individuals to

respond to the quantity aspect of stimuli in various

degrees of accuracy [1]. A fundamental distinction is

made between quantity and amount: amount describes

the physical attributes of stimuli (density, surface area,

etc.) and provides information on the magnitude of

such continuous indices. In contrast, quantity exclusively

refers to the discrete dimension of exact number, and

allows increments in integer units only [2]. For example,

in foraging, amount reports on the magnitude of physical

food features, while quantity conveys information on the

number of individual food items. I suggest that the tran-

sition from processing amount to processing quantity

entails a transition from the automatic and non-cognitive

to the progressively more cognitively complex [3]. This is

demonstrated by QE’s role in sperm competition (SC).
2. WHAT IS SPERM COMPETITION?
SC is the struggle between sperm of different males for

the fertilization of a given set of ova [4]. SC affects the

evolution of many taxa and induces a variety of adap-

tations at behavioural, morphological and physiological

levels [5–7]. Parker and co-workers [8–11] modelled

the resource allocation a male is expected to invest in

sperm production when faced with different number of

rivals. These models make three predictions: the first

states that males should invest minimally in the absence

of competition. Secondly, investment should be maximal

in the presence of a single competitor. This situation is

known as SC risk (SCR), and it is a dichotomy between
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absence and presence of rivals, thus not requiring QE.

Finally, sperm expenditure is expected to progressively

decline as the mean number of rivals exceeds one. This

is SC intensity (SCI), and here a subtle distinction of

quantity is required in order to qualify for the progressive

decline condition. These predictions rely on two debata-

ble assumptions: the first is that individuals can assess

the magnitude of their competition, be it accurately or

vaguely (what I call the ‘estimation conjecture’). The

second assumption posits that there exists, in every

species, a given knowledge of an average number of com-

peting males (what I call the ‘innate mean conjecture’).

SC models address population-level SC and, conse-

quently, do not consider how individuals perceive,

process and act upon the number of rivals. However, it

is clear that by alluding to assessment, these models

should focus on individuals. Population analyses are lim-

ited in explicating the role cognition might play in

behaviour, since they average out individual differences

in performance. As a result, SC models neglect the ques-

tions of the mechanisms of assessment, who performs the

assessment, or what is assessed. This is a substantial

lacuna, since without the ability to estimate competition

size, an organism cannot be said to truly respond to

SCI [12]. The following discussion bridges this gap by

showing that individuals can gauge the magnitude (inten-

sity) of a competition, by using a range of perceptual and

cognitive aptitudes, and that this assessment process

determines their response to SC.
3. LINKING QUANTITY ESTIMATION AND SPERM
COMPETITION
Males’ ability to estimate competition magnitude deter-

mines ejaculate size and composition. Sperm does

interesting things post copula, yet those chemical actions
This journal is q 2011 The Royal Society
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Table 1. Experimental design for species tested for SC intensity. Species: H, hermaphrodite. Competition size: 1v0-2 means

a focal male was presented with 0, 1 or 2 other males. 1v1/5 means it was one or five males; m, males; f, females; s, small;
l, large. Traits: CD, copula duration; VST, various sperm traits; SE, sperm expenditure. Model: support/refute SCI model
predictions. Population-level analyses are not included.

species competition trait inspected model ref.

Schistocephalus solidus (H) 1v1/3 sperm storage volume support [16]
Macrostomum lignano (H) 1v1/2/3/7 sex allocation support [17,18]
Ophryotrocha diadema (H) 1v1/11 sex allocation support [19]
Helobdella papillomata (H) 1v0/1/3/7 testisac volume support [20]

Ophryotrocha diadema (H) 1v2/6/12 sex allocation refute [13,21]
yellow dung fly 1v1/3 testis size support [22]
fruit fly 1v0/1/3 CD support [23]

1v1/2/4 seminal fluid composition support [24]

golden egg bug 1v1/2 CD, SE support [25]
rice weevil 1v1/5/10 courtship duration, CD support [26]
monarch butterfly 1v3, 1s:1l VST refute [27]
tropical house cricket 1v0/1/6 SE refute [28]
spring field cricket 1v0/1/6 SE support [28]

Southwestern field cricket 1v0/1/6 SE refute [28]
Australian field cricket 1v0/1/5 SE support [29]

1v0,1,5,10,15 VST refute [15]
house cricket 1v0/1/7 SE refute [30]
tropical house cricket 1v0/1/7 SE refute [30]

Cordylochernes scorpioides 1v0-3 SE refute [14]
mealworm beetle 1m:2f/3/4f, 2mv4f time near scent origin refute [31]
peppermint shrimp (H) 1v1/2/5/10 sex allocation refute [32]
sailfin mollies 1m:3f, 3m:1f SE refute [33]
guppy 1v0/1/2/4 VST refute [34]

European bitterling 1v0/1/3/5 ejaculation rate support [35]
not specified SE support [36]

grass goby 1v0/1/2/4 ejaculate size support [37]
1v0/1/4 territoriality, aggression & SE refute [38]

black goby 1v0/1/2/4 ejaculate size support [37]

1v0/1/4 territoriality, aggression & SE support [38]
rainbow darter 1v0/1/4 ejaculate size refute [39]
freshwater crayfish 1v0/1/3/ ejaculate size refute [40]
red-spotted newt 1v0/1/3/7 courting display support [41]

small-mouthed salamander 1v0/1/2 courtship duration, spermatophore number support [42]
Australian quacking frog 1v0/1/2/4 fertilization success support [43]

1v0/1/2 ejaculate & testis size refute [12]
meadow vole 1v5 SE support [44]
bank vole 1v1/4 VST support [45]
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are out of cognition’s reach. Estimation is not performed by

sperm, and once sperm is delivered, cognition takes a back

seat. Thus, the time window under investigation here

includes only the events leading up to ejaculation. Cogni-

tively speaking, assuming a priori that males can estimate

quantity in SC contexts is non-trivial. Schleicherova et al.

[13] report that the worm Ophryotrocha diadema modifies

its sex allocation through a finely tuned, concentration-

based threshold. Here, response to SC is wholly dependent

upon amount and requires no cognitive processing. Bonilla

et al. [14], report that sperm allocation in the pseudo-

scorpion Cordylochernes scorpioides decreased almost

monotonically as the number of different male olfactory

cues increased from 0 to 3. Thomas & Simmons [15]

observed that sperm viability decreased in males of the

cricket Teleogryllus oceanicus as the number of different

male scents on a virgin female partner increased. Evidently,

different species rely on different cues to assess SC; those

cues are perceived at varying levels of accuracy and sophis-

tication; and assessment determines if and how males

modify their behaviour and/or sperm traits (table 1).
Proc. R. Soc. B (2012)
4. THE ESTIMATION CONJECTURE
SC models provide a framework for examining cognition’s

role in SC. These models consider two scenarios: in the

first, sperm allocation is shaped by the mean level of SC,

and males can assess only whether the number of competi-

tors is smaller or greater than such an average [13]. In QE

nomenclature, this is called relative quantity judgement.

Many species possess basic QE aptitudes, where amount

and quantity are significantly confounded (for a review see

[46]). In SC, relative quantity judgement is manifested, for

example, by males measuring females’ reproductive tract

content [47,48]. In the second SC scenario, males have pre-

cise information concerning the number of competitors

(akin to [15]). In QE terminology, this is counting.

To tackle the estimation conjecture, I examine the role

quantity plays in males’ assessment of SCR/I, and begin

by looking at the issue of quantity versus amount. While

SCR has substantial experimental support, SCI garners

only a fragmented one [49–51] (see also table 1). As an

explanation, I suggest that whereas SCR relies on a

binary distinction between absence and presence (in
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which both amount and quantity provide cues of equival-

ent reliability), SCI demands a representation of the

actual number of rivals, entailing the cognitive function

of counting. Since counting is more complex, it is

expected to be less phylogenetically frequent.

To substantiate the argument for QE, I investigate

what is the element assessed by males: if stimuli are con-

tinuous (e.g. spermatheca content) and evaluation is

concentration-based [27,52], amount is the dominant

cue. If stimuli are males themselves, then the cue becomes

quantity, and it can be said (given appropriate experimen-

tal controls) that males effectively count their rivals.

Next, I use Gelman & Gallistel’s counting principles

[53], in which ordinality and cardinality are prerequisite

to counting. Ordinality is the representation of order

within a stimulus array [54]. In QE, ordinality means

that tagging of stimuli is continuous and sequential. Car-

dinality dictates that the last tag assigned represents the

sum of all items in an array. To exhibit ordinality in SC,

males need to distinguish rivals tallied from rivals to be

tallied. Such ability is plausible given several lines of evi-

dence. First, many species can correctly establish mating

status [55] or mating order [6] using various mechanisms.

Second, males are aware of not simply the presence of

observers, but also of their composition ([56] and refer-

ences therein). Cumulatively, it is safe to presume that

males of several species can actively distinguish between

individuals, tag them and represent them ordinally.

Third, with respect to cardinality, it is observed that, in

nature, males are often encountered sequentially [57].

Next, selected reports explain how males can benefit

from relegating the execution of sexual behaviour to a

later stage: Grant et al. [58] introduced male Japanese

medaka to simultaneous and sequential presentations,

and concluded that sexual behaviour indices were more

prominent following sequential presentation. Reinhardt

[59] reports that the summative number of male–male

encounters reliably predicts variation in ejaculate size in

the grasshopper Chorthippus parallelus. Thus, it is plaus-

ible to identify cardinality aptitude employed in SC

context. Together, these lines of evidence provide a tenta-

tive, albeit indirect, backing to an ability to track and

manipulate quantity over time in a manner qualifying to

the principles of counting.

Overall, there is experimental support for the existence

of a continuum of various fashions of gauging compe-

tition magnitude, ranging from crude perceptual sensing

of chemical concentration through more elaborate pro-

cessing of amount cues, and culminating in cognitive

processing of quantity and counting. These aptitudes

are employed contextually in some individuals and

species to respond to SCI.
5. THE INNATE MEAN CONJECTURE
SC models assume the existence of a given knowledge of

an average number of competing males. Clearly, if males

use innate means, they need not estimate the number

of their rivals, and automatic response to perceptual

amount cues (such as concentration thresholds) suffice.

Indeed, some species rely upon an a priori value,

embedded either prenatally or during a critical period in

development [60,61]. This option may apply to males

who lack plasticity in accommodating for changes in
Proc. R. Soc. B (2012)
competition size [23,62]. Nonetheless, innate means

cannot be assumed to be global, since the composition

and magnitude of competition may vary substantially

[12]. Additionally, data show that local responses can

rely on the phenotypic plasticity of sperm traits [63–65].

If averages are not used, males need to form their esti-

mation during some point in time, be it prior to or during

copula, thus allowing temporal cognition to enter the

equation. The role of interval timing in QE has been

thoroughly substantiated [2,66,67]. Therefore, identify-

ing interval timing’s involvement in SC supports the

argument for QE’s role in SC. I focus on estimations

prior to copula [24,68], since estimations during copula

rely predominantly on probing spermatheca content,

which is amount estimation. There are two alternatives

to the innate mean conjecture concerning timing’s role

in SC: the first is estimation according to ad hoc, local

conditions [69], and the second is decision reached

locally via a comparison to a hardcoded value [70,71].

Interval timing is important in both cases, as shown, for

example, by the observation that mating duration pro-

longs as males’ exposure to rivals prior to copula

progressively extends [72]. Further cementing the role

of interval timing in connecting QE and SC is the obser-

vation that phenotypic plasticity of various sperm traits is

triggered only by a specific stimulus and a threshold

exposure time to it [73,74], even at adulthood [75,76].

As an interim conclusion, the QE analysis of SC sup-

ports the idea that males can estimate the magnitude of

their competition. At the very least, SC assessments

require males to perform relative quantity judgements,

where males can distinguish between more or less rivals.

Occasionally, assessment might entail a more sophisti-

cated QE aptitude, where males need to perform a

continuous real-time monitoring of the number of indi-

viduals they encounter. Such aptitude involves exact

representation, it is sequential (and thus requires hand-

ling interval timing), and it meets the requirements of

the basic principles of counting [53]. Such an aptitude

has yet to be addressed in the QE literature. Thus, current

QE models fail to describe fully the impact quantity has

on males’ assessment of SCI.

As table 1 indicates, this analysis goes beyond Parker

et al.’s models: some species’ response to SC, while not

obeying Parker’s predictions, still supports the argument

that assessment is crucial for apprehension of competition

size. Hence, the assertion that cognitive processes at the

individual level tailor behavioural and physiological

response to SCR is extended to data that contradicts

SC models. Furthermore, the modelling of other phenom-

ena also presupposes males’ ability to gauge competition

magnitude: mosquito fish males’ mate choice [77] and

giant danio’s and zebra fish’s resource defence [78] echo

Parker et al.’s assumptions to the dot. Thus, it becomes

even more pertinent to explore the role the cognitive

functions of QE have in various behaviours and their

evolutionary trajectories.
6. EVOLUTIONARY ANALYSIS OF SPERM
COMPETITION AND QUANTITY ESTIMATION
Based on the suggested link between SC and QE, possible

evolutionary corollaries could be considered. To do so,

further elaboration of QE theory is needed. QE is a
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composite behaviour, comprising quasi-independent

building blocks (perceptual or cognitive elements; e.g.

temporal cognition) brought together by exaptation [2].

The operation of a building block within a cognitive com-

plex does not negate its own independent, parallel and

simultaneous effect. Here lies the source of quasi-indepen-

dence: amount functionality is tapped by various amount

networks and by quantity networks of which they are

part. If an animal can process both amount and quantity,

then stimuli may activate either amount or quantity net-

works. However, quantity has amount as one of its

constituents; thus, the same amount-network is stimu-

lated, but it supports different tasks. This contingent

characteristic of the choice between quantity and amount

allows various environmental conditions to determine

which cue is used per given task. Such an outline suggests

that QE aptitudes (such as relative quantity judgement

and counting) are punctuated across phylogeny in a way

that defies a linear schematization of its evolution: counting

most probably have used the QE aptitudes preceding

it, and evolved independently in several lineages.

Therefore, the evolutionary processes that had shaped the

continuum of QE aptitudes are nonlinear and promote

convergence [2].

Data show that males’ cognitive aptitude directly

affects their mating success [79] and that females can

infer such aptitudes via behavioural or morphological

proxies [80]. Some studies document a direct association

between learning and plasticity of sperm traits in SC con-

text [81,82]. A ubiquitous observation in the study of

animal behaviour is that individuals differ in cognitive

performance. These lines of evidence suggest a viable

link between individuals’ cognitive capacity and their

mating success, thereby exposing their cognitive system

to selection, be it directly or indirectly.

Parker et al. argue that males who can accurately assess

the number of their competitors use sperm more effi-

ciently than those who cannot. Cognition’s role in SC

via QE suggests that cognitive traits can be selected

[83]. Changes in sperm traits can translate into competi-

tive ability [22,84,85] and sperm competitiveness can

become heritable [86,87]. If estimation of quantity is

males’ assessment mechanism, then cognition is the

cause of their response to SC and, consequentially, it

could be selected. The interwovenness of quantity and

amount dictates that cues generated by rival males acti-

vate multiple modalities [88] and processing processes.

Such multitude could either improve decision-making

[89] and facilitate attainment of perfect knowledge if

cues are of the same nature (amount or quantity [14]),

or it might stymie the estimation process, and favour aver-

aged responses. Under ecological conditions where

amount cannot provide reliable information, and/or

when the interaction between quantity and amount jeo-

pardizes swift and trustworthy response, a gradual shift

from processing amount towards processing quantity is

expected. Pertaining to this, a direct association between

learning and plasticity of sperm traits in SC has been

reported [81], and even argued to be the only probable

cause of an increase in sperm expenditure [82]. Finally,

given the observation that profound environmental differ-

ences predict vastly different selective forces on sperm

traits [90], evolutionary advancements should become

possible if some individuals collect a multitude of
Proc. R. Soc. B (2012)
environmental cues [24,72], and if they can contingently

alternate between quantity and amount as salient fea-

tures. Evolutionarily phrased, QE can complexify if

individuals exploit their plastic perceptual and cognitive

responses in a way that is canalized towards preferring

quantity to amount. Note, however, that currently there

is no information on mechanisms translating the cognitive

process of QE into actual behavioural or physiological

SC modifications.
7. ECONOMICS OF SPERM EXPENDITURE
QE does not inform males about rivals’ quality. Decision-

making in sexual competition scenarios requires additional

information, such as female availability and status, time of

season, etc. Only the combination of all lines of informa-

tion forges a reliable appraisal of the investment a male

should allocate per competition event. Furthermore,

sperm production is costly [91], and an ejaculate’s com-

petitive value changes during competition [92]. Hence,

sperm expenditure is not trivial. It is probable that an econ-

omic regulation principle selects which plastic modification

is executed in response to SC, such that it would be the one

where minimal energy investment is required [93]. A sup-

port for this argument comes from meadow voles, where

males’ preference for the more receptive female was

reversed when males had the choice between the more

receptive females accompanied by 0 or 1 males compared

with the less receptive females accompanied by five

males. Here, the number of males was a cue overriding

the chemical signal of female receptiveness [94].
8. FUTURE RESEARCH
The methodology in the studies reported here has been

QE-unaware, hence lacking crucial controls required to

consolidate quantity’s role in SCI. This leaves the issue

of alternative hypotheses to the QE argument open until

future studies design methods to incorporate QE data

and theories. Numerous ways could assist in achieving

this goal.

(a) Design modifications

— It is only the number of males that need be manipulated

in future experiments, and done so only in the presence

of a single female, in order to eliminate the effect of

female availability. Additionally, it has to be the same

male who is presented with the choice alternatives,

since only the individual level is important, and thus

individual differences in performance are crucial.

— Future designs should present graded multi-player

scenarios, in which both absolute numbers as well as a

wide range of ratios are examined, and subjects are

forced to perform a comparison (as in [20,75]).

Figure 1 graphically depicts the predictions of SC

models in terms of QE. From 0 to 1 rivals, the situation

is SCR, which is limitedly informative concerning QE.

As the number of rivals exceeds 1, SCI can be assessed

by either amount or quantity. If males estimate quantity

(and conform to SC models’ predictions), then we

expect a decreasing linear relationship between the

number of rivals and energy expenditure towards

sperm traits or sexual behaviour. If males process

amount, then the relationship is nonlinear, and depends
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Figure 1. The relationbetweennumberof rivalmalesandenergy
expenditure towards sperm traits as predicted by SC models.
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on the nature of the amount cue used (figure 1 uses an

arbitrary relationship, illustrating nonlinearity). Future

work should be designed to generate data that could be

inserted into graphs such as figure 1.

— Current designs boast a substantial variance in choice

of observed traits, leading to non-unitary outcomes

within and between species [17,26,29,45,93,95].

Future studies should establish a cohesion and stan-

dardization (enough to allow comparative studies),

and observe a wide range of variables (as in [96]).

(b) Choice of animal models

— Hermaphrodites. Males are a minority in hermaphro-

dites, thus exposed to relaxed SC [97], yet theory still

predicts sex allocation to respond to the actual number

of rivals [98]. In simultaneous hermaphrodites, com-

petitors are also potential partners, and therefore

competition may occur between related and/or

unrelated sperm [99]. In outcrossing simultaneous her-

maphrodites, sex allocation depends on mating group

size K þ 1, where K is the number of different sperm

donors [100]. When K ¼ 1 (i.e. a single, self-fertilizing

individual), there is local SC and an individual should

invest minimally in sex allocation [16]. When K . 1,

things get complicated. If K ¼ 2, the effective mating

group size depends on mating type: under cross-fertili-

zation, mating group size is one and the optimal

investment in sperm depends on the number of eggs

of the partner. If both self- and cross-fertilizations

occur, mating group size will be two, as sperm from

both male functions compete for the fertilization of

one’s ova. With more individuals, competition scenarios

complexify further [16]. While there is considerable

amount of data on hermaphrodite sex allocation, inves-

tigating more closely the SC aspect, with an emphasis on

the QE issue, should provide interesting observations.

An intriguing case is protandric-simultaneous her-

maphrodites, where individuals reproduce first as

males and later as simultaneous hermaphrodites

[18,32]. Here there are two profoundly different QE

phases, since in the first QE is performed by a male

and in the second by a hermaphrodite. Exposing the

same individual under these two phases to different

number of rivals could provide precious data.
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— Spermatophore depositing species. Spermatophores are

interesting for QE because they are sperm encapsu-

lated into discrete entities that can thus serve as a

quantity cue. Spermatophores are used by both

internal and external fertilizers, and for QE the ques-

tion is whether rival males can detect them. If

spermatophores are deposited internally, detection

requires probing the female reproductive tract, thus

making it, most likely, an amount cue. If sperma-

tophores are deposited externally, then they can

serve as a discrete quantity cue, facilitating counting.

Additionally, spermatophore production time varies

drastically across species and taxa, and can be remark-

ably swift [101], extremely slow [102] or impeding on

remating interval [103]. Furthermore, there are data

tying SC to spermatophore traits [42,104]. In several

species, once a spermatophore is fully formed, males

are committed to a fixed ejaculate expenditure [30].

This leads to several questions: When do these

males form the decision leading to spermetophoregen-

esis? What is the quantity stimulus to which they

respond, and what is the lag between formation and

deposition? Will there be a deposition if there has

been a change in the assessment of SCR/I in the

interim between genesis and copula? Answering

those questions could provide data discerning the

role amount and quantity play in the estimation pro-

cess, and might support the argument that QE is

guiding the physiological changes in response to SC.

— Diapause. Multivoltine insects can have diapause

larval development under harsh conditions, forcing

differential energy allocation to hibernation and sub-

sequent development. Consequently, individuals of

different generations are expected to differ substan-

tially in many traits, including spermatogenesis [65].

Comparing males of different diapause generations

could elucidate the role of environmental amount/

quantity cues on adults’ SC performance.

9. CONCLUSION
Cognition can affect behaviour and physiology in a complex

web of ecological and evolutionary parameters. Through

this prism, I argue that males’ response to SC is driven

by their cognitive ability to gauge the magnitude of their

competition. Thus, QE has improved males’ sexual compe-

titiveness and, reciprocally, SC has contributed to the

complexification of QE. This discussion strengthens current

models of sperm expenditure by highlighting the cognitive

components shaping it. It also suggests that an evolutionary

analysis of cognition within ecological and behavioural con-

texts may consolidate theories concerning phylogenetic

complexification of cognitive systems.
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13 Schleicherová, D., Lorenzi, M. C., Sella, G. & Michiels,
N. K. 2010 Gender expression and group size: a test in
a hermaphroditic and a gonochoric congeneric species
of Ophryotrocha (Polychaeta). J. Exp. Biol. 213,
1586–1590. (doi:10.1242/jeb.041814)

14 Bonilla, M. M., Zeh, D. W., White, A. M. & Zeh,
J. A. 2011 Discriminating males and unpredictable
females: males bias sperm allocation in favor of
virgin females. Ethology 117, 740–748. (doi:10.1111/
j.1439-0310.2011.01928.x)

15 Thomas, M. L. & Simmons, L. W. 2009 Male-derived
cuticular hydrocarbons signal sperm competition inten-
sity and affect ejaculate expenditure in crickets. Proc.
R. Soc. B 276, 383–388. (doi:10.1098/rspb.2008.1206)
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